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摘要 

基於通道狀態信息（CSI）的入侵偵測系統至今已有許多發展。然而，以往的

相關研究在入侵者被阻擋或僅於小範圍內活動時會讓表現變差，並且大多數研究

僅偵測入侵者的存在。我們認為一個完善的入侵檢測系統應該足夠穩健、對入侵者

敏感，並且能夠在一定程度上追蹤入侵者所在的區域。功率延遲特徵（PDP）根據

每條路徑的延遲提供近似路徑分量的資訊。眾所周知，當信號向四面八方傳播時，

不同的傳播路徑會不同程度地受到入侵者的影響。基於以上觀點，我們設計了一種

演算法能夠尋找最能反映入侵者活動的路徑分量以增加檢測概率，並同時利用

PDP 提供的延遲資訊來追蹤入侵者位置。首先，我們必須構建一個入侵檢測系統

來評估演算法的性能。在以往研究的基礎上，我們設計了一個基礎系統，並在實驗

室和教室進行了測試，其平均偵測率能夠達到 93.69%。然而，對於一些入侵者被

遮擋或遠離檢測設備的位置，偵測率僅為 60.77%。經過演算法的增強，遮擋區域

的偵測率可以提高到 94.44%，整個系統的平均偵測率也提高到 98.98%。另外，為

了驗證 PDP 能否達到追蹤的目的，我們還在模擬器上模擬了實驗室環境。我們控

制空間中唯一變量為入侵者，在理想環境下使用 320MHz 頻寬，可以使追蹤誤差

小至 0.45m。 



doi:10.6342/NTU202303843

ABSTRACT

There have been many developments in intrusion detection systems based

on Channel State Information (CSI). However, previous related research perfor-

mances are limited when intruders are blocked or only move in a small area, and

most studies only detect intruders’ existence. A sound intrusion detection system

should be robust enough, sensitive to intruders, and able to track the area where

the intruder is located to a certain extent. Power Delay Profile (PDP) provides

approximate path component information based on the delay of each path. It is

known that when the signal spreads in all directions, different propagation paths

are affected to varying degrees by intruders. Based on the above point of view,

we designed an algorithm to find the path component that best reflects the in-

truder’s activities to increase the probability of detection, and at the same time

use the delay information provided by the PDP to track the intruder’s position.

First, we must construct an intrusion detection system to evaluate the algorithm’s

performance. Based on previous research, we built a basic system and tested it

in actual laboratories and classrooms, and its average detection rate has reached

93.69%. However, the detection rate was only 60.77% for some positions where

the intruder was obstructed or moved away from the detection devices. After the

enhancement of our algorithm, the detection rate of blocked areas could increase

to 94.44%, and the average detection rate of the overall system has also risen to

98.98%. Additionally, to verify that PDP can achieve the purpose of tracking, we

also simulated the laboratory environment on the simulator. We control the only

change in the space is the intruder so that the tracking accuracy can be as small

as 0.45m.

ii
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CHAPTER 1

INTRODUCTION

In recent years, device-free passive detection technology that does not require

any equipment has become popular, and several associated studies and programs

have been created to enhance people’s experiences. So far, many existing tech-

niques exist to achieve intrusion detection, such as using cameras [9, 10], sen-

sors [11, 12] that need to be worn, received signal strength (RSS) based [13–15],

and channel state information (CSI) based methods [16–20]. Our research focuses

on detecting the presence or absence of intruders rather than identifying intruders.

Firstly, the camera-based method installs cameras in the target environment

and analyzes collected images to identify intruders. Its disadvantage is that it is

affected by light and may not accurately detect intruders in darker environments or

if obstructed. In addition, there are potential privacy issues with collecting images.

The sensor-based method requires users to wear the corresponding sensors. The

prerequisite for using this method is confirmation of whether the user is wearing the

corresponding sensor. However, this restriction can make users feel inconvenienced

and may lose their detection purpose. The above are traditional methods and have

specific requirements for basic equipment installation.

With the development of wireless network technology, people also try to use the

ubiquitous WiFi signal to detect changes in the surrounding wireless content. This

includes intrusion detection, indoor positioning, motion recognition, and gesture

or physiological feature recognition. RSS-based methods utilize measured RSS

changes to infer the state of a dynamic environment. The RSS signal between

the receiver and transmitter is attenuated when a targeted intrusion reaches the

monitoring range. Although RSS is convenient and has no privacy concerns, it is

not a stable metric due to its sensitivity to environmental noise and coarse-grained

signals.

Today, many commercial devices can extract CSI, such as the Atheros AR9580

chipset, PicoScene, and Nexmon, as well as the Intel Wifi Link 5300 NIC. CSI con-

tains measurement information on the magnitude and phase of each Orthogonal

Frequency Division Multiplexing (OFDM) subcarrier [2, 3]. This better expresses

the different multipath reflections caused by humans. Due to CSI’s benefits over

RSS, which only offers coarse-grained channel information at the physical layer,

researchers have proposed several CSI-based passive detection systems. To this

end, we propose an intrusion detection method that utilizes the phase difference

1



doi:10.6342/NTU202303843

2

between adjacent antennas, which is more stable than the amplitude. It uses

Power Delay Profile (PDP) information to enhance the intrusion message and es-

timate the approximate location of the intruder to achieve Detection and Tracking

Purposes simultaneously.

In contrast to previous intrusion detection systems based on CSI, most are

intended to detect random activities carried out inside the building. However,

considering that most intruder activities are cautious and concentrated in specific

fixed points in a small range, the system design and experiments are specially

carried out for this scenario. We found that intrusion detection will affect detection

performance because of whether the intruder blocks the device. Its weakening is

because it is difficult for the signal to reach the position of the intruder, and

it will be weakened due to multiple reflections and diffractions. Here, based on

PDP, an intrusion information enhancement method is designed further to improve

the average performance of the intrusion system [31]. Since the PDP covers the

propagation information of the path, we further track the intruder location by

analyzing which path delay components are most affected by the intruder. We

organize our contributions as follows:

� Constructing a stable intrusion detection system can effectively compensate

for inadequacies and adapt to different environmental changes. There can be

an average detection performance of 93.69% against intrusions in the indoor

environment.

� Developing a PDP-based method for enhancing intrusion signals. By uti-

lizing the path component information of the PDP, the intrusion signal can

be improved when the intruder’s position is blocked, thereby affecting the

detection effect. An improvement of 98.98% can be achieved in the aver-

age performance of the intrusion detection system without increasing the

number of false alarms.

� Analyze PDPs to determine the location of the intruder. The main delay

components can be identified primarily based on how much the intruder

affects the different paths. Intruder tracking maps may be generated by

converting the delayed parts into distances. In an ideal environment, the

tracking offset using a 320MHz bandwidth can be as small as 0.4481m.



doi:10.6342/NTU202303843

CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 Backgrounds

The presence of unauthorized or malicious individuals in the target indoor

space is detected by analyzing channel state information (CSI) in the indoor envi-

ronment. It is designed to identify intruders or unauthorized individuals who may

pose a security threat or compromise user privacy.

In indoor wireless communication systems such as Wi-Fi networks, CSI pro-

vides valuable information about wireless channel characteristics and properties,

including signal strength, multipath fading, and other channel impairments. CSI

measurements are typically obtained from access points or devices deployed in

indoor environments.

CSI intruder detection systems in indoor settings utilize CSI measurements to

detect anomalies or deviations that may indicate the presence of intruders. Some

specific aspects of indoor CSI intruder detection include:

1. Presence Detection: CSI data can be used to detect the presence of indi-

viduals within the indoor environment. By analyzing CSI measurements

from multiple access points (AP) or devices, changes in signal strengths or

multipath profiles caused by an individual can be detected. Unusual or

unexpected variations in the CSI patterns can raise alarms for potential

intruders.

2. Intruder Tracking: CSI data and localization techniques can track intruder

movement within the indoor environment. By analyzing the CSI measure-

ments from different access points or devices, it is possible to estimate the

location and trajectory of an intruder. This information can be valuable for

security personnel to respond effectively.

3. Integration with Security Systems: CSI intruder detection can be integrated

with existing security systems in indoor environments. For example, detect-

ing an intruder through CSI analysis can trigger alarms, send notifications to

security personnel, or activate surveillance cameras for visual confirmation.

Various techniques can be employed to perform CSI intruder detection in in-

door environments. These include signal processing algorithms, statistical analy-

sis, machine learning, and pattern recognition techniques.

3



doi:10.6342/NTU202303843

2.2. MULTIPATH SIGNALS 4

Overall, CSI intruder detection in indoor environments is critical in enhancing

wireless communication networks’ security and safety. It enables the detection

of unauthorized individuals, suspicious activities, and potential security threats

within the indoor environment with the help of CSI measurements.

2.2 Multipath Signals

To further understand how CSI information is used, we must first understand

what messages CSI contains. First of all, signals spread in all directions when

propagating. Line of sight (LoS) and non-line of sight (NLoS) can be distin-

guished among the many paths from the transmitter to the receiver. LoS means

no obstruction between the transmitter and the receiver, which is the shortest

path in the signal. NLoS refers to those paths that are reflected or scattered due

to obstacles.

The signal is transmitted by OFDM, and multiple symbols are transmitted on

different subcarriers simultaneously. The modulated signal has different degrees

of delay at the receiver due to the difference in the propagation path, which can

be represented by the channel impulse response (CIR). After the signal is demod-

ulated, the information on each subcarrier is restored. The state of the subcarrier

at this time is channel state information (CSI). Next, OFDM, CIR, and CSI will

be explained below.

2.2.1 Orthogonal Frequency Division Multiplexing (OFDM)

OFDM is a digital modulation technique widely used in modern wireless com-

munication systems, including Wi-Fi, 4G LTE, and 5G networks. OFDM enables

efficient and reliable data transmission over wireless channels by dividing the avail-

able frequency spectrum into multiple orthogonal subcarriers [2, 3].

Compared with the previous single-carrier communication system, the advan-

tages of OFDM are manifested in multipath channels. In traditional single-carrier

modulation schemes, the entire bandwidth is occupied by a single-carrier signal.

However, in OFDM, the available bandwidth is divided into multiple smaller sub-

carriers, each with a narrower bandwidth. These subcarriers are closely spaced

and orthogonal to each other, meaning they do not interfere with one another.
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The subcarriers of OFDM satisfy the following orthogonality:

∫ Ts

0

cos (2πm∆ft) · cos (2πn∆ft) dt =

{
Ts/2 , m = n

0 , m ̸= n∫ Ts

0

sin (2πm∆ft) · sin (2πn∆ft) dt =

{
Ts/2 , m = n

0 , m ̸= n∫ Ts

0

cos (2πm∆ft) · sin (2πn∆ft) dt = 0,

(2.1)

where m,n ∈ Z, and Ts is symbol duration. Ts gets Ts = 1
∆f

according to the

frequency resolution ∆f . It can be known from (2.1) that there will be a value

only when m=n. Therefore, although OFDM has overlapping frequency parts,

they are not interdependent, as shown in Figure 1.

Figure 1: Orthogonality of signal propagation using OFDM.

2.2.2 Channel Impulse Response (CIR)

CIR refers to the response of a communication channel to an impulse input

signal. It is a fundamental concept in wireless communication systems and de-

scribes the characteristics of the channel in terms of its time-varying amplitude,

phase, and delay.

In practical terms, the channel impulse response represents the effect of the

wireless channel on a transmitted signal. When an impulse, a short-duration

signal, is transmitted through the track, it undergoes various changes due to factors

like multipath propagation, fading, interference, and other channel impairments.

The CIR captures these changes and provides insight into the behavior of the

channel.



doi:10.6342/NTU202303843

2.2. MULTIPATH SIGNALS 6

The CIR is typically represented as a time-domain sequence, where each sample

corresponds to the channel’s response at a particular time instant. It character-

izes the channel’s response over a particular duration, considering the different

propagation paths and delays associated with each path.

The CIR at time point t can be expressed as [4, 5]

h(t) =
K∑
k=0

αkδ(t− τk)e
−jθk + n(t), (2.2)

where K represents the total number of paths for signal propagation, and αk, τk,

and θk represent the amplitude attenuation, delay, and phase offset of the kth path,

respectively. Noise is represented by n(t). In more detail, αk can be expressed as

follows [6, 7]:

αk =
WAk

∏rk
i=1 εi

(dk)
n
2

, W =
λ
√
GtGrQtemQhum

(4π)
n
2

, (2.3)

where λ is the wavelength of the radio signal, Gt and Gr are the gain of the

transmitter and receiver antenna, Qtem and Qhum are respective the temperature

and humidity quality factor. n, Ak, and rk represent the loss factor, the shadowing

effect, and the number of reflections on the kth path; εi is the reflection coefficient of

each reflector, which varies according to the material of the ith reflector, between

0 and 1, depending on the material. Multiple reflections lengthen the route; it

leads to the product of numerous εi values shrinking. Thus, according to (2.3),

numerous reflections of the path will significantly reduce αk.

2.2.3 Channel State Information (CSI)

In the ideal case, CIR may be further transformed by the Fourier transform

into channel frequency response (CFR), and the corresponding CFR can be written

as [4, 5]:

H(f) =
K∑
k=0

αk exp
−j2πfτk+θk +N(f), (2.4)

where N(f) is the noise frequency response and f is the frequency of the radio

signal.

However, the ideal Fourier transform cannot be realized in reality, and the fast

Fourier transform (FFT) is used instead. It is a method for quickly computing the

discrete Fourier transform (DFT) of a sequence [8]. A signal is represented in the

frequency domain via Fourier analysis after being transformed from the temporal

domain. In other words, CSI is sampling CFR in the frequency domain.

CSI represents the information about the characteristics of the communica-

tion channel between a transmitter and a receiver. In the frequency domain, the
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wireless channel state can be described as [4, 5]:

Y = HX+ n, (2.5)

where n is the additive noise vector and H is the channel matrix. When a known

sequence of textbfX is transmitted, the receiver can estimate textbfH in the for-

mula above. Each component of H indicates the signal’s attenuation factor along

a specific transmission channel. Different variables, such as signal scattering, envi-

ronmental attenuation, and distance attenuation, might influence the attenuation

factors. CSI enables the communication system to adjust to the current channel

circumstances by providing information on the channel matrix H. The following

is an expression for the estimated H for N subcarriers:

H = [H1, H2, ..., Hn, ..., HN ]
T , (2.6)

the CSI of ith is:

Hn = |Hn| ej sin(∠Hn). (2.7)

The amplitude and phase details of the ith subcarrier are represented on the

right side of the equation by |Hi| and ∠Hi, respectively. Each CSI entry represents

sampled CFR can be express by

Hn(f) =
K∑
k=0

αn,k exp
−j2πfτn,k+θn,k +N(f), (2.8)

from (2.4). In Wi-Fi, the subcarrier spacing is 312.5 kHz (IEEE 802.11ab/g/n/ac)

or 78.125 kHz (IEEE 802.11ax/be), which means that the CFR is sampled at

discrete frequency points f = f0 + n∆f , where n is the index of the subcarrier

and ∆f is the subcarrier spacing.

The temporal sequence of CSI matrices characterizes the Multi-Input Multi-

Output (MIMO) channel variations across different domains, i.e., time, frequency

and spatial. It will be described in more detail in Section 3.2.

2.3 Overview of Intrution Detection

This section reviews some previous work on intrusion detection. Passive intru-

sion detection, RSS-based, and CSI-based detection methods are the three points

of view used. The latter two of them are WiFi-based strategies.

2.3.1 Passive Intrusion Detection

The earliest and most extensively studied techniques rely on pictures taken by

cameras and are based on vision technology. For instance, [9] employs image-

based algorithms to follow moving subjects while analyzing a series of shots taken
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by a camera. However, the most critical issue with these image-based methods is

privacy, coupled with the sizeable computational cost required for real-time pro-

cessing. [10] relies on whether humans block infrared rays to report intrusions, but

like the image-based method, it is only applicable to line-of-sight scenarios. When

there are obstacles between humans and the detection device, detection is impos-

sible. In addition, information from audio [11] and pressure [12] sensors can also

be used for intrusion detection. This is mainly based on noise and floor vibration

changes caused by intrusion activities. It should be emphasized, nevertheless, that

these signals are easily influenced by other outside sound sources or environmental

pressure to cause false alarms.

2.3.2 RSS-based Methods

When an object enters the wireless network area, the link passing through the

object will experience shielding loss. Wilson and Patwari calculated the position

of people discovered inside a region encompassed by nodes by observing changes in

the network’s attenuation field [13]. In this study, the system is first calibrated in

a static environment, or in which no objects are present in the monitored region.

[14] utilizes radio sensors deployed around (and possibly on top of) built-up

areas and has nodes transmitting to each other to make signal-strength measure-

ments of links passing through buildings or areas of interest. The phasor sum of

all multipath components at the receiver varies when a moving object alters the

amplitude or phase of one or more multipath components over time. There is a

higher RSS variance.

Cosba et al. A system named RASID is proposed [15], which also selects

RSS sample variance as features, and after that uses non-parametric statistical

anomaly and contour updating methods to record environmental changes. RASID

is reliable, however, the sampling rate of 1 sample/s is too slow, taking a long time

to collect data.

Although the RSS-based system described above can produce particular out-

comes, more WiFi sensor nodes must be deployed to minimize multipath effects

and increase accuracy.

2.3.3 CSI-based Methods

The CSI can be analyzed from the packets transmitted and received between

the two devices. Owing to multi-path transmission, CSI is affected by reflections

in the surrounding environment, resulting in changes and disturbances. When

intruders show up, the indoor environment changes, affecting CSI transmission

paths. It can be reflected in the amplitude and phase, and then analyze these
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data to detect intruders.

Having investigated various related studies, we came to the following conclu-

sions. Currently, most intrusion detection studies using CSI must extract signals

and perform feature selection first. Some works also perform preprocessing before

selecting features to reduce noise impact, enhance signal features, or reduce the

amount of data. Finally, a threshold or pre-trained model is used for decision-

making.

2.3.3.1 Signal Analysis

[16–18] uses CSI amplitude as the main analysis signal, and [19,20] uses phase

difference.

Most studies use amplitude because of its stability. The raw CSI phase displays

far more unpredictability than the raw CSI amplitude because of ambient noise

and out-of-synch clocks between the transmitter and receiver. The amplitude is

mainly affected by the beamforming matrix [21]. Phase is affected by Sampling

Frequency Offset (SFO) and Carrier Frequency Offset(CFO) [20]:

Hi =

(
N∑
n

ane
−j2πdif/c

)
︸ ︷︷ ︸

Multipath Channel

e−j2πδif︸ ︷︷ ︸
SFO

e−jβ︸︷︷︸
CFO

qie
−j2πζi︸ ︷︷ ︸

Beamforming

, (2.9)

where di is the path length from the transmit antenna to receive antenna of the

ith path, f stands for the carrier frequency, c for the speed of light, δi for SFO,

β for CFO, and qi and ζi for the beamforming matrix’s amplitude attenuation

and phase shift, respectively. Calculating the phase difference between the two

antennas can eliminate most SFO and CFO, and the processed phase difference is

even more stable than amplitude. It will be introduced in Chapter 3.

2.3.3.2 Feature Extraction

In intrusion detection, feature extraction is crucial. The correct features can

streamline data processing while effectively reflecting intrusions’ presence.

Wang et al. [16] proposed a Wi-Alarm system, which aims to select simple

but robust information as features and does not require preprocessing to speed up

system processing. However, although its design can significantly save calculation

costs, most of the unprocessed original CSI has non-negligible high-frequency sig-

nals, and the extracted features, the CSI amplitude mean and variance, are not

accurate enough and are prone to instability due to environmental changes. Under

such a design, the CSI data cannot be fully utilized, affecting detection accuracy.

[17] choose to utilize the power spectral density (PSD) of CSI as the detection

feature instead of the amplitude and phase information, and it calculates the PSD’s
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kurtosis as the feature’s criteria. More than 99% accuracy in detection is possible.

However, this method mainly aims at situations with only a single intruder in the

environment. Crowd gathering will result in a signal superposition effect when

there are several invaders, making accurate intrusion detection challenging. In

addition, its test environment is relatively ideal. High identification accuracy and

system reaction speed are difficult to maintain in a complex environment.

By computing the eigenvalues of the phase difference covariance matrix be-

tween nearby antenna pairs as fingerprints, the passive intrusion detection system

achieves CSI-based passive intrusion detection [20]. Similarly, [18] further ex-

trapolates characteristics from the subcarrier correlation coefficient distribution.

The eigenvalue of covariance shows the relationship between subcarriers, while the

correlation coefficient illustrates how the Doppler shift of adjacent subcarriers is

similar. Although the covariance and correlation coefficient reflect the correlation

between two random variables, both values are affected by the subcarrier dimen-

sion. Therefore, the matrix cannot be considered a feature directly. [18, 20] use

the maximum value and the sum of matrices under certain conditions as the final

features. However, when the speed of the intruder changes continuously or stands

at a fixed point, the distinction between features becomes blurred, which reduces

detection efficiency.

2.3.3.3 Decision Method

Decision-making processes for system infiltration may be loosely classified into

two groups: Threshold-based methods set a threshold, and decide whether to

intrude according to whether the value exceeds the threshold. Another technique

is model-based. The detection model needs to be pre-trained, and the model will

judge the intrusion result.

Compared with defining the threshold with a fixed value, most current threshold-

based methods are dynamic algorithms. For example, [17] uses the exponential

moving average algorithm to define the threshold dynamically. The formula is as

follows:

THt = (1− ξ)THt−1 + ξft. (2.10)

ξ is the coefficient between 0 and 1, ft is the feature in time t. On the other

hand, [19] normalizes the features. The seemingly fixed threshold changes with

the collected data. Although this dynamic method seems to be able to adjust

as the environment changes, it still has shortcomings. First, when the detection

environment changes, it is inevitable to spend a certain amount of time collecting

operating environmental data to set the initial threshold. Second, when the coef-

ficient is not appropriately set, the threshold value shifts with time, significantly
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reducing detection performance. And this brings us back to the first point. The

threshold needs to be redefined.

Training data of the target model are required for the model-based approach.

The trained model must be resilient enough to alter with various circumstances.

The two significant factors affecting the robustness of the model are whether the

extracted features are sufficiently independent of the scene. The other is the

method of model selection and adjustment. A shallow machine-learning approach

is preferable since intrusion detection requires binary classification. It needs less

data and less sophisticated computer power than a deep-learning model. Applica-

tions for detection and recognition frequently employ shallow learning techniques

like K-Nearest Neighbors (KNN) [22], Random Forest (RF) [23], and Support

Vector Machine (SVM) [24].

Although the computational complexity of shallow learning is not high, it still

requires a higher upfront cost than threshold-based methods. This is in exchange

for the stability of the intrusion detection system. The above methods have their

advantages and disadvantages.

2.3.3.4 Comparison

We have summarized the related works mentioned above and organized them

in Table 1. Further comparisons for each step and method are shown in Table 2.

Table 1: Comparison of related works.

Name CSI Signal Features Decision

Wi-Alarm [16] Amplitude Mean, Variance Model

RT passive
intrusion detection [17]

Amplitude PSD, kurtosis Threshold

Adaptive RT indoor
intrusion detection [18]

Amplitude Correlation
coefficient

Model

Ar-Alarm [19] Phase
difference

Standard
deviation

Threshold

Robust passive
intrusion detection [20]

Phase
difference

Covariance Model

Generally speaking, current intruder detection systems still have room for im-

provement, and most of these systems focus primarily on the dynamic movement

of the intruder. As the actual intrusion behavior may be slow and fixed, we also

perform related experiments when the intruder is active at a fixed position.

It is important to note that there may be various obstacles in the target space,

including pillars, cabinets, etc. When there is obstruction at the location of the
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intrusion, it affects signal transmission. We know from (2.3) that the signal will

be attenuated a lot after multiple reflections. Because the position is blocked,

the path components passing through the position are reduced, and the signal is

weakened simultaneously. A general CSI signal is obtained by averaging and sum-

ming multiple paths (2.2). We consider increasing the extent to which the intruder

affects the CSI by changing the path weight. The approach will be described in

Chapter 5.

Table 2: Comparison of Steps for an Intrusion Detection System.

Steps Items Advantages Disadvantages

Signal
Analysis

Amplitude Simple Unstable

Phase difference Stable Complex

Feature
Extraction

Mean, PSD Simple
scenario-
dependent

CorrCoef,
Covariance

scenario-
independent

Complex

Decision
Method

Threshold Simple Shift over time

Model robust High upfront cost

2.4 Overview of Intruder Tracking

Since it is possible to confirm whether an intruder exists in the space through

the intrusion detection system, it is expected to further confirm the location of the

intruder. The work related to human body tracking or positioning can be divided

into methods based on signal feature extraction or machine learning.

2.4.1 Signal Feature Extraction

One of the standard tracking methods is to estimate the speed and direction of

the human body, such as [25–28]. However, the disadvantage of this method is that

it is easily affected by multipath effects, which leads to estimation deviation and

affects the tracking effect. Another method is to estimate the Angle of Arrival

(AOA) and Time-of-Flight (TOF): [29] uses the MUSIC algorithm to estimate,

which is very sensitive to radio frequency channels and mutual coupling charac-

teristics. [30] uses Kalman The filter builds a model for estimation but requires a

lot of calculations and high-frequency accuracy. The Power Delay Profile (PDP)

is used to track the position of the human body [31], but it is only used for activity

recognition at a fixed position and is easily affected by the LOS component.

The technique used in [25] to determine the radial direction of human motion is

the foundation of [8]. The cross-covariance between time-lag subcarrier segments
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is computed using this. And refer to [26] to build a model linking CSI dynamics

to the path length change rate (PLCR) for speed estimation. WiTrack [29] tracks

motion by processing signals from its receiver antennas through TOF Estimation

and 3D Localization. Find the TOF of the signal by Frequency-Modulated Carrier

Waves (FMCW) [32], and use the ellipse model to track the intruder’s location.

However, besides restricting the intruder’s movement, the above method requires

TOF and AOA information. It is much cost to compute these features and often

requires additional calibrations. [31] used the PDP to trace the user; the intruder’s

position was decided by converting the PDP between multi-antenna links into dis-

tances and superimposing them. However, the purpose of [31] is mainly to track

users needing motion recognition, most of which stand in a fixed position. There-

fore, in the design of its algorithm, when the user is moving, the LOS component

can easily overwhelm other delay components, resulting in tracking failure.

2.4.2 Machine Learning

Both [33] and [34] divide the target space and let individuals stand in different

positions to collect training data. [33] uses the deformed 1-dimensional Convolu-

tional Neural Network (C1D) model; [34] uses KNN. Although the above methods

also have a certain positioning effect when the individual is at a fixed point, their

disadvantages are that the pre-processing of the training is complicated. When

the environment changes, the model needs to be retrained again.

Our goal is to effectively track the intruder regardless of how he behaves,

whether static or dynamic. As much as possible, we would like to reduce the costs

associated with tracking and the threshold for the use of equipment. For this

purpose, we simulate an ideal laboratory environment. An algorithm based on

the PDP method is designed to track intruders without requiring any training.
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INTRUSION DETECTION SYSTEM

In this chapter, we will introduce the detailed process of our preliminary con-

struction of the intrusion detection system, including the overall structure of the

entire system and the details and considerations of each step.

3.1 System Overview

We created the system’s process based on empirical analysis, as Figure 2. There

are several steps in the system process. These comprise collecting CSI data, signal

analysis, data preprocessing, feature extraction, real-time test data, empty train-

ing data, and ultimately the detection outcomes attained by the trained model.

Figure 2: System flow of intrusion detection system.

According to the commercial WiFi device used, Lanner LWR-X8460, we ini-

tially developed a 1×4 MIMO-based CSI collection system. The IEEE 802.11n

protocol has a 2.4GHz frequency spectrum and a 20MHz bandwidth. The setting

above is the lowest bandwidth standard commercial Wi-Fi equipment can achieve.

Next, we perform signal analysis based on previously collected CSI data, from

which the amplitude or phase is derived. The raw amplitude contains many high-

frequency components, and the phase contains errors such as sampling frequency

offset (SFO) and carrier frequency offset (CFO). Although the phase difference

can eliminate most offsets, sometimes there will still be a shift of /pi, caused by

the limited design of hardware equipment. This requires some preprocessing to

restore the original phase difference. We extract target features from the restored

CSI, which should be sensitive to human presence and provide a suitable scene-

independent index. Based on the extracted features, a SVM model is generated,

and individual classifiers are constructed for different receiving antennas. Voting

is performed between each classifier to enhance our system’s robustness to intruder

movement. In what follows, we will describe each step in detail and introduce its

related technologies.

14
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3.2 Data Collection

The time series of the CSI matrix illustrates how the MIMO channel varies in

terms of time, frequency, and space. The CSI of each packet can be expressed as a

three-dimensional matrix H ∈ CM×N×K , which represents amplitude attenuation

and phase shift, as shown in Figure 3 for a MIMO-OFDM channel with M trans-

mitting antennas, N receiving antennas, and K subcarriers. The CSI time series

is a four-dimensional sequence with continuous transmission on the time axis.

Figure 3: The four-dimensional CSI tensor constructed from the time series of
the CSI matrices of the MIMO-OFDM channel.

We built a CSI collection system on Lanner LWR-x8460 based on 1×4 MIMO

using the IEEE 802.11n protocol, and the bandwidth is 20MHz. IEEE 802.11n

works in the 2.4GHz frequency band. When transmitting on a 20MHz channel,

the channel is divided into 64 subcarriers (equal to FFT size). [35] The 4 pilot

signals are located at -21, -7, 7, and 21 subcarriers respectively. In Legacy Mode,

the signal is transmitted on subcarriers -26 to -1 and 1 to 26 [36], with 0 being the

center, Direct Current (DC), carrier. Pilot subcarriers are used for estimation and

synchronization, and null subcarriers do not carry anything, including guard bands

and DC components. After deducting the empty subcarriers from the original CSI,

we use the remaining subcarriers (64 − 12 = 52) for subsequent processing. We

use 500Hz to transmit packets. This means a CSI matrix of size 500× 1× 4× 52

can be collected within one second.

3.3 Signal Analysis and Preprocessing

3.3.1 Amplitude

Next, we observe the raw CSI amplitude in Figure 4, which contains many

outliers in high-frequency components. The Hampel filter can eliminate these

undesirable elements and guarantee the continuity of quality of service (QoS) in

various contexts. It detects and removes outliers from the input signal using

Hampel identifiers, proposed by Hampel [37, 38]. He created a breakdown point
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to gauge an estimator’s robustness to outliers. He used the median to estimate

the data location and used it as a criterion for outlier identification. The standard

deviation of the data is calculated using the median absolute deviation (MAD).

The approach was further improved by Davies and Gather using a moving window

for recognition [39].

Assume there is a sequence [x1, x2, · · · , xi, · · · , xn] of size n and a sliding win-

dow of length k, define local median mi and standard-deviation σi as [40]:

mi = median (xi−k, xi−k+1, · · · , xi, · · · , xi+k−1, xi+k) , (3.1)

σi = κ ·median (|xi−k −mi| , · · · , |xi+k −mi|) , (3.2)

where κ = 1√
2erfc−1(1/2)

≈ 1.4826. The quantity σi/κ is known as the MAD. For a

given threshold nσ, usually set to 3, a sample xi is such that |xi −mi| > nσσi will

be declared an outlier and replaces it with mi. We can see from Figure 4 that the

filtered CSI is much cleaner.

(a) (b)

Figure 4: CSI is measured when no individuals are present in the target environ-
ment.

3.3.2 Phase Difference

IEEE 802.11n utilizes MIMO technology to achieve higher capacity, range, and

reliability through spatial diversity. Commercial off-the-shelf wireless equipment

with multiple antennas is standard. According to [41], we combine the phases of

several antennas to calculate channel statistics more quickly and are more resistant

to environmental changes than amplitudes. We first confirm that the two antenna

pair’s measured phase difference for successively received data packets is remark-

ably stable. The CSI measurement provides phase information for each subcarrier,

and the following could be used to describe the CSI phase ϕ̂i determined in the

ith subcarrier [42]:
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Figure 5: Comparison of raw phase, raw phase difference and phase difference
after hampel filter.

ϕ̂i = ϕi − 2π
ki
N
δi + β + Zi, (3.3)

where, respectively, ϕ̂i and ϕi represent the measured CSI phase and the actual

phase value of the ith subcarrier. The time delay at the receiver induced by

SFO is denoted by δi, while the phase shift generated by CFO is denoted by β.

Measurement noise is Zi. The index of the ith subcarrier is indicated by ki, which

in IEEE 802.11n ranges from -26 to 26; N is the FFT size, which in IEEE 802.11

a/g/n equals 64. Due to the existence of δi, β, and Zi, actual phase information

cannot be obtained directly. We know antennas connected to the same network

card share the same downconverter frequency and sample clock [43]. Consequently,

the ith subcarrier’s observed phase difference is as follows:

∆ϕ̂i = ∆ϕi − 2π
ki
N
∆δi +∆β +∆Zi, (3.4)

where ∆ϕi = ϕi,m − ϕi,n and ∆ϕ̂i = ˆϕi,m − ˆϕi,n are the real phase difference and

the measured CSI phase difference values of the ith subcarrier, respectively. m

and n represent two different antennas. The time delay difference between the

two receiving antennas is ∆δi = δi,m−δi,n. ∆Zi is a measurement noise difference,

while ∆β is the unknown phase offset difference. Assign the following symbols

to their respective values: λ for wavelength, d for antenna spacing, θ for arrival

direction, c for light speed, and Ts for receiver sampling interval. We know that

reception antennas are positioned half a wavelength apart. Then ∆δi can be
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expressed as:

∆δi =
λ sin θ

2cTs

≤ 1

2fTs

, (3.5)

where f is the center frequency, which varies depending on the WiFi network’s

operational channel, while θ is the angle of arrival and Ts has a bandwidth of 20

MHz, it takes 50 ns. The phase difference resulting from differing timing offsets

approaches zero when we select the 2.4 GHz WiFi frequency choice, –32 ≤ ki ≤ 31,

or more precisely, 2π ki
N
∆δi ∈ [−0.0131, 0.0127], making it insignificant in ∆ϕ̂i.

After being omitted, ∆ϕ̂i is indicated as:

∆ϕ̂i = ∆ϕi +∆β +∆Zi. (3.6)

As for ∆β, although we cannot determine the initial phase of each packet and

it changes over time, by moving the mean of the phase difference to zero, the ∆β

obtained at different times becomes the same. Figure 5 portrays that raw CSI

phase data are randomly distributed due to variable δi. The phase difference is

mainly concentrated around a certain angle. A few outliers located elsewhere can

be eliminated using filters.

3.3.3 Preprocessing

Although in Figure 5 we can see that the phase difference is compared to the

phase and all its values are concentrated in one place. But there are exceptions:

as shown in Figure 6(b), hoppings are in the calculated phase difference, and each

hopping is approximately equal to multiple of ±π.

(a) (b)

Figure 6: When there is no intrusion in the room, the collected data sometimes
have anomalous jitter or hoppings.

These hoppings are caused by the poor design of hardware devices. There is

no fixed time for them, and they will appear randomly. It also affects the stability

of the amplitude. We can see in Figure 6(a) that when there are no intruders
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in the environment, The amplitude should be stable as indicated by the red line.

However, the abnormal amplitude we collected is the blue line with apparent

jitter as if intruders were in the space. These jitters have no regularity and cannot

be eliminated by specific algorithms. Fortunately, as mentioned above, from the

perspective of phase difference, each hopping is about a specific value, so we design

an Algorithm 1 to eliminate them.

In our devised algorithm, we iteratively unwrap and wrap the phase difference

back to 2pi, adding an appropriate Hampel filter between the two motions. As

shown in Figure 7(c), the first Hampel filter is not intended to eliminate hopping

directly. Instead, it is designed to eliminate outliers that suddenly appear in

specific continuous data. When we remove such outliers and wrap the phase

difference back in the range of 0 to 2π, comparing Figure 7(d) with Figure 7(a),

we can see that the phase difference is much cleaner. We use the second Hampel

filter to remove outliers again, which is the hopping we need to eradicate. After

re-unwrapping, we can get phase difference data without hopping.

Algorithm 1 Phase difference preprocessing to remove aberrant hoppings.
Input:

CSI phase tensor, ϕ̂;
Sampled frequency, W ;

Output:
CSI phase difference tensor, ∆ϕ̂;
set the number of receiver antennas = N ;
set the number of subcarriers = K;
for ∀i, j ∈ [1, N ], i < j do
∆ϕ̂i,j = unwrap(ϕ̂i − ϕ̂j);
set w = W/10;
for each k ∈ [1, K] do
set window size = w, threshold nσ = 0.01;
∆ ˆϕi,j,k = hampel(∆ ˆϕi,j,k, w, nσ);

end for
∆ϕ̂i,j = wrapTo2Pi(∆ϕ̂i,j);
set w = W/5;
for each k ∈ [1, K] do
set window size = w;
∆ ˆϕi,j,k = hampel(∆ ˆϕi,j,k, w, nσ);

end for
∆ϕ̂i,j = unwrap(ϕ̂i − ϕ̂j);
removed remaining aberrant hoppings with threshold th = π/2;

end for
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(a) (b)

(c) (d)

(e) (f)

Figure 7: Preprocessing steps for phase difference.
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3.4 Feature Extraction

After obtaining the basic CSI signal information, we need to extract the fea-

tures that best reflect the overall signal. The purpose is not only to eliminate the

chaff but also to reduce the computational cost of detecting intruders.

3.4.1 Data Propagation

We first assume that a CSI matrix Ht is obtained at time Ti, and it is known

that Ht can retrieve from the FT of CIR in a short amount of time around Ti, as

described in (2.2). The wireless channel is affected when an intrusive person gets

close to a transmitter or receiver because part of the broadcast signal’s propagation

routes are altered. Each component of Ht in this instance changes as the invasion

progresses. However, the CSI of various subcarriers in Ht must differ due to

frequency selective fading effects. The CSI fluctuates more dramatically at some

subcarriers than others. We denote the subcarrier with the most intense variation

as fc and take it as a representative. Therefore, according to (2.4) we have

HTi
(fc) =

K∑
k=0

αk,Ti
e−j(2πfcτk,Ti+θk,Ti ) +NTi

(fc), (3.7)

where the amplitude attenuation, propagation delay, and phase offset along the kth

path are designated as αk,Ti
, τk,Ti

, and θk,Ti
, respectively, during the brief interval

between Ti − ts and Ti. They are nearly constant for such a brief time. The

following is how the CIR is stated during this small duration, according to (2.2):

hTi
(t) =

K∑
k=0

αk,Ti
δ(t− τk,Ti

)e−jθk,Ti + nTi
(t). (3.8)

Since intruders obstruct some of the sent signals’ propagation pathways, their

presence should impact CSI. In this case, we assume that the intrusion has not yet

passed between the transmitter and receiver even though it is getting closer. As

shown in Figure 8(a), assuming that the floor and the wall are composed of the

same material, the only thing in the space that influences the propagation path

when there is no incursion is the wall. First observe that the propagation path

marked b1, b2, · · · , bi, · · · bKb
will first directly reach the wall at x = 6, experience

reflection at the wall, and then reach Rx. However, when an intruder appears

in front of this reflection, as shown in Figure 8(b), the path is blocked by the

intruder. The human body is around 70% water, and water substantially attenu-

ates electromagnetic signals, making it difficult for invaders to get through these

pathways [44]. At the same time, some blocked paths will change the direction of

their reflection and refraction. We denote the total number of all blocked paths
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as Kb with reflector changes to intruders. The path without any reflection is Kd,

and the path that is still the wall without the influence of the intruder is Kr. To

simplify our simulations, all reflection paths pass through only one reflection.

(a) (b)

Figure 8: When an intruder is present or absent in the space.

Below we simulate human invasion and divide the propagation paths into three

parts. The CIR without intruders at time Ti is:

hTi
=hTi,d + hTi,r + hTi,b

=

Kd∑
d=0

αd,Ti
δ(t− τd,Ti

)e−jθd,Ti +
Kr∑
r=0

αr,Ti
δ(t− τr,Ti

)e−jθr,Ti+

Kb∑
b=0

αb,Ti
δ(t− τb,Ti

)e−jθb,Ti .

(3.9)

In (3.9), the noise is almost nonexistent since the WiFi system’s noise is often

considerably less than the WiFi signal, mainly when the distance between the

transmitter and receiver is tiny. According to (2.3), the three separate amplitude

attenuation parameters in (3.9) can be further stated as follows:

αd,Ti
=

WAd,Ti

(dd,Ti
)
n
2

, αm,Ti
= αr,Ti

= αb,Ti
=

WAm,Ti
εwall

(dm,Ti
)
n
2

, (3.10)

where εwall is the reflection coefficient of wall, and αr,Ti
and αb,Ti

are the same.

Then, we advance to the time Ti+1 when the intruder appears, as shown in Figure
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8(b). This is how the new CIR is presented:

hTi+1
=hTi+1,d + hTi+1,r + hTi+1,b

=

Kd∑
d=0

αd,Ti+1
δ(t− τd,Ti+1

)e−jθd,Ti+1 +
Kr∑
r=0

αr,Ti+1
δ(t− τr,Ti+1

)e−jθr,Ti+1+

Kb∑
b=0

αb,Ti+1
δ(t− τb,Ti+1

)e−jθb,Ti+1 ,

(3.11)

and at this time

αb,Ti+1
=

WAb,Ti+1
εhuman

(db,Ti+1
)
n
2

, (3.12)

where εhuman is the reflection coefficient of human. There is no change in the

CIR for paths not blocked by intruders. That is to say, αd,Ti
= αd,Ti+1

, αr,Ti
=

αr,Ti+1
. For the paths Kb, the presence of intruders not only affects the amplitude

attenuation but also affects the angle of arrival (AoA). This is because the irregular

shape of the human body changes the reflection angle. Based on the above, we

get the CSI of the environment where there is an intruder according to (2.4):

HTi+1
=HTi,d

+HTi,r
+HTi+1,b

=

Kd∑
d=0

αd,Ti
e−j(2πfcτd,Ti+θd,Ti ) +

Kr∑
r=0

αr,Ti
e−j(2πfcτr,Ti+θr,Ti )+

Kb∑
b=0

αb,Ti+1
e−j(2πfcτb,Ti+1

+θb,Ti+1
).

(3.13)

From the decomposition of the above process, we can know how the intruder

affects the path of the signal and then changes its amplitude and phase. The actual

intrusion scenario is much more complicated than this simulation, and there are

many elements in the environment that will affect the signal. Therefore, we need

to extract scenario-independent features to detect intruders.

3.4.2 Sliding Window

In addition to real-time monitoring of intruders in the environment, the intru-

sion detection system is also very significant to the system in terms of the time

point when an intruder is detected and the opportunity to issue an alarm. There-

fore, we segment the collected CSI data into multiple data windows with some

overlap. More feature sets are acquired in the sample, and the detection sensi-

tivity is increased when the window is smaller. At the same time, the machine

learning model’s generalization capacity deteriorates, making it more susceptible

to overfitting, and the too-small window cannot reflect the intrusion’s actions. On

the contrary, when the data window becomes larger, although it can better reflect
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the changes in the human body’s influence on the environment, the features are

reduced, and the model becomes underfitted. As a result of the above, we will

determine the window and step sizes based on the performance of the recognition.

The illustration diagram of the sliding window is shown in Figure 9.

Figure 9: Segmentation using a slided window.

3.4.3 Features

As our goal, an intrusion detection system must accurately detect intruders

regardless of the environment. Therefore, the features we extract are the most

critical part of the entire system, and they should meet the following conditions:

1. Sensitivity. The features retrieved from an empty environment and those

extracted from CSI of human motion should differ significantly.

2. Scenario-independent. Considering the different application environments,

the features should preferably be relative, and should not change much due

to different scenarios.

To decide on the appropriate features, we first have to observe the changes in

the intruder’s appearance. In subsection 3.4.1, we explained how intruders affect

the propagation of CSI signals. Here we visualize the CSI signals more intuitively

to observe their differences. We stated in subsection 3.3.3 that the amplitude is

more unstable than the phase difference, so choosing to extract features from the

phase difference. Figure 10 shows the CSI phase difference with preprocessing
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under different scenarios. Among them, Empty means that there is no life in the

environment, and Move means that there are intruders in space and they keep

moving.

(a) (b)

Figure 10: Examples of subcarrier fluctuations in Empty and Move environments.

3.4.3.1 Variance

From Figure 10, we can directly observe that the CSI in the case of Move

oscillates. Empty is the opposite, the change of CSI is minimal, and the phase

difference hardly varies. And the best to show this feature is variance. The level of

a random variable’s dispersion is described by its variance. This gauges how much

a set of numbers deviate from their expected value. It is the expected value of the

square of the deviation between the random variable and its sample mean. For the

CSI phase difference array Pi = [pi,1, pi,2, · · · , pi,pkt, · · · pi,W ] of the ith subcarrier

with a window size W , the variance is defined as:

vi = V ar(Pi) =
1

W

W∑
pkt=1

|pi,pkt − µi|2 , (3.14)

where µ is the expected value of Pi,

µ = E(Pi) =
1

W

W∑
pkt=1

pi,pkt. (3.15)

In the same window, calculate the variance of each subcarrier according to

(3.14) to get V = [v1, v2, · · · , vi, · · · , vK ]. The expected value of V is further

calculated, that is, the average variation of each subcarrier, and the feature fvar =

E(V ) can be obtained.
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3.4.3.2 Principal Component Analysis (PCA)

In machine learning, PCA [45] is a method that extracts features and reduces

the dimensionality of the dataset. The purpose of dimension reduction is to reduce

the number of dimensions of the data, but the overall performance will not differ

significantly or even improve. The basic assumption of PCA is that the data

will be able to find a projection axis (vector) within the feature space. After

the projection, the maximum variation of this group of data can be determined.

Theoretically, the principal component with higher variance can better represent

the data type.

(a) (b)

Figure 11: The difference between the projection of the data on the v and v’
vectors and their variance.

Figure 11(a) illustrates the values pi of the CSI phase difference on two different

subcarriers respectively displayed. Suppose there is a vector v⃗, and the projection

vector of each data point on v⃗ is:

v⃗pi = |p⃗i| cos θ ×
v⃗

|v⃗|
= |p⃗i| ×

p⃗i · v⃗
|p⃗i| |v⃗|

× v⃗

|v⃗|
=

p⃗i · v⃗
|v⃗|2

v⃗. (3.16)

The projected data point is [vTp1, v
Tp2, · · · , vTpi, · · · , vTpn]. The variance Σ

used to measure the importance of PCA needs to be expressed in a matrix like

this:

Σ =
1

n

n∑
i=1

(vTpi)(v
Tpi)

T =
1

n

n∑
i=1

(vTpip
T
i v) = vT

(
1

n

n∑
i=1

pip
T
i

)
v = vTCv, (3.17)
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where C is covariance matrix:

C =
1

n

n∑
i=1

pip
T
i , xi =


p
(1)
i

...

p
(d)
i

 . (3.18)

From the above summary, PCA can be described as an optimization problem,

which is to find the projection vector to maximize the variation of the projected

data. For the pi data exemplified earlier, two characteristic components can be

extracted by PCA. The projected data is shown in Figure 12, from which we can

see that the variation of the principal component (PC) #1 is sufficient to represent

the information of this data. This approach can effectively reduce the number of

dimensions, but the overall variation has not been reduced too much.

Figure 12: Data after PCA projection.

After we understood the significance of PCA, we decided to use the CSI phase

difference data containing 52 subcarriers calculating PCA. In addition to effec-

tively reducing the data dimension, another reason is that we can eliminate most

hopping after preprocessing. However, there is still minimal phase difference hop-

ping that may occur in a particular subcarrier. And it cannot be eliminated as

subcarrier 42 of Figure 13(a). At this time, if the expected value of the variance

of each subcarrier is directly calculated as described in Section 3.4.3.1, for a win-

dow containing hopping, it will result in a rapidly increasing variance. And if we

choose a suitable principal component, this effect can be reduced.

Usually, the first principal component contains more than 80% of the data

information. However, most errors or noise in the data will be included in the

calculation. Therefore, compared with PC #1, we are more inclined to choose PC

#2 as the data for analyzing variance. It doesn’t contain a lot of noise like PC #1,
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and it doesn’t like the components after PC #3 cannot reflect the characteristics of

the original data. See Figure 13(b), PC #2 has obviously reduced hopping errors.

Here, the second principal component of the CSI phase difference is expressed

as PC2 = PCA(P, 2), and the characteristic fPCA = V ar(PC2) is calculated

according to (3.14).

(a) (b)

Figure 13: PCA can eliminate the anomalous hopping of the phase difference to
a certain degree.

3.4.3.3 Correlation Coefficient

Since the transmission power parameters will be altered for various scenarios

and circumstances that depend on the scenario and human motion can result

in amplitude interference, the potential features should be independent of the

absolute power. So the similarity between subcarriers may be an excellent scene-

independent indicator. In statistics, The correlation coefficient is used to assess

the degree of linear connection between variables X and Y in two sets of data [46].

Applied to CSI data, what we need to compare is the similarity between each

subcarrier. The correlation coefficient between two variables is defined as the

product of the covariance of the two variables divided by their standard deviations.

The covariance here differs from (3.18). Suppose we are going to calculate the

covariance of the CSI phase difference Pi, Pj between subcarriers i and j, and the

expected values are P̄i, P̄j:

cov(Pi, Pj) = E[(Pi − P̄i)(Pj − P̄j)] = E(Pi · Pj)− P̄iP̄j, (3.19)

then we can calculate correlation coefficient ρi,j:

ρi,j =
cov(Pi, Pj)

σiσj

=
E(Pi · Pj)− P̄iP̄j

σiσj

, (3.20)

where σiσj stand for the Pi and Pj standard deviation. The correlation coefficient

matrix of each pair of subcarriers in a fixed window under various environmental
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conditions is shown in Figure 14. It is a 52-order symmetric matrix, and the

diagonal entity is always 1. Taking a closer look at the characteristics of the two

environmental correlation matrices, we find that:

� Empty case: The correlation between adjacent subcarriers is not high, and

the correlation between other subcarriers is average.

� Move case: The correlation between adjacent subcarriers is high, and the cor-

relation between subcarriers decreases as the frequency difference increases.

Looking back at the properties of the correlation coefficient, when there are no

variables in the environment, the signal transmission path is affected by noise in

addition to the environment. Because neither the furnishings of the space nor the

environment has changed, the main oscillation of the signal comes from noise, and

the correlation between noise is low. When there is an intruder in the environment,

some signal transmission paths that pass through the intruder are susceptible to

similar fluctuations. Although the signal also has noise, the impact of variations

caused by intruders is significantly more than that caused by noise. The correlation

between subcarriers should be higher than that of the state without intruders.

(a) (b)

Figure 14: Distribution of subcarrier correlation matrix in Empty and Move
environments.

Since the correlation matrix is a 52 × 52 matrix, it cannot be considered a

classification feature. So we decided to focus on the relationship between two

adjacent subcarriers. According to the above, we can know that the higher the

correlation between the two sub-carriers, the higher the probability of the presence

of the intruder. Refer to [18] to extract the detailed part of the correlation matrix,
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and the correlation coefficient feature fcc is defined as:

fcc =
K∑

i,j=1

ρi,j, ∀i, j ∈ [1, K], j − i = 1, (3.21)

whereK is the system’s subcarrier count, which in this case is 52. ρi,j is correlation

coefficient from (3.20).

3.4.3.4 Standard Deviation

The majority of the aforementioned features concentrate on how the subcarrier

changes in the time domain, while they may also be used to describe how the

subcarrier fluctuates with frequency. We utilize the standard deviation in this

case because the variance could intensify a subcarrier’s fluctuation. The degree of

dispersion between subcarriers can be represented concurrently and the units used

to measure it are the same. The following is the standard deviation formula [47]:

S =

√√√√ 1

N

N∑
i=1

|Ai − µ|2. (3.22)

Figure 15 illustrates the fluctuation between subcarriers, and it is clear that

the two environments have different features.

(a) (b)

Figure 15: The degree of subcarrier dispersion of each packet can be represented
by the standard deviation.

3.5 Model Decision

With the features we extracted, we need to properly classify the preliminary

measurements collected from multiple cases. We have mentioned various shallow

models in Section 2.3.3.3, among which the most suitable for our system should

be the SVM [24] model.
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3.5.1 Support Vector Machine (SVM)

SVM is a learning machine for binary classification problems. The machine

non-linearly maps input vectors to a very high-dimensional feature space. A deci-

sion surface is constructed in this feature space. SVM is one of the most well-liked

machine learning methods as a low-cost classification tool. SVMs have been used

by several CSI-based detection systems [16, 18, 20, 48–51] to accurately categorize

various states. The findings demonstrate that SVM performs better than other

machine learning techniques as KNN [22] and RF [23]. To satisfy the system’s

needs for real-time and high detection accuracy, we apply the SVM algorithm.

SVM is a two-class classification model, to put it simply. With the greatest

interval in the feature space determined, its fundamental model is a linear classifier.

Maximizing the interval is SVM’s learning approach. First, consider a linearly

separable training dataset (X1, y1), (X2, y2), · · · , (Xn, yn), where Xi is a column

vector containing d elements, that is, Xi ∈ Rd; yi is a scalar, y ∈ +1,−1, If

yi = +1, then Xi is said to fall under the positive category, and if yi = −1, then

Xi is said to fall under the negative category. A boundary is determined by the

normal vector W and the intercept b, and its equation is XTW + b = 0. One

side directed by the normal vector is of the positive class, while the other side is

of the negative class, it may be said. Three parallel boundary lines are shown in

Figure 16 with the upper left direction representing the normal direction. We may

initially select two parallel borders that divide the two classes of data in order to

get the maximum margin boundary. This will guarantee that there is the greatest

possible separation between them. The ”margin” is the region between these two

hyperplanes, and the maximum margin boundary is the line that runs through

the center of them. Figure 16 depicts this procedure.

By increasing the distance between the hyperplane and the closest feature

vector, SVM can accurately categorize the test data. It can categorize labels and

classes that are not linearly separable using kernel functions in addition to linearly

separable classes. Given a training dataset (3.23), where xi is an d-dimensional

feature vector, and li is the label/class vector to which the feature belongs, the

value is 0 or 1. The subsequent optimization issues are resolved using the soft

margin SVM method (3.24).

T = (x1, l1), (x2, l2), · · · , (xn, ln), (3.23)

min
w,b,ξi

1

2
||w||2+C

n∑
i=1

ξi, ξi ≥ 0, s.t.li (w · Φ(xi)− b) ≥ 1− ξi, ∀ (xi, li) ∈ T, (3.24)

where C is an adjustable parameter that establishes the trade-off in training be-

tween the size of the margin and its level of inaccuracy, and ξi quantifies the degree
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Figure 16: Find the maximum margin to separate two different datasets.

of misclassification. Φ(xi) denotes the feature space images of the corresponding

patterns in the input space. A nonlinear SVM, which consists of two phases, can

be utilized when the classes are not linearly separable:

1. Create a high-dimensional space from the input feature vector so that train-

ing data may be separated linearly.

2. Then, as illustrated in Figure 17, the soft margin SVM is utilized to identify

the hyperplane with the biggest margin in the new feature space.

Lagrangian multipliers may be used to solve the optimization issue, and by divid-

ing the classes in the dual problem, the optimal hyperplane can be found. The

dot product of feature vectors is calculated using the kernel functions as though

they had been translated into a higher dimensional space. Without really altering

the vectors, this is achieved.

3.5.2 One Class Support Vector Machine (OCSVM)

Although SVM is a low-cost method that can achieve reliable results, consid-

ering that we cannot control the actions of intruders, it seems a bit too ideal to

use the data collected from simulated intrusion situations for binary classification.

Therefore, we turn to One Class Support Vector Machine (OCSVM), which is

mostly used for outlier detection.

OCSVM [52] is an unsupervised algorithm. As the name implies, there is

only one classification for training data. Learn a decision boundary by using the
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Figure 17: Transform the feature vectors into a higher-dimensional space to find
a separable hyperplane.

properties of these normal samples. The freshly produced data point’s similarity

to the training data may then be determined using this boundary. It is regarded

as an outlier if the boundary is crossed. In OCSVM, the data has no label, so we

rewrite (3.24) as:

min
w,ξi,ρ

1

2
||w||2 + 1

vN

n∑
i=1

ξi − ρ, ξi ≥ 0, s.t.(w · Φ(xi)) ≥ ρ− ξi. (3.25)

Here, v ∈ (0, 1) is a parameter. If v approaches 0, the upper bound of the

Lagrangian multiplier tends to infinity, i.e. the second inequality constraint in

(3.25) becomes invalid. ρ is the offset of slack variable, and N is the number

af traing data. The resulting parameters of A can form a set of classification

equations:

f(x) = sign(w · Φ(xi)− ρ). (3.26)

For most cases, the non-outlier value brought into this equation will be positive,

and the data will be negative if it is an outlier. When there are no intruders in

the environment, CSI data is stable. In other words, we can use EMPTY data

as training data and construct the required OCSVM model. When an intruder

appears in the environment and changes the signal transmission path, CSI becomes

unstable and unpredictable. If it leaves the comfort zone, it is marked as abnormal,

which means someone has invaded.

The kernel function commonly used in OCSVM is RBF because it fits the

training data well to detect outliers. However, for our system, RBF would make

our model overfitting. Whenever the target environment changes, the chances

of the model detecting outliers increase and false alarms increase. Therefore we

use a linear kernel function; although its sensitivity is not as good as RBF, it

can significantly reduce false positives. A voting mechanism can make up for

insufficient sensitivity issues.
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3.5.3 Vote

Because in different environments, the placement of APs is different each time,

and the sensitivity of each antenna to intrusion behaviors is different. Therefore,

we train individual OCSVM models, which can also be called classifiers, for each

pair of phase difference combinations. Let each classifier vote whether the current

window should be classified as intrusion behavior. The advantage of this is that

when a certain classifier cannot accurately determine the occurrence of an intru-

sion, there are other classifiers that can detect the intrusion. On the other hand,

if only one classifier detects an intrusion, misclassifications occur, but false alarms

will not easily be generated.
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CHAPTER 4

PRELIMINARY PERFORMANCE OF

INTRUSION DETECTION

This chapter introduces the experimental evaluation environment and the ex-

perimental platform prototype. The effect of settings and scenarios on perfor-

mance is then covered.

4.1 Setup

We first describe the equipment used and the settings of related parameters,

then introduce the experimental field, and finally discuss system performance.

4.1.1 Equipments and Collection Parameters

We use two commercial Wi-Fi devices, Lanner LWR-x8460, to implement our

system and test the scenarios to evaluate system performance. The transmitter

and receiver utilize the same Wi-Fi AP device, which supports standard IEEE

802.11 a/b/g/n/ac/ax, three frequency bands: 2.4GHz, 5GHz, 6GHz, and 4 inter-

nal antennas. In our experiments, we configured the AP to run at 2.4 GHz with

a bandwidth of 20 MHz in IEEE 802.11n mode. The purpose is to test the effect

of intrusion detection systems under lower performance. The number of anten-

nas used is 1x4. Considering the CSI sample rate is 500 Hz, the AP sends 500

packets every second. Each group’s sampling period is set to 60 seconds, making

the sample size for each group approximately 30,000 packets. The sliding window

(a) (b)

Figure 18: The floor plan of the laboratory and the pictures of the actual envi-
ronment.

35
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size is set to 1000 packets, about 2 seconds, and the sliding step is 50 packets,

about 0.1 seconds. Group collecting was carried out three times. We recorded a

temperature of 25◦C (77◦F) inside the laboratory, and the surroundings outside

the laboratory were quiet and devoid of human activity.

4.1.2 Environment and Experimental Scenarios

To more thoroughly test the robustness of our system, we conduct experiments

in three different spaces. Each space is different in size and furnishings. In addition

to designing intruders to move in different locations in space, we observe the

intrusion system’s detection effect on intruders. At the same time, the scene

independence of the intrusion detection system is verified by changing the location

of the Wi-Fi device and the space.

We also consider that if there are only two devices to detect intruders in ample

indoor space, there are more likely to be dead spots in detection. This will result

in a reduction in detection performance. Therefore, we also increased the number

of devices, including ideal and non-ideal situations. Below we will introduce the

three experimental spaces respectively, and the placement of the widgets in each

space will additionally be explained together.

(a)

(b) (c)

Figure 19: The location of the transmitter and receiver.
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Figure 20: The position and number of intruder activity in the laboratory.

4.1.2.1 Laboratory

Our system’s primary purpose is to utilize idle AP devices in the office dur-

ing off-hours effectively. Therefore, we use two enterprise Wi-Fi devices as our

transmitter and receiver.

For the first experimental scene, we choose to conduct it in the laboratory.

The size is about 6m×6m. There are primarily tables, chairs, and computers in

the space. For the overall layout and actual pictures, refer to Figure 18.

The training data for the model also comes from this space. Figure 19(a) shows

the transmitter and receiver placement. In addition, we also consider that most

of the APs in the actual office are installed close to the ceiling, so we also set up

the AP at a height of more than 2m for testing. The actual erection position can

be seen in Figure 19. We collected about 40 seconds of empty data in the indoor

environment without any intruders. And to enhance the robustness of the model,

the empty data that has been preprocessed and contains hoppings are selected

as training data. This choice reduces the probability of the system model issuing

false alarms due to the selection of imperfect data for training since we cannot

control the hopping timing.

Table 3: The laboratory scenarios I and III are introduced as well as the classroom
scenarios.

Case
Intruder
position

Intruders Notes

Empty Null Null No intruders

Move Laboratory 1-2
No scope of activity

specified

PosN No.N 1 Wave or step
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(a)

(b) (c)

Figure 21: The location of the transmitter and receiver in Scenario II.

The testing data in this space have two different situations, which will be

explained in the following paragraphs.

Scenario I

In this scenario, we fix the location of the AP, and the primary variable comes

from the intruder. We first let the intruder walk freely in the laboratory without

restricting the behavior and location of the intruder. We collected CSI data for

this scenario. Next, we start imposing some restrictions on the intruders. The

movement range of the intruder is limited to a radius of 1 meter from a certain

point. There are no particular restrictions on the movements performed, but most

are waving and standing still. It is also necessary to collect empty data similar to

training data in this situation.

Figure 20 shows some positions where the intruder is restricted. We organize

all intruder activity cases in Table 3.

Scenario II The second scenario is to verify the robustness of the system model.

We will move the location of the AP, which will change the primary transmission

path of the data to a certain extent. And the high and low positions of the

receiver AP are changed respectively. When the AP is at a low height, about one
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Table 4: Experimental scenarios II in the laboratory.

Case AP Placement Intruders Notes

Empty

No.A

Null No intruders
No.B

No.C

No.D

Move

No.A

1-2
No scope of

activity specified

No.B

No.C

No.D

meter high, signals’ propagation will be blocked by obstacles such as desks and

computers.

The position of the transmitter AP has not changed. We moved the receiver

AP, which was initially placed on the high right side of the laboratory, to the right

computer desk. In addition, we have added two receiving APs on the left side.

These APs are placed on the computer desk and raised to two meters by several

boxes. Figure 21 illustrates the position of APs in this scenario.

Following the above AP placement positions, we collected empty and move

(a)

(b)

Figure 22: The location of the transmitter and receiver in Scenario III.
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(a) (b)

Figure 23: The floor plan of the classroom and the pictures of the actual envi-
ronment.

data. Similarly, there is no intruder in the empty case, and the move case allows

intruders to act in the laboratory without restriction.

Scenario III It is known that the system uses CSI information for detection,

mainly relying on the signal transmitted between two APs so that the detection

effect will be affected by the AP placement. For example, detection performance

may be reduced if there is an obstacle in the line of sight between the AP and

the intruder, such as a pillar. Since the detection effect of using two APs for one

transmission path is limited, if the number of APs increases, devices for sensing

the environment and detecting intruders are added. It doesn’t matter if there is a

device that doesn’t detect an intruder if one of the devices can sound an intruder

alert.

In this scenario, we first consider an ideal situation. The transmitter is placed

in the middle of the space and is not blocked by obstacles. The receivers are

placed in two corners of the laboratory. The path between the receivers and the

transmitter covers the entire space, as shown in Figure 22. All the data collected

in cases are the same as in Scenario I, see Table 3. The difference between the two

scenarios lies in the location and number of APs.

4.1.2.2 Classroom

We converted the experimental space into a more extensive classroom measur-

ing approximately 8m×12m. The classroom structure is relatively simple, and the

furniture placed in the room is tables and chairs. The classroom floor plan and

environmental photos are shown in Figure 23. We generally consider that the sys-

tem cannot control the user to place the AP in the ideal position for classrooms.

Most of them will set up the AP at the edge of the space. Same as Scenario III in
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(a)

(b)

Figure 24: The position and number of intruder activity, transmitters and re-
ceivers in the classroom.

the laboratory, three APs, one transmitter, and two receivers are also used. They

are placed in three corners of the classroom. As shown in Figure 24(b), the AP

acting as a teleporter is even placed at an angle between the wall and the pillar.

This means that when the intruder is at the classroom’s front door, there is a

pillar between them and the teleporter.

To test the performance of the intruder detection system, the position of the

intruder is also specially designed to be located in shelter position 1. This is shown

in Figure 24(a). The actual experimental scenarios are the same as those in Table

3; the difference lies in the replacement of the scene and the adjustment of the

intruder’s position according to the different fields.

4.1.3 Performance Evaluation

We measured a temperature of 25◦C (77◦F) inside the laboratory, and the

surroundings outside the laboratory were quiet and devoid of human activity.

The data from the empty environment was collected to train the OCSVM model.

After the OCSVM model is trained, four sorts of output are obtained when we

import the test data into the model: True Positive (TP) people are present, and

the system reports so, False Positive (FP) no humans are present, but the system

reports the presence of an intruder, True Negative (TN) means no humans are
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(a) (b)

Figure 25: Intrusion detection performance in laboratory scenario I.

present and the system reports them correctly, False Negative (FN) means people

are present but not reported by the system. We pay more attention to TP and

FP for an intrusion detection system. The system should have more TP samples

and fewer FP samples. The former represents the probability that we can detect

an intruder, and the latter represents the probability that the system will send a

false alarm. We define the following indicators to more clearly demonstrate system

performance:

P =
TP

TP + FN
, FA =

FP

FP + TN
, (4.1)

where Precision (P) represents the percentage of all cases where an intruder was

actually detected by the system, while False Alarms (FA) represent how many of

the collected empty cases were incorrectly flagged as intruders by the system. As

explained in the next sections, we looked at these indicators to assess how well

the system performed in various scenarios.

4.2 Perfoemance

The performance evaluation of the intrusion detection system is carried out

according to the different field situations of the above design.

4.2.1 Laboratory

4.2.1.1 Scenario I

The training data used to train the OCSVM model is mainly collected in the

laboratory. The layout of the transmitter and receiver is shown in Figure 25(b).
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Therefore, this scenario focuses primarily on the effect of the pre-trained model.As

(a) (b)

Figure 26: Intrusion detection performance in laboratory scenario II.

shown in Figure 25(a), when the intruder moves irregularly in the laboratory, the

detection effect can reach 100.00%. The incidence of FA is also as low as 1.00%.

However, when we define the range of activities of intruders, it can be found that

the detection effect of position 7 is not as good as that of other positions, only

72.58%. This is due to the pillar blocking between position 7 and the conveyor.

(a) (b)

Figure 27: Intrusion detection performance in laboratory scenario III.
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(a) (b)

Figure 28: Intrusion detection performance in the Classroom.

4.2.1.2 Scenario II

To understand the independence between the pre-trained model and the sce-

nario, we change the spatial layout by moving the receiver to different positions, as

Figure 26(b). In this case, there is no regulation on the behavior of the intruder,

and the detection performance can reach 100%. With the receiver in position C,

although the FA improved slightly, it was still only 4.90%. From this result, it can

be seen that the pre-trained model is scenario-independent.

4.2.1.3 Scenario III

In addition to forming a single link from one transmitter and one receiver

to monitor intruders, we are also considering increasing performance by adding

detection links. The advantage of detecting multiple links simultaneously is that

it is considered a successful detection when one of the links detects an intruder.

Figure 28 shows the result of this scenario. The performance of link 1 at position

7 is only 58.65%, but link 2 is indeed 100.00%, so the highest detection effect can

still reach 100.00%. Same as at position 3.

Besides the above configurations, we also consider the case where the intruder

is not moving in this environment. The intruder will stand still at position 2 in

the space and only maintain essential breathing. It can be clearly seen that under

such conditions the detection rate of the system will drop to only about 50%.
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4.2.2 Classroom

Moving the test scene to the classroom not only tests the robustness of the

model but also tests the detection effect when the intruder is blocked. When the

device is set up as shown in Figure 28(a), it can be seen that position 1 and position

6 are places where the detection effect of link 1 is poor. For link 2, the detection

effect of position 1 drops to 36.56%. Although the use of multiple devices can

increase detection performance, it is possible that unsatisfactory placement of the

devices may result in poor detection in some places in the space due to the user’s

non-ideal placement.

4.3 Problems

Judging from the above various experimental spaces and the experiments con-

ducted in different environments. The overall average detection precision Pavg can

reach 93.69%, and FA is as low as 0.81%. Excluding partially occluded locations

that cause poor results, the efficient detection precision Pe can rise to 99.92% on

average. However, if only blocked positions are observed, the blocked detection

precision Pb is only 60.77%, as shown in Table 5.

Table 5: The precision and false alarm probability of the intrusion detection
system, the intruder being blocked will reduce the intrusion precision.

Pavg FA Pe Pb

93.69% 0.81% 99.92% 60.77%

Obviously, when the intrusion position is blocked or the intruder keeps static

motion, it affects the overall detection performance. Despite the fact that Pavg has

a positive effect on the current intrusion detection system. However, we intend

to further improve Pe in order to achieve a detection effect that encompasses the

entire target space.

We will present an overview of power delays in the next chapter. Briefly, the

main method is to increase the weight of the path affected by the intruder by

analyzing the propagation path of the signal. This is to increase the probability

of it being detected.
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CHAPTER 5

POWER DELAY PROFILE ANALYSIS

As explained in Chapter 2, CSI is the FT of CIR. CIR also shows the path loss

and delay of each path. From the point of view of the time domain, based on the

sensitivity of different ways to intruders, we expect to improve detection precision

by adjusting the weight of paths. In addition, since the distinction of paths comes

from varying delay times, converting the delay to distance can roughly estimate the

possible location of the intruder. The above can complete while judging whether

there is an intruder.

5.1 Power Delay Profile (PDP)

First, we need to understand the information that PDP can provide. We will

explain in detail how the CSI converts to the time domain, propagates through

multiple paths, and reaches the receiver and the part distorted by the filter. Due to

hardware limitations, CIR cannot fully restore, but fortunately, these incomplete

CIR can still provide helpful path information.

5.1.1 Propagation of Signals

We assume here that at time t0, a packet has a total of K rays. Each ray

represents a signal path from the transmitter to the receiver. We use CIRsim,T to

represent the simulated emission CIR information, the sum of K paths. And the

kth path can be expressed as follows [4, 5]:

ht0,k = αt0,kδ(t− τt0,k)e
−jθt0,k , (5.1)

where α represents the amplitude of the path, τ indicates the path delay, depending

on the path distance, and θ represents the phase. It is known that from the

perspective of the frequency domain, the phase of the ith subcarrier will have an

offset due to the frequency:

λ = c/fi, θt0,k,i =
2πdk
λ

, (5.2)

where lambda represents the wavelength, fi is the frequency of the ith subcarrier,

and dk is the path distance of the kth path. Therefore, according to the ith subcar-

rier and the time point t0, CIRsim with total K simulation paths can be expressed

46
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as [4, 5]:

ht0,i =
K∑
k=0

αt0,kδ(t− τt0,k)e
−jθt0,k,i . (5.3)

After the receiver receives the signals from each path, convert them to the

frequency domain to get CSI = F(CIRsim) [8]:

Ht0(fi) =
K∑
k=0

αt0,ke
−j(2πfiτt0,k+θt0,k,i). (5.4)

Assuming that there are I subcarriers in total, the CSI of the collection time

point t0 is:

Ht0 = [Ht0(f1), Ht0(f2), . . . , Ht0(fi), . . . , Ht0(fI)] . (5.5)

This CSI is the data that can be collected in actual experiments. It is also the

information that most related research based on CSI will use. And what we want

to do is restore CIR information from the collected CSI. In order to distinguish it

from the originally simulated CIRsim, the CIR restored from CSI is called CIRcol.

From the above, we know that CSI = F(CIR), so we can obtain CIR information

through CIR = F−1(CSI).

Figure 29: Example of a baseband and passband channel having a carrier fre-
quency of 2000 MHz and a bandwidth of 200 MHz. For ease of comparison in
the delay domain, the baseband channel’s power is double that of the passband
channel [1].
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Figure 30: Channel responses for a uniform frequency filter.

5.1.2 Channel Response

As a thoughtful consideration, however, the CIR can ideally be computed from

the CFR using an inverse Fourier transform (IFT). However, we are unable to

calculate the IFT or fully quantify the CFR in a truly digital system. Instead, we

employ CSI, sampling of the CFR, and IFFT, a digital signal processing technique

that implements IFT. After periodically expanding the CSI within the bandwidth,

computing the IFFT of a CSI is identical to computing the IFFT of a digital

signal. Therefore, B, the CSI’s bandwidth, plays a significant role in determining

how accurate the estimated impulse response is. The computed impulse response’s

amplitude and phase will be somewhat skewed if the bandwidth is insufficient [53].

Therefore, we will employ various bandwidths to evaluate CIR later. We rely on

IFFT to recover CIR by combining the aforementioned [1]:

h(t) =
K∑
k=0

H(f)e
j2πkt

K . (5.6)

Next, we will illustrate the distortion and sidelobes in the computed impulse

response due to frequency-domain, time-domain, and bandpass filter transforma-

tions.

The modulation of a continuous wave f0 around a certain carrier frequency is

used for radio data transmission. The bitrate and associated modulation speed

are proportional to the applied bandwidth B. The properties of the band-limited

filter dictate how an associated channel’s impulse response will take shape. A
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channel with a uniform bandpass filter and a single multipath delay component,

τ1, serves as an illustration of this [1]:
h(τ) =

B

2
sinc [πB(τ − τ1)] · [exp(i2πf0t) + exp(−i2πf0t)]

H(f) =


0 if |f | > f0 +

B

2
and |f | < f0 −

B

2
1

2
if |f | < f0 +

B

2
and |f | > f0 −

B

2
.

(5.7)

Assume f0 = 2GHz, B = 200MHz, τ1 = 10ns. The corresponding channel

response is shown in Figure 29. The carrier frequency f0 causes rapid h(τ) oscil-

lations to be seen in the passband. To give a real channel response, positive and

negative frequencies of H(f)are furthermore required. For ease of explanation, the

channel is often stated in baseband, which entails transforming the frequencies to

zero mean, so f ′ = f − f0.
h(τ) = Bsinc(πB(τ − τ1))

H(f ′) =


0 if |f ′| > B

2

1 if |f ′| < B

2
.

(5.8)

It is known that ∆τ = 1/B, so in this example, the time resolution ∆τ = 5ns.

Figure 30 shows the channel response of a uniform frequency filter. We can see

that due to the characteristics of the sinc function, at the position of τ1, the

Figure 31: The channel response in the time domain contains two path compo-
nents, τ1 and τ2. Both τ1 and τ2 are in n ·∆τ , ideally well sampled components.
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Figure 32: The channel response in the time domain contains two path compo-
nents, τ1 and τ2. As τ2 is not at the sampling point, the two components interact
for the side lobe of sinc to be reflected at the sampling point.

amplitude is equal to B. And the position of n∆τ, n ∈ Z will be exactly equal to

0. If the delays of the signals are all just on n∆τ , the signals can be superimposed

without interfering with each other. In fact, signal delays are irregular, and it is

almost impossible to obtain a PDP without path interference.

Taking Figure 31 as an example, in addition to the initially assumed τ1, we

added a component with a delay of τ2 to simulate multipath signals. Assume

τ2 is 15ns, equal to 3 · ∆τ . We can see that the τ1 and τ2 components can be

analyzed entirely by sampling according to the time resolution of the combined

two-component channel response.

Next, we change τ2 to 18ns, τ2 ̸= n∆τ . Looking at Figure 32, for each ∆τ , the

responses of the two components are superimposed together. It can be seen that

the side lobe of the sinc function appears at the sampling point. And the critical

thing is that we cannot directly sample the delayed τ2 component. Instead, we can

only rely on the sampling points on both sides of τ2, that is, 3 ·∆τ and 4 ·∆τ to

observe the τ2 component. In addition, it is worth noting that the τ1 component

will also be affected by the τ2 component. Although τ1 lies on n ·∆τ , its amplitude

drops compared to the original response.

Now that we have covered possible distortions in the channel response, we

return to the possible results for simulated signals. As shown in (5.1), we can

represent the delay components of each path in Figure 33(a). Each stem represents

a delayed component. At the same time, it also shows the result of each delayed
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(a)

(b)

Figure 33: The CIR (a) and power delay curve (b), including the real delay
component and the superimposed sinc curve after filtering, B = 200MHz.

component being superimposed on each other under the uniform filter of B =

200MHz. Figure 33(b) represents the power delay curve, which is the absolute

value of the CIR [54].

For the above description, we know that when the bandwidth is infinite, the

time resolution ∆τ = −∞ can completely separate each path. But it is impossible

to achieve infinite bandwidth. Although the restored impulse response is not

flawless, it still contains information worth using. Figure 34 shows CIRcol and

PDPcol sampled at n ·∆τ . If there are multiple paths |τi − τj| < ∆τ , then τi and

τj are indistinguishable. In other words, all multipaths in PDPcol are considered

multipath components if their propagation delay difference is smaller than 1
B
. The

overall power level of these multipaths is indicated by the matching power level.

According to the above, we know how to obtain PDP by sampling with time

resolution. Then we try to calculate CSI with the simulated path, and then

convert from CSI to PDP. The result is shown in Figure 35. If the obtained

PDP is directly mapped to the positive time axis, in addition to the peak at the

beginning, compelling impulse, we will see another peak at the end. This peak is

called an invalid impulse, as shown in the red part of Figure 35.

This is actually because of the passband we mentioned earlier. See Figure 29.

We know that the total sampling time Ts is related to the frequency resolution
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Figure 34: Sampling on ∆τ , the delay component cannot be completely dis-
tinguished. It can only provide an indication of the area where most paths are
concentrated.

∆τ [55, 56], the common ∆τ is 312.5kHz and 78.125kHz, here we take 312.5kHz

as an example, that is, Ts=3200ns. However, due to the actual passband mode,

the real sampling period is not in [0,3200]ns, but [-1600, 1600]ns. Therefore, we

need to shift the parsed PDP, that is, move the part of [1600, 3200]ns to [-1600,

0]ns, as shown in Figure 35. The invalid impulse mentioned above is actually the

channel response from the path where most delays are close to 0ns.

Although Ts can reach 3200ns, the actual effective period is only 1600ns [55,56].

However, most of the signals that can be received by the receiver have a delay of

less than 500ns [54], and most of the components that exceed the delay are too

weak to reach the receiver due to multiple reflections, diffraction, etc., and what

appears is the sidelobes of the sinc function. From the above, it can be concluded

that the information after 500ns is actually useless for PDP analysis. There is

almost no path component in the extra sampling time.

In order to better understand the effect of PDP on intrusion detection and

intruder tracking, we have constructed a simulation environment. We will explain

how to obtain critical information from a limited PDP and track intruders in the

following section.
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Figure 35: After PDP with ifftshift, the effective pulse time range is [0,1600]ns.
Pulses on the negative time axis are invalid.

5.2 Intrusion Information Enhancement

It is known that we can convert CIR from CSI and obtain PDP. Although

the PDP contains the information on all the paths, it is also distorted due to

interference between the components of each path. Nevertheless, we can still

roughly classify all paths by different delays.

According to (5.4), CSI is the uniform sum of all paths. The contribution of

each path to CSI differs mainly due to its amplitude. And we know that in space,

there are always some among the many paths of signal that are more sensitive to

intruders. However, the amplitude may not be as strong as the LoS signal because

it has undergone more reflections. Based on the above, we expect to increase the

probability of detecting intruders by changing the weight of the path.

5.2.1 Path Component Selection

First, we need to find the delay component most affected by the intruder. The

judgment standard is based on the component with the most significant change

over a certain period of time W . It is worth noting that the largest variation is not

necessarily the largest amplitude component, as shown in Figure 36. Taking the

100th packet as an example, components with larger amplitudes are concentrated

at 12.5 ns and 25 ns. However, the most variable component is at 37.5 ns.
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Figure 36: The degree of variation of each delayed component.

The variance is calculated as follows:

var(h(τ)) =
1

W

W∑
i=1

|hi(τ)− µ|2 , µ =
1

W

W∑
i=1

hi(τ), (5.9)

h(τ) is a complex matrix, and the variation takes both amplitude and phase into

account. Among them, the delay component with the largest variation is the signal

we mainly need to enhance.

5.2.2 Weight Changing

A uniform distribution can be used to represent the general CSI, which is the

uniform sum of each path: f(τ) = 1 for − 1600 ≤ τ < 1600, probability density

function (PDF) as shown in Figure 37(a). Here, we take 80MHz, 256 subcarriers

as an example. The CSI can be regarded as the sum of 256 path delay component

groups, so the endpoint of the cumulative distribution function (CDF) is 256,

which is equal to the number of subcarriers.

Consider the scenario where max(var(h(τ))) is at a delay of 37.5ns, i.e., the

delay component weight should be maximized. In order to change the weight

distribution method, we consider the Rayleigh distribution and the Normal dis-

tribution.

5.2.2.1 Rayleigh Distribution

Rayleigh distribution is a continuous probability distribution for positive-valued

random variables. The data can be given by a parameter σ. The PDF of the



doi:10.6342/NTU202303843

5.2. INTRUSION INFORMATION ENHANCEMENT 55

(a) (b)

Figure 37: Weights distributed with different probabilities, only display the delay
interval of [-100,200]. (i) Uniform distribution, (ii) Rayleigh distribution and (iii)
Normal distribution.

Rayleigh distribution is [57,58]:

f(τ ;σ) =
τ

σ2
e−τ2/(2σ2), (5.10)

where σ is the scale parameter of the distribution and also represents the position

of the maximum value. Since the distribution starts at 0, the delay components

between [-1600,0] will be discarded. But as mentioned in subsection 5.1.2, because

the side lobe of the sinc function spreads evenly to both sides, there is still a part

of the effective path component in the interval less than 0. In addition, due to its

distribution characteristics, when σ is farther away from 0, Rayleigh distribution

will become flatter and statistical dispersion will increase.

5.2.2.2 Normal Distribution

Normal distribution (Gaussian distribution) is a type of continuous probability

distribution. The general form of its PDF is [59]:

f(τ) =
1

σ
√
2π

e−
1
2(

τ−µ
σ )

2

. (5.11)

The parameter µ is the mean or expectation of the distribution, while the

parameter σ is its standard deviation. We can adjust the degree of weight con-

centration by controlling the value of the standard deviation. Here we set the

standard deviation as ∆τ . The advantage of the Normal distribution is that it is

similar to the characteristic that the side lobe of the sinc function is symmetrically

dispersed on both sides. The weight is adjusted forward and backward at the same

time. While increasing the target component, it also collects information on both

sides of the component. This is similar to restoring the impulse dispersion caused

by the sinc function.
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Comparing the characteristics of Rayleigh distribution and normal distribution

Compared with the requirements of our method, it is more appropriate to adjust

the weights according to the normal distribution.

5.2.3 Performance Overview

Compare the original CSI data with the enhanced signal. Figure 38 is illus-

trated from the simulated CSI signal. In light of the fact that the empty data itself

changes very little, even if it is enhanced, it will not adversely affect the original

trend of the signal. For data with intruders, emphasizing the path affected by

the intruder can greatly increase signal variation. Table 6 simply describes the

variance ascension for enhanced signals.

Figure 38: Compare the original CSI data and the enhanced CSI in Amplitude.

Table 6: Comparison of the variances of original CSI and enhanced CSI in am-
plitude.

vempty vmov vmov/vempty

Original 1.98× 10−13 6.92× 10−12 34.9866

Enhanced 1.52× 10−9 2.63× 10−7 172.4844

Pay attention to vmov/vempty, which represents the gap between empty data

and moving data The enhanced signal can effectively increase the ratio of variance

of the two scenarios. Performance details will be explained in the next chapter. In
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addition to the enhancement of the amplitude, the change in the signal also affects

the phase difference. We first verified the effectiveness of this method on simulated

signals and then tested it on actual collected intrusion data. The detection effect

was significantly improved.

5.3 Intruder Tracking

In terms of the application of PDP, we expect it to be of further benefit in

regard to the delay of the signal it can provide. [31] By subtracting the PDP

of the empty environment from the PDP of the presence of multiple users, the

purpose of tracking users is achieved. In order to obtain as detailed a PDP as

possible, the CSI data of multiple channels were spliced together, and 3 receivers

were also set up.

We have been inspired by this approach, and the purpose is to achieve a fairly

accurate tracking effect while using fewer resources.

5.3.1 Power Delay Profile Difference

Different from obtaining PDP directly, what we will extract is the PDP differ-

ence between the empty environment and the intruder environment. The purpose

is to know which paths change due to the presence of intruders.

First, before all calculations start, we need to obtain the CSI data of the empty

environment, which represents the benchmark for PDP calculations. The next step

is to obtain the CSI of the intruder’s activities in space. After converting it to PDP,

calculate the difference PDP to find the change from the original environment.

Let the CIR obtained from the empty environment be hempty. At time t0, the

intruder is active in the environment, and the collected CIR is hhm,t0 . The PDP

difference obtained by subtracting hempty is st0 , which is calculated as follows:

st0 = abs(hempty − hhm,t0), (5.12)

Figure 39 further illustrates how it works.

We collect packets at different time points along the time axis to obtain discrete

PDP differences. Assuming that the total collection time is T , a PDP difference

matrix S with a size of T ×D is obtained. Where D is the total delay time, taking

∆f = 312.5kHz as an example, D = 1600ns. So S can be expressed as:

S = [st0 , st1 , . . . , sti , . . . , sT ]. (5.13)

Next, the obtained S will be processed to track the distance between the in-

truder and the transmitter and receiver.
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Figure 39: The PDP difference is calculated using the distance between hempty

and hhm,t0 on the real part.

We covered a number of features that can be used to detect intruders in Section

3.4. Most features are modified based on variance. This is because the appearance

of the intruder itself is the biggest variable in a static environment. Variance is a

feature that is simple to calculate but well reflects the changes in the environment.

Here again, we choose variance to track the intruders.

We vary S along the time domain. The purpose is to know which delay com-

ponent has the largest variation in the time period T . It has nothing to do with

the magnitude of the amplitude of S. What matters is the degree of variation, as

shown in Figure 40. The obtained variance array is called VT .

5.3.2 Normalize

Another critical point is that we need to normalize the resulting variance array.

This is because, in the case of simulating multiple antennas, the streams of each

antenna will be added together to get the final result. Without normalization, one

of the streams may be given more weight than other streams, leading to tracking

errors. The normalized variance array VT,norm is represented as follows:

VT,norm =
VT −min(VT )

max(VT )−min(VT )
, (5.14)

the results shown in Figure 40 have been normalized. In order to simplify the

following description, directly use VT to represent VT,norm.
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Figure 40: The PDP differences and variance in time domian. The collection
time T is 100 timestamps, and the delay interval D is [0,90.625]ns.

5.3.2.1 Effective Delay Interval

Now that the variance of each delayed component in the time domain is ob-

tained, the unreasonable part needs to be dealt with next. We know that due to

the side lobe effect of the sinc function, each sampling point will gain more or less.

Our purpose is to track the location of the intruder in the target space, so it needs

to deal with those components whose delay is less than the LoS delay τLoS.

τLoS =

√
(xTx − xRx)

2 + (yTx − yRx)
2

c
. (5.15)

In fact, it is impossible to have a path shorter than LoS. The reason these

unreasonable components exist is due to the relationship between sidelobes and

insufficient time resolution. Further thinking, the delay components smaller than

τLoS are mostly composed of sidelobes of τLoS. In other words, these compo-

nents are also branches of its components. Therefore, we sum the components

smaller than τLoS and shift the shortest latency to τLoS. Let the two delayed

sampling points closest to τLoS be τl and τu, the processed variance array VT =

[var(sτ0), . . . , var(sτl), var(sτu), . . . , var(sτ )] can be expressed as follows:

V′
T =

[
l∑

i=0

var(sτi), var(sτu), . . . , var(sτ )

]
; (5.16)

after processing the components of the shortest path, we need to consider the size

of the space. Consider the placement of the transmitter and receiver, assuming
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Figure 41: Effective interval of variance array V′′
T of PDP difference.

the farthest distance in space from the devices is df , and its delay is τf . That

is to say, in V′
T , the components whose delay is greater than τf can be omitted.

Last updated V′′
T =

[∑l
i=0 var(sτi), var(sτu), . . . , var(sτf )

]
. The delay interval

D is updated as D = [τLoS, τu, . . . , τf ], as shown in Figure 41. To simplify the

description, the following VT all represent V′′
T .

5.3.3 Smoothing

It is obviously not an appropriate practice to directly map the delay interval

of D to the distance and calculate the intruder’s location. First of all, since VT

is a discrete array analyzed according to time resolution, calculating the distance

directly from the delayed sampling point may lead to a large error in determining

the location of the intruder. Furthermore, it is better to track the intruder within

a certain interval since the intruder is of a certain size. This is because of the

intruder’s range of activities.

Therefore, we hope that VT can be smoothed by some methods, and the

intruder’s location can be estimated according to its envelope. Time resolution

is limited, we need to do difference for VT . Three different methods were used

for testing: Linear, Shape-Preserving Piecewise Cubic Interpolation (Pchip), and

Cubic Spline (Spline) interpolation.

5.3.3.1 Linear Interpolation

The linear interpolation of the values at nearby grid points in each individual

dimension forms the basis of the interpolated value at a query location [60]. The

concatenation of linear interpolants between each pair of data points is what is

referred to as linear interpolation on a collection of data points: Linear interpo-

lation on a set of data points (x0, y0), (x1, y1), . . . , (xn, yn). As a consequence, a

continuous curve is produced, which generally has a discontinuous derivative and

belongs to the differentiability class C0.
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Figure 42: Comparison of VT smoothing effects of different interpolation meth-
ods.

5.3.3.2 Shape-preserving Piecewise Cubic Interpolation (Pchip)

Pchip interpolation, C1. The value at a query location is interpolated using

a piecewise cubic interpolation that preserves the form of the values at nearby

grid points [61]. Using a piecewise cubic polynomial P (x) with the following

characteristics, Pchip interpolates:

� The polynomial P (x) is a cubic Hermite interpolating polynomial for the

provided data points with defined derivatives (slopes) at the interpolation

locations for each subinterval xk ≤ x ≤ xk+1.

� As P (x) interpolates y, the first derivative d2P
dx2 is continuous and P (xj) =

yj. Jumps at the xj are probable as the second derivative fracd2Pdx2 is

probably not continuous.

� The form of the cubic interpolant P (x) is preserved. The slopes at the xj

are selected so that P (x) respects monotonicity and retains the form of the

data. As a result, at places where the data has a local extremum, P (x) also

has a local extremum on intervals where the data is monotonic.

5.3.3.3 Cubic Spline Interpolation (Spline)

Spline interpolation, C2, employs not-a-knot end conditions. A cubic interpo-

lation of the values at nearby grid points in each individual dimension serves as
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the foundation for the interpolated value at a query location [62]. Similar to how

Pchip creates P (x), Spline creates S(x). Spline, on the other hand, selects the

slopes at the xj in a distinctive manner in order to make even S(x) continuous.

Here are only three of the implications that this discrepancy has: 1. Splines give

results that are smoother and have continuous S(x). 2. If the data consists of val-

ues from a smooth function, the spline algorithm delivers a more accurate result.

3. Pchip requires less setup cost.

(a) (b)

Figure 43: Map VT to the distance, according to the normalized VT represents
the probability of the location of the intruder.(a) is the three-dimensional space
construction of (b).

After introducing the above three interpolation methods, let us take a look at

their respective effects in Figure 42. Obviously, linear interpolation cannot make

VT continuous. It just connects the points together in a straight line. Both Pchip

and Spline have a certain effect on smoothing data. However, the Spline is a bit

oversmooth, even showing negative values and unusual peaks. Pchip is smoothed

almost along the original VT trend.

After testing different methods, we finally chose to use the Pchip interpolation

method.For the convenience of subsequent description, the smoothed VT is still

represented by VT .

5.3.4 Intruder Tracking Map

Based on the information that the intruder’s activities affect signaling, we can

use VT as the probability of how far the intruder is from the transmitter and

receiver.

Given the location of the transmitter and receiver, we can calculate the distance

between each point in space and the device. We can also convert the delay of VT

to the distance axis and map it on the map. Assuming a position point (x0, y0) in
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(a) (b)

Figure 44: Result of intruder tracking with two receivers and one transmitter.(a)
is the three-dimensional space construction of (b).

space, the calculation of its distance dx0,y0 is as follows:

dx0,y0 =
√

(xTx − x0)2 + (yTx − y0)2) +
√

(xRx − x0)2 + (yRx − y0)2). (5.17)

For the conversion of VT delay and distance, use d = τ × c, where c is speed of

light. The next step is to normalize VT again so that the value of VT is mapped

to the probability, [0,1]. Figure 43 shows the result. We can see that the yellow

part represents the range where the intruder is most likely to appear. However,

the fly in the ointment is that we cannot track the location of the intruder exactly.

The tracking range is a concentric ellipse whose focus is on the transmitter and

receiver.

In order to locate the position of the intruder more accurately, we can increase

the receiver to get more intruder tracking maps. Add another receiver here, and

superimpose the second map on the previous map to get an improved map, as

shown in Figure 44. The tracking range of the intruder was obviously reduced

from a large circle to a small area.

5.3.5 Algorithm

According to the description of each step above, we write the method of obtain-

ing the intruder tracking map into an algorithm. The input information includes

empty environment CSI, intruder environment CSI, transmitter and receiver lo-

cations, and target space size. Algorithm 2 will output an intruder tracking map

Z of the target space.

In order to better validate our algorithm, we will test it in a simulated en-

vironment. In addition to testing the effect of different locations on intruders,

experiments are also carried out on hardware device settings, including the use of
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different bandwidths and the impact of frequency resolution. The main consid-

eration is to what extent the lack of hardware equipment will affect the tracking

effect.

Algorithm 2 Generate intruder tracking map.
Input:

CSI of empty environment, Hempty;
CSI of intruder environment, Hhm;
Transmitter Location, (xTx, yTx);
Receiver Location, (xRx, yRx);
Target space size, l, w;

Output:
Intruder tracking map, Z;
set bandwidth = B, frequency resolution = ∆f ;
set number of total streams = N
set the size of Z = L×W ;
set delay stamp τ = 0 : 1

B
: 1
2∆f

;
for ∀n ∈ N do
hempty,n = ifft(Hempty,n);
hhm,n = ifft(Hhm,n);
PDP difference S = |hempty,n − hhm,n|;
Variance VT = normalize(var(S));
Slice VT with delay ∈ [τLoS, τf ] ;
Smooth VT ;
for ∀l ∈ L do
for ∀w ∈ W do
Calculate the distance between (xl,w, yl,w), (xTx, yTx), (xRx, yRx), and
record the corresponding VT in Zl,w,n;

end for
end for

end for
Z =

∑N
n=1 Zn;

normalize Z;
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CHAPTER 6

PERFORMANCE EVALUATION

First, we will illustrate the performance of the intrusion information enhance-

ment method on a previously constructed detection system. Then we will further

introduce the intruder tracking results in the simulated environment.

6.1 Intrusion Information Enhancement Performance

Let us first review the basic detection system. The detection performance will

decrease when the intruder is blocked or moves away from the detection device,

as shown in position 7 in Figure 20 and position 1 in Figure 24(a). The above

situation is mainly because the signal reflecting the intruder is weak, and we can

increase the detection rate through appropriate enhancement methods. We will

first introduce the difference in features before and after signal enhancement and

then further apply the results to the detection system, including model retraining

and performance improvement.

Figure 45: Compare the original and the enhanced phase difference in reality.

65
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Table 7: Comparison of the variances of the original and the enhanced Phase
Difference.

vempty vmov vmov/vempty

Original 7.79× 10−5 1.26 1.91× 104

Enhanced 1.03× 10−4 3.33 5.38× 104

6.1.1 Feature Enhancement

We apply the enhancement method to the intrusion data collected in Section

4.2, and the enhancement effect shows in Figure 45. To better compare the differ-

ence before and after enhancement, the Y-axis of Figure 45 has scaled to the same

arc range. Move data has noticeable changes after being enhanced, while Empty

data maintains a stable trend.

Since the enhancement method cannot identify whether there is an intruder,

amplifying the intrusion information will also strengthen the noise, such as the

variance features v before and after enhancement in Table 7. However, the degree

to which the intruder affects the signal is still far greater than the noise, as we can

use the ratio of vempty and vmov to illustrate. If we only compare the v before and

after enhancement, we can see that both vempty and vmov have enlarged. But if we

compare the value of vmov/vempty, it is evident that the ratio has been magnified

by three times, which means that the distance between the empty data and the

Figure 46: Compare the original and the enhanced intrusion detection perfor-
mance in blocked position and static intrusion.
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Table 8: The precision and false alarm probability of the intrusion detection
system, the intruder being blocked will reduce the intrusion precision.

Pavg FA Pe Pb

93.69% 0.81% 99.92% 60.77%

98.98% 1.49% 100.00% 94.44%

move data is even greater.

6.1.2 System Performance

We augment all the experimental data and use the new Empty data to train a

new OCSVM model. All intrusion detection data judged by the new model signif-

icantly improve the detection effect. Since most of the data already have nearly

100% detection accuracy on the primary system, and the same result can achieve

after enhancement, only the improved detection performance of those blocked ar-

eas showed in Figure 46.

The system’s performance before and after enhancement showed in Table 8.

The enhancement method can improve the effective area performance from 99.92%

to 100% and enhance the average performance on blocked regions to 94.44%. The

overall detection rate of the system can increase to about 98.98%.

We compare the system with other studies [16,18,20]. The reason for choosing

these systems is that the features used in our system are partially referenced from

them, and both use the SVM model for decision-making. The disadvantage of sys-

tems using thresholds is that thresholds must be redefined when the environment

changes and detection performance will deteriorate over time. Since our method

can adapt to different environments and is not affected by the detection time, it is

difficult to directly compare with the threshold-based system based on the above

differences. So our system only compares with [16,18,20]. The indicators for com-

parison include system average performance Pavg, false alarm FA, fixed-point

Table 9: The precision and false alarm probability of the different intrusion de-
tection systems, the intruder being blocked will reduce the intrusion precision.

Pavg FA Pfixed Pdyn

Our system 99.38% 1.49% 97.87% 100.00%

Wi-Alarm [16] 79.50% 50.31% 91.72% 97.1%

Adaptive RT-IDS [18] 81.89% 25.34% 77.07% 93.94%

Robust P-IDS [20] 72.70% 17.94% 63.20% 88.67%
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Figure 47: Comparison of detection performance of our system with other studies.

detection performance Pfixed, and dynamic motion detection performance Pdyn.

It can be seen that the detection rate of all systems can reach more than 88%

when intruders are active in a wide range. However, when the intruder is only at

a fixed point, and the movement range is small, the detection rates of [16, 18, 20]

drop and [20] even drops to 63%. Moreover, the system design of them is prone

to false alarms. We found that it is because their systems are not robust enough.

Once the environment changes, the chance of false alarms increases a lot.

6.2 Simulator

To prove the feasibility of PDP for our intrusion detection system, we simulate

an ideal environment first. It aims to test the effect of different paths on the

emergence of intruders.

6.2.1 RayTracing Model

1 Here we refer to the ray-tracking system constructed based on the RayTrac-

ing [63] model in MATLAB. At the same time, it uses STereoLithography (STL)

files to build an indoor environment, intruders, and obstacles (such as tables,

chairs, etc.) to be observed. RayTracing objects are propagation models that

compute propagation paths with 3-D environment geometry [64, 65]. The STL

file describes the surface geometry of a three-dimensional object and uses multiple

1Thanks to Yi-Hung, Chiang for providing relevant tools to complete the construction of the
simulation environment.
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Figure 48: Simulated laboratory environment. The blue mark is the transmitter,
and the red marks on the upper right and middle left are receiver 1 and receiver
2 respectively.

triangles to create the target shape.

The entire simulator can roughly divided into three steps: First, you need

to use the propagationModel [63] to set the parameters of the signal path to be

collected. Next, use RayTracing [63] to generate detailed information for each

way. Finally, use comm.RayTracingChannel [66] to adjust the ray according to

different channel settings.

6.2.2 Environment and Intruders

The purpose of the simulation is to be able to be applied in the real environ-

ment, so the simulated space and the settings for the hardware are all referenced

Figure 49: Simulated intruder behavior: waving.
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(a) (b)

Figure 50: What the intruder looks like in the simulated space, and the location
of the transmitter and receiver.

from the real scene.

According to the space size of the actual laboratory and the placement of

objects, we simulated a space with a size of 6m×6m×3m. The door is on the

right, there is a shoe cabinet on the left side of the door, the system cabinet is

placed on the right side of the space, tables, and chairs are neatly placed in other

positions, and there are screens, keyboards and mice on the table.As shown in

Figure 48.

We used a transmitter and two receivers to track the intruder. Their placement

is shown in Figure 48. The blue mark represents the transmitter, and the red mark

is the receiver. Connect the devices according to the placement position, and you

can see that their shape is similar to the letter L. The purpose of this arrangement

is to maximize the use of the concentric ellipse characteristics of the tracking map.

Overlapping two tracking maps perpendicular to each other creates a checkerboard

pattern.

After establishing the target space, we need the invaders. The data used to

simulate the movements of the attendants came from the KITWhole-Body Human

Motion Database [67]. The requirement for the intruder’s action is to be able to

perform activities at a fixed location. Finally, he must choose to let the intruder

perform a waving action at a designated location. The approximate activity of an

intruder is shown in Figure 49. The data collection frequency is 100Hz. The figure

shows the intruder’s actions at the 65th, 161st, and 637th timestamps respectively.

As for where the intrusions are located in the target space, we designed three

distinct locations. Because in the simulated laboratory space, the space in which
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the intruder can move is like a letter U rotated 90 degrees. This is symmetrical

along the X-axis. The intruders are at three different locations in the space.

For two transmitter-receiver pairs, Tx-Rx1 and Tx-Rx2, the intruders are located

at LoS and nLoS at two different distances from the device pair, respectively.

Such a design allows the measurement of the different distances between the two

device pairs and the intruder. Figure 50 shows what the intruder looks like in

the simulated space, and the location of the transmitter and receiver. The exact

coordinates p1, p2 and p3 of the invaders on the map are: (4.55, 3.35), (1.95, 4.45)

and (0.85, 1.45).

Figure 51: The position of the four antennas of the receiver. The antennas are
arranged along the Y-axis.

6.2.3 Settings

In this subsection, the setup of the entire simulation space will be described

in more detail. This includes the transmitter and receiver antennas, the used

bandwidth, and the number of subcarriers. In addition, the value of the simulated

space and intruders, the reflection and diffraction of the simulated path, etc.

First, the transmitter and receiver settings are described: the number of trans-

mitter antennas is set to 1, and the number of receiver antennas is 4, which are

(a) (b)

Figure 52: Rays with different combinations of maximum reflection number and
maximum diffraction number in the simulated environment, (a) is (0,10) and (b)
is (1,1).
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evenly distributed along the Y-axis. This setting refers to the LWR-X8460 device

used in the previous chapter. The spacing between the antennas is λ/4, where λ

is the wavelength, λ = c
fc
, c and fc represent the speed of light and the center

frequency respectively, and the center, fc, is set at 5GHz. The positions of the 4

antennas of the receiver are shown in Figure 51.

For bandwidth setting, the current commercial AP uses the IEEE 802.11be

protocol, which can reach up to 320MHz and 4096 subcarriers. So we set the

maximum simulation bandwidth to twice the 320MHz, 640MHz. Considering that

the average household may not use such high-level devices, we also checked the

effect of low bandwidth.

Regarding the setting of subcarriers, as mentioned in Section 5.1.2, the time

resolution of the power delay profile mainly comes from the total bandwidth. Fre-

quency resolution affects the length of delay traceable back. However, components

with delays beyond 500ns are useless. Nevertheless, IEEE 802.11be can obtain

4096 subcarriers by shortening ∆f to 78.125kHz, but for our goal, the time reso-

lution of 312.5kHz is sufficient. Therefore, the maximum number of subcarriers is

set to 1024, and each subcarrier is spaced at 312.5kHz.

Next is a description of the simulated environment. Due to the parameter

limits of the propagationModel module, all items in the target space can only

be set to the same material. Here we set all materials to concrete, which has a

reflectance of about 0.4 [68]. In fact, the reflection coefficient of human skin is

about 0.7. It can be seen from (3.10) that if the influence of noise is not considered,

only from the perspective of reflection, the simulated path loss will be more than

the actual one, that is, the signal attenuation is larger.

The module also provides settings for the maximum number of reflections and

the maximum number of diffractions. Before that, we explain AngularSeparation,

which is a parameter provided by the module to set the total number of rays

emitted. We set this parameter to low, which means that the angle between each

ray is relative to the other. According to the documentation, up to a total of

655,362 rays can be emitted. Going back to the description of the maximum

Figure 53: Overlaying two maps to get the final intruder tracking map.
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number of reflections, assuming it is n, and when all rays are emitted, those rays

with a reflection number greater than n will be discarded. The same applies to

the maximum diffraction number. Diffraction is the phenomenon that multiple

rays are scattered due to rays passing through the edge of the object. We conduct

tests on setting different reflection and diffraction quantities, mainly to find the

most suitable combination. This allows the rays to cover the target space more

completely. In addition, the time calculation cost–performance ratio is higher.

Explain the two combinations (r1, d1) = (0, 10), (r2, d2) = (1, 1) of the max-

imum reflection number and the maximum diffraction number. Case 1 (r1, d1)

is shown in Figure 52(a), the captured rays cover most of the space, the total

number of rays is 637, and the calculation time is 9.935628s. The result of case 2

(r2, d2) is shown in Figure 52(b). Compared with case 1, the rays are more con-

centrated near the transmitter and receiver, the total number of rays is 726, and

the calculation time is 1504.157s. Judging from the results, the number of rays

obtained by the two cases is almost the same. However, since our purpose is to

track the intruder, rays need to cover the target space more comprehensively. The

calculation time of case 2 is much longer than that of case 1, so in this simulation,

the maximum reflection number and the maximum diffraction number are finally

set as (r, d) = (0, 10).

Figure 54: Comparison of scores before and after enhancement between simulated
data and experimental data.
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6.3 Intrusion Detection in Simulated Environment

Although it has been shown in the previous subsections that our enhancement

method can effectively improve the detection precision, here we try to restore the

detection scenario of the real scene with the simulator. In addition to testing the

detection effect in the simulated environment, it is also to prove the reliability of

the signal using the RayTracing model.

6.3.1 Score Perfoemance

First, let us explain the limitation of the simulator on the intrusion detection

part: Since rayTracing can only simulate the reflection and diffraction of the path,

it cannot simulate the part where the radio wave penetrates the material, so the

blocked position in the simulation is not as perfect as in the experiment blocked by

pillars. In addition, it is difficult for the simulator to simulate a static case, because

the simulated human body objects cannot have slight breathing changes like real

humans. If the simulated intruder is set to remain still, it is just an additional

obstacle in the space. To sum up the above, the intruder in the simulation cannot

be completely blocked, and the static case is not suitable for simulation, so that

the intrusion detection accuracy in the simulation will be better than the actual

experiment.

In order to restore the actual scene as much as possible, we added AWGN and

controlled the SNR at 50 dB, so that the simulated signal could be very close

to the experimental data without hardware hopping. Due to the limitations of

RayTracing, it is challenging to act further on the hoppings caused by hardware

defects. We will not repeat the discussion of the detection effect of the ideal

position here but mainly introduce the performance of those slightly blocked lo-

cations, and compare the performance of the enhanced intrusion information with

the experiment.

Since the simulated situation is difficult to completely restore the difficulties en-

countered in the experimental environment, even if the intruder is slightly blocked,

it can still be detected 100%, so it is inappropriate to directly evaluate the per-

Table 10: Comparison of the average score and score difference before and after
enhancement between simulated data and experimental data.

Scorebefore Scoreafter
Scorebefore −
Scoreafter

Simulation −3.65× 10−7 −6.00× 10−8 −3.06× 10−7

Experiment 6.73× 10−13 −1.00× 10−12 −1.67× 10−12
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Table 11: Bandwidth and corresponding subcarriers, time resolution and distance
offset.

Bandwidth Subcarriers
Time

resolution
Distance
offset

20MHz 64 50ns 15m

40MHz 128 25ns 7.5m

80MHz 256 12.5ns 3.75m

160MHz 512 6.25ns 1.87m

320MHz 1024 3.125ns 0.94m

640MHz 2048 1.5625ns 0.47m

formance from the detection precision, but we can still observe the enhancement

effect from other aspects. When the data is passed through the classifier trained

by OCSVM, a score will be obtained. When the score is less than 0, it will be

judged as abnormal by the classifier, which means that there is an intruder. We

can evaluate the performance of the augmentation method by observing the change

of this score.

Looking at Figure 54, the main simulated scene and the intruder’s position

is position 7 of laboratory Scenario I. Only part of the data is displayed for the

convenience of viewing the detection performance. We judged from the 100 packets

shown in the figure that the simulated environment scores are very close to 0, but

they are still less than 0, and the intruder can be completely detected. The data

in the actual environment is not ideal, only 38% are detected. Then compare the

scores before and after enhancement, and we can see that the scores of both the

simulation and the actual environment have decreased. More intuitively, from the

experimental data, the detection rate can be increased to 77% after enhancement.

The average score and score difference before and after the enhancement of the

two data can be viewed in Table 10.

When the enhancement method is applied to the simulated data, the score

drops significantly, proving that it performs well for intrusion signal augmentation.

6.4 Intruder Tracking Performance

In this subsection, we will illustrate the effect of PDP applied to intruder

tracking. Since the size of the simulated target space is 6m×6m, if the bandwidth

used is below 80MHz, it will be difficult to track the intruder. The time resolutions

of bandwidth 20MHz and 40MHz are 50ns and 25ns respectively. These are about



doi:10.6342/NTU202303843

6.4. INTRUDER TRACKING PERFORMANCE 76

(a) (b) (c)

(d) (e) (f)

Figure 55: Intruder tracking results using different bandwidths: (a) 20MHz, (b)
40MHz, (c) 80MHz, (d) 160MHz, (e) 320MHz and (f) 640MHz, where phm =
(1.95, 4.45).

15m and 7.5m when converted to distance. Therefore, the effective bandwidths

are 80MHz, 160MHz, 320MHz and further 640MHz respectively.

The simulated environment has one transmitter and two receivers. We multiply

the tracking maps obtained by the two links to obtain the final intruder tracking

map, as shown in Figure 53. For the convenience of viewing, the display of the

follow-up results will be displayed in plan view, so that the distance between the

tracking position and the intruder can be seen more clearly.

Tracking results will be explained separately for different bandwidths, including

the distance between the tracking point and the actual location of the intruder,

the tracking range, and so on.

6.4.1 Bandwidth

The number of subcarriers that can be used in varied bandwidths is different.

The time resolution is also changed due to the size of the bandwidth, which also

affects the tracking offset. We sorted out the information on the number of sub-

carriers, time resolution, and distance offset under different conditions in Table

11.
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Table 12: Tracking offsets and scores at different bandwidths, phm = (1.95, 4.45).

Bandwidth |ptrk − phm| score of phm score of ptrk

20MHz 1.6919m 1.0904 1.1323

40MHz 1.6530m 1.1927 1.2211

80MHz 0.5440m 0.6114 3.6457

160MHz 0.5566m 0.1401 5.5614

320MHz 0.5220m 0.0830 12.1040

640MHz 0.2163m 1.0729 49.2084

In the case of no change in the simulated environment, we fixed the movement

and position of the intruder. We observed the impact of different bandwidths

on tracking performance. The results of the intruder tracking map are shown in

Figure 55. The blue pentagram represents the most likely position of the intruder,

and the actual position of the intruder phm = (1.95, 4.45).

The tracking position is ptrk, and the Table 12 shows the deviation between ptrk

and phm and the score of phm on the tracking map. We cut the map in centimeters,

and there will be 600 /times 600 points in total, and the total score is 3,600. The

higher the score, the more likely the intruder is at that position. Observe Figure

55(c) and Table 12, even if only using 80MHz bandwidth, the tracking offset can

still be around 0.5m. But because the given possible range is larger, the score

of ptrk is only 3.6457. By analogy, the possible range of intruders given by the

tracking map will shrink as bandwidth increases. When the bandwidth reaches

640MHz, the score of ptrk rises to 49.2084, and the tracking error is also reduced

to only about 0.22m.

(a) (b) (c)

Figure 56: Tracking results of intruders at different positions: (a) p1 =
(4.55, 3.35), (b) p2 = (1.95, 4.45) and (c) p3 = (0.85, 1.45), where B =1024MHz.
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(a) (b)

Figure 57: The distance resolution diverges from the transmitter and receiver as
concentric ellipses.

However, if we observe the score difference between ptrk and phm, the wider

bandwidth will have a larger score difference. This is because when the time

resolution is increased and the focused range is reduced, the score will be densely

concentrated on the target point.

6.4.2 Intruder Position

In this subsection, we will test the scenario where the intruder is located at

different positions. Select 320 MHz to observe the tracking effect in more detail.

Tracking performance is shown in Figure 56.

When the position of the intruder is at p1 and p3, even if the bandwidth is

set to 320 MHz, the tracking range does not shrink much. This is so that we can

determine how far an intruder is from the transmitter and receiver when using

our way of tracking them. The distance resolution is a concentric ellipse with the

transmitter and receiver as focal points outward, as shown in Figure 57(a). In the

Table 13: Tracking offsets and scores at different positions, B=320MHz.

Position |ptrk − pn| score of pn score of ptrk

p1 = (4.55, 3.35) 0.4421m 1.9851 11.8639

p2 = (1.95, 4.45) 0.5220m 0.0830 12.1040

p3 = (0.85, 1.45) 1.2440m 15.0930 15.9578
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(a) (b) (c) (d)

Figure 58: Intruder walks with time in 80 MHz, t = (a) 0.5s, (b) 1.0s, (c) 1.5s
and (d) 2.0s.

range closer to the transmitter and receiver, blue ellipse, the distance difference

along the normal is longer than yellow ellipse, which is farther from the device.

Therefore, when an intruder approaches the LoS between devices, the tracking

range expands, and there is also a large tracking offset.

Table 13 shows the distance offset between ptrk and the actual intruder position

pn, n ∈ [1, 3] and the tracking score of pn. Although the distance between p3 and

ptrk has the largest deviation, the tracking score of the intruder’s location is as

highest.

6.4.3 Walking Intruder

The intruder tracking map is further applied to continuously moving intruders.

Using a sliding window, we take about 1 second of data to determine the intruder’s

position. Since the intruder constantly moves and changes the target position

during the sampling interval, the tracking range is sometimes more extensive than

if the intruder is stationary. This is shown in Figures 59(b) and 59(c).

Evaluating tracking offset requires the exact location of the intruder. We set

the intruder position at the midpoint of the sampling time as phm. That is to say,

when the sampling time is [0.0,1.0]s, then phm is the intruder’s position at t =0.5s.

In this test, the average tracking offset using the 80 MHZ bandwidth is 0.7987m;

the average tracking offset using the 320 MHZ bandwidth is 0.4481m, and the

minimum and maximum offsets are shown in the Table 14 as shown. Even if the

Table 14: The average, minimum and maximum tracking offset of the intruder
while walking.

|ptrk − pn| Average Maximum minimum

80 MHz 0.7987m 1.3256m 0.1077m

320 MHz 0.4481m 0.5608m 0.2973m
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(a) (b) (c) (d)

Figure 59: Intruder walks with time in 320 MHz, t = (a) 0.5s, (b) 1.0s, (c) 1.5s
and (d) 2.0s.

device’s bandwidth cannot be used to 320 MHz, the tracking offset will not be too

large with only 80 MHz.

6.4.4 Noise

To be closer to the actual environment, we add Additive white Gaussian noise

(AWGN) to the simulated ideal CSI signal and set the Signal-to-noise ratio (SNR)

to 15 dB. This level of SNR is the standard lower limit for the smooth transmission

of signals, and even a small SNR will lead to poor signal communication. The CSI

disturbed by the noise is shown in Figure 60, and the amplitude and the phase

are influenced to a certain extent.

Figure 60: Amplitude and phase changes of the simulated CSI after being dis-
turbed by AWGN.
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Table 15: The average, maximum, and minimum tracking offsets after adding
AWGN to the CSI data of walking intruders.

Bandwidth |ptrk − pn| Average Maximum minimum

80 MHz
Ideal 0.7987m 1.3256m 0.1077m

AWGN 0.8808m 1.2436m 0.1112m

320 MHz
Ideal 0.4481m 0.5608m 0.2973m

AWGN 0.5641m 0.6920m 0.4401m

The simulation results can be seen in Table 15. At 80 MHz bandwidth, the

average tracking offset is 0.8808m; at 320 MHz bandwidth is 0.5641m. The offset

of the tracking point calculated by the current algorithm is slightly increased, but

it is all controlled at about 10cm. From [54] we can know the phase error which

affects the PDP the most, but even if AWGN is added to the simulated phase, the

error is still far from the error of the actual environment. The reason is that the

most critical influence on the phase is the delay from the SFO, which will make

the phase of the entire signal very random. Further calibration for the CSI phase

is required to apply the algorithm to practical experiments.

(a)

(b)

Figure 61: Intruder walks with AWGN, B = (a) 80 Mhz and (b) 320 MHz.

Overall, the performance of our algorithm in an ideal environment using the

existing maximum bandwidth can make the average tracking error as small as

0.45m, and compared with other studies, the computational complexity and CSI
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information requirements are relatively much lower.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

The information explosion makes People increasingly concerned about their

privacy and security. In contrast, the user may not be willing to install a monitor

to prevent intruders from entering their personal space because of privacy concerns.

CSI is an excellent source of information. Wi-Fi is everywhere, in homes, offices,

and mass transit. When people do not turn off the Wi-Fi when they leave the

house, we can take advantage of the still-running AP. In addition to improving

environmental security, it also increases AP use value.

7.1 Intrusion Detection System

After we read many kinds of research on intruder detection, we found some

flaws in the existing research, such as the detection effect will drop when the

intruder is occluded or only performing static activities. And some systems are

not accurate enough for CSI feature selection, which makes the system easily

invalidated due to environmental changes. Test results show that even if some

systems effectively detect fixed-point intruders, the probability of false alarms is

as high as 50%. Overdetection is not how a sound system should behave.

We selected more powerful features based on common intrusion system archi-

tectures, which are sensitive to the presence and activity of intruders, and are

also stable in an empty environment. In addition, we also performed some pre-

processing on the CSI signal, so that the phase difference can compensate for the

lack and instability on the hardware more than the amplitude, which is opposite

to the amplitude usually used in most studies. Considering the difficulty of exe-

cuting the system, we choose OCSVM as the intrusion decision model. The model

is less expensive to train and more resistant to different intruder behaviors.

The detection effect of the model constructed based on the above method is

better than that of most systems, but we found that there is still room for im-

provement in the performance of the occlusion position, so we further use the

information of the PDP to enhance the detection effect. When the signal spreads

in all directions, due to the space’s complexity, some positions must be blocked,

making it difficult for the signal to reach. Multiple reflections often make These

signals prone to significant amplitude attenuation. The same is true when the in-

truder is in static activity, because the range of the intruder’s activities is reduced,

83
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so the paths that can reflect its behavior are reduced.

The PDP gives us path information, allowing us to find the delay compo-

nent that best reflects the intruder. We modify the weights of different paths to

make the restored CSI easier to detect intruders. Applying the same enhancement

method to the air environment data, although it will increase the noise signal, its

effect will not raise the false alarm excessively. After enhanced algorithm adjust-

ment, our system can adapt to different environments and intruder behaviors, and

the average detection accuracy is as high as 99.38%, and the false alarm is only

1.49%.

7.2 Intruder Tracking Map

After detecting an intruder in the target space, further tracking is expected.

We exploit the PDP difference between the empty and intruder environments for

intruder tracking. The calculated PDP difference can represent the most likely

location by the degree of change in the influence of the intruder. Convert the

delay information provided by the PDP to distance and map it to the target

environment map. A map of concentric ellipses is formed by the transmitter’s and

receiver’s distance to each location in space. By multiplying and superimposing

the ellipse maps formed by at least two receivers, the range where the intruder is

most likely to exist can be found.

Since the delay resolution of PDP is mainly affected by the bandwidth, for

our hypothetical target environment, 6m×6m, a bandwidth of at least 80 MHz is

needed to track intruders more accurately. In addition, when the intruder is close

to the LOS, the tracking range will be expanded, mainly due to the method of

tracking map generation.

Our method tracks intruders by collecting CSI over some time, rather than

using a single packet to make a decision. In addition to the intruder’s activity at

a fixed point, we tested the intruder’s continuous movement. Our tracking map

can change over time even if the intruder keeps changing location. In an ideal

environment, the tracking displacement can be as small as 0.45m using 320 MHz

bandwidth, and only 0.79m even at 80 MHz. The signal is added to AWGN for

testing, and the tracking displacement is still controlled below 10 cm even though

it has increased.

Overall, the performance of our algorithm in an ideal environment using the

existing maximum bandwidth can make the average tracking error as small as

0.45m, and compared with other studies, the computational complexity and CSI

information requirements are relatively much lower.
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7.3 Future work

The possible future developments of the intrusion detection system and the

intruder tracking method are discussed below.

7.3.1 Intrusion Detection and Identification

Our intrusion detection system relies only on 20MHz, 64 subcarrier informa-

tion. However, Wi-Fi bandwidth can reach 320 MHz and 4096 subcarriers. Since

the features used in our system look at subcarriers from a macro perspective and

preprocessing has reduced noise. Therefore, when the number of sub-carriers in-

creases, we do not need to make any other adjustments except to retrain the

pre-trained model according to the number of sub-carriers.

In addition to detecting human presence, intrusion detection also focuses on

identifying intruders. The purpose is to distinguish whether there are illegal in-

truders in the environment. To distinguish different individuals, the system will

need more features that can reflect subtle changes, and it will also need to estab-

lish a database for legitimate individuals. In addition, a further goal may be to

distinguish which one is an illegal intruder when there are multiple individuals.

The technology is more complex and involves a multi-person detection system.

7.3.2 Combination of Intruder Tracking and Detection

We use simulated environments to verify the effectiveness of our proposed

method when tracking intruders. But there are many more environmental vari-

ables in the real world than in the simulated environment, especially for phase

effects. Even if we try to get closer to the actual situation by adding AWGN, the

degree of its influence on the signal is much smaller than the time delay caused

by SFO. In addition, we can only simulate the reflection and diffraction of signals,

and the propagation of electromagnetic waves in reality also includes scattering

and refraction. Further signal processing is required to apply the intruder tracking

algorithm using PDP to the actual environment, and hardware, environment, etc.

need to be adjusted.

In addition, we are also thinking about whether we can combine the detection

and tracking of intruders. In our proposed system, the detection and tracking

were initially regarded as two steps, that is, the intruder’s presence is detected

first and then tracked. However, The PDP difference used by the intruder tracking

map can provide the gap between the current and empty environments. Further

analysis of the values of these differences may be used to distinguish the presence

of intruders. Another possible approach is to consider the scope of the intruder’s

activities. For example, if the potential scope of tracking is too concentrated on
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a certain point, it usually is abnormal and unreliable. Conversely, if the possible

range is so extensive that the tracking effect is lost, there may also be no intruders

in the space at all. Still, it is also necessary to consider whether the bandwidth

used is not large enough.

Based on the above, many issues can be pondered in the development of CSI

applied to intruders. After all, the privacy and security issues of physical or digital

property will only be paid more and more attention.
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