請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90763完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 呂廷璋 | zh_TW |
| dc.contributor.advisor | Ting-Jang Lu | en |
| dc.contributor.author | 吳采憲 | zh_TW |
| dc.contributor.author | Tsai-Shian Wu | en |
| dc.date.accessioned | 2023-10-03T17:30:38Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-10-03 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-11 | - |
| dc.identifier.citation | 衛生福利部食品藥物管理署。2022。檢驗機構實驗室品質系統基本規範。台北,台灣。
王鐘凰。菇蕈中活性多醣(1,3;1,6)-β-D-葡萄聚醣的分析與功能評估。國立台灣大學食品科技研究所博士論文。2014。台北,台灣。 許雅鈞。以液相層析串聯高解析質譜法建立靈芝三萜類輪廓分析。2020。台北,台灣。 李幸樺。培養條件對紫芝與赤芝菌絲生成多醣與靈芝酸含量與組成的影響。2018。台北,台灣。 匡易、李斌、王子龍、喬雪、葉敏。藥用真菌牛樟芝中的萜類化合物:化學與藥用潛力。北京大學藥學院。2020。中國,北京。 林淑萍。從靈芝三萜萬花筒透視靈芝的奧秘 (上)。健康靈芝第80期。2019a年。台北,台灣。 林淑萍。從靈芝三萜萬花筒透視靈芝的奧秘 (中)。健康靈芝第81期。2019b年。台北,台灣。 林淑萍。從靈芝三萜萬花筒透視靈芝的奧秘 (下)。健康靈芝第82期。2019c年。台北,台灣。 2002/657/EC: Commission Decision of 12 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results (Text with EEA relevance) (notified under document number C(2002) 3044). In 2002; pp 8-36. Bluck, L.; Volmer, D. A., The Role of Naturally Occurring Stable Isotopes in Mass Spectrometry, Part I: The Theory. Spectroscopy (Springf) 2009, 23, e36. Bu, M.; Cao, T.; Li, H.; Guo, M.; Yang, B. B.; Zhou, Y.; Zhang, N.; Zeng, C.; Hu, L., Synthesis and biological evaluation of novel steroidal 5α,8α-endoperoxide derivatives with aliphatic side-chain as potential anticancer agents. Steroids 2017, 124, 46-53. Cai, S. Q.; Xiao, H.; Wang, X. Z.; Lin, S. J.; Zhong, J. J., Bioconversion of a ganoderic acid 3-hydroxy-lanosta-8,24-dien-26-oic acid by a crude enzyme from Ganoderma lucidum. Process Biochem. 2020, 95, 12-16. Chyr, R.; Shiao, M.-S., Liquid chromatographic characterization of the triterpenoid patterns in Ganoderma lucidum and related species. Journal of Chromatography A 1991, 542, 327-336. Chen, D.-H.; Shiou, W.-Y.; Wang, K.-C.; Huang, S.-Y.; Shie, Y.-T.; Tsai, C.-M.; Shie, J.-F.; Chen, K.-D., Chemotaxonomy of Triterpenoid Pattern of HPLC of Ganoderma lucidum and Ganoderma tsugae. J. Chin. Chem. Soc. 1999, 46, 47-51. Chen, L.; Chen, X.; Wang, S.; Bian, Y.; Zhao, J.; Li, S., Analysis of triterpenoids in Ganoderma resinaceum using liquid chromatography coupled with electrospray ionization quadrupole - time - of - flight mass spectrometry. International Journal of Mass Spectrometry 2019, 436, 42-51. Clark, C. R.; Wells, M. J. M.; Sansom, R. T.; Humerick, J. L.; Brown, W. B.; Commander, B. J., Effects of Intramolecular Hydrogen Bonding on Solute Retention in Reversed-Phase Liquid Chromatography. Elution Characteristics of Some Isomeric Benzamides. Journal of Chromatographic Science 1984, 22, 75-79. Commission Implementing Regulation (EU) 2021/808 of 22 March 2021 on the performance of analytical methods for residues of pharmacologically active substances used in food-producing animals and on the interpretation of results as well as on the methods to be used for sampling and repealing Decisions 2002/657/EC and 98/179/EC (Text with EEA relevance). In 2021; pp 84-109. Da, J.; Wu, W.-Y.; Hou, J.-J.; Long, H.-L.; Yao, S.; Yang, Z.; Cai, L.-Y.; Yang, M.; Jiang, B.-H.; Liu, X.; Cheng, C.-R.; Li, Y.-F.; Guo, D.-A., Comparison of two officinal Chinese pharmacopoeia species of Ganoderma based on chemical research with multiple technologies and chemometrics analysis. Journal of Chromatography A 2012, 1222, 59-70. Deng, K.; Lan, X.; Fang, Q.; Li, M.; Xie, G.; Xie, L., Untargeted Metabolomics Reveals Alterations in the Primary Metabolites and Potential Pathways in the Vegetative Growth of Morchella sextelata. Frontiers in Molecular Biosciences 2021, 8, e632341. Favre, H. A; Powell, W. H, Appendix 3 Structures for Alkaloids, Steroids, Terpenoids and Similar Compounds Given in Table 10.1, P-101.2.7, Chapter 10. In Nomenclature of Organic Chemistry: IUPAC Recommendations and Preferred Names; The Royal Society of Chemistry: Cambridge, UK, 2014; 1515-1542. Galea, A. M.; Brown, A. J., Special relationship between sterols and oxygen: Were sterols an adaptation to aerobic life? Free Radical Biology and Medicine 2009, 47, 880-889. Gavage, M.; Delahaut, P.; Gillard, N., Suitability of High-Resolution Mass Spectrometry for Routine Analysis of Small Molecules in Food, Feed and Water for Safety and Authenticity Purposes: A Review. Foods 2021, 10, e601. Goetz, G. H.; Farrell, W.; Shalaeva, M.; Sciabola, S.; Anderson, D.; Yan, J.; Philippe, L.; Shapiro, M. J., High Throughput Method for the Indirect Detection of Intramolecular Hydrogen Bonding. Journal of Medicinal Chemistry 2014, 57, 2920-2929. Govender, P.; Sivakumar, V., Application of k-means and hierarchical clustering techniques for analysis of air pollution: A review (1980–2019). Atmospheric Pollution Research 2020, 11, 40-56. Guo, X.-Y.; Han, J.; Ye, M.; Ma, X.-C.; Shen, X.; Xue, B.-B.; Che, Q.-M., Identification of major compounds in rat bile after oral administration of total triterpenoids of Ganoderma lucidum by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis 2012, 63, 29-39. Gu, L.; Zheng, Y.; Lian, D.; Zhong, X.; Liu, X., Production of triterpenoids from Ganoderma lucidum: Elicitation strategy and signal transduction. Process Biochem. 2018, 69, 22-32. Hapuarachchi, K.; Karunarathna, S.; McKenzie, E.; Kakumyan, P.; Hyde, K.; Wen, T.-C., 2019-High phenotypic plasticity of Ganoderma sinense (Ganodermataceae, Polyporales) in China. Asian Journal of Mycology 2019, 2, 1-47. Hennicke, F.; Cheikh-Ali, Z.; Liebisch, T.; Maciá-Vicente, J. G.; Bode, H. B.; Piepenbring, M., Distinguishing commercially grown Ganoderma lucidum from Ganoderma lingzhi from Europe and East Asia on the basis of morphology, molecular phylogeny, and triterpenic acid profiles. Phytochemistry 2016, 127, 29-37. Hsu, C.-L.; Yu, Y.-S.; Yen, G.-C., Lucidenic Acid B Induces Apoptosis in Human Leukemia Cells via a Mitochondria-Mediated Pathway. J. Agric. Food Chem. 2008, 56, 3973-3980. Hsu, C.-L.; Yen, G.-C., Chapter Three - Ganoderic Acid and Lucidenic Acid (Triterpenoid). In The Enzymes, Bathaie, S. Z.; Tamanoi, F., Eds. Academic Press: 2014, 36, 33-56. Ipsen, A., Efficient Calculation of Exact Fine Structure Isotope Patterns via the Multidimensional Fourier Transform. Analytical Chemistry 2014, 86, 5316-5322. Junot, C.; Fenaille, F.; Colsch, B.; Bécher, F., High resolution mass spectrometry based techniques at the crossroads of metabolic pathways. Mass Spectrometry Reviews 2014, 33, 471-500. Jo, E. Y.; Cheon, J. L.; Ahn, J. H., Effect of Food Waste Compost on the Antler-Type Fruiting Body Yield of Ganoderma lucidum. Mycobiology 2013, 41, 42-46. Jordá, T.; Puig, S., Regulation of Ergosterol Biosynthesis in Saccharomyces cerevisiae. Genes 2020, 11, e795. Li, X.; Zhang, X.; Ye, L.; Kang, Z.; Jia, D.; Yang, L.; Zhang, B., LC-MS-Based Metabolomic Approach Revealed the Significantly Different Metabolic Profiles of Five Commercial Truffle Species. Frontiers in Microbiology 2019, 10, e2227. Li, Z. H.; Shi, Y. Q.; Zhang, X. H.; Xu, J.; Wang, H. B.; Zhao, L.; Wang, Y., Screening Immunoactive Compounds of Ganoderma lucidum Spores by Mass Spectrometry Molecular Networking Combined With in vivo Zebrafish Assays. Front. Pharmacol. 2020, 11, e287. Ling, T.; Lang, W. H.; Martinez-Montemayor, M. M.; Rivas, F., Development of ergosterol peroxide probes for cellular localisation studies. Organic & Biomolecular Chemistry 2019, 17, 5223-5229. Lu, J.; Qin, J.-z.; Chen, P.; Zhao, S.-j., Quality Difference Study of Six Varieties of Ganoderma lucidum with Different Origins. Front. Pharmacol. 2012, 3, e57. Marshall, A. G.; Hendrickson, C. L., High-Resolution Mass Spectrometers. Annual Review of Analytical Chemistry 2008, 1, 579-599. Mau, J.-L.; Lin, H.-C.; Chen, C.-C., Non-volatile components of several medicinal mushrooms. Food Research International 2001, 34, 521-526. Mak, K. K. W.; Lai, Y. M.; Siu, Y.-H., Regiospecific Epoxidation of Carvone: A Discovery-Oriented Experiment for Understanding the Selectivity and Mechanism of Epoxidation Reactions. Journal of Chemical Education 2006, 83, 1058-1061. Münger, L. H.; Boulos, S.; Nyström, L., UPLC-MS/MS Based Identification of Dietary Steryl Glucosides by Investigation of Corresponding Free Sterols. Frontiers in Chemistry 2018, 6, e342. Ory, L.; Gentil, E.; Kumla, D.; Kijjoa, A.; Nazih, E.; Roullier, C., Detection of ergosterol using liquid chromatography/electrospray ionization mass spectrometry: Investigation of unusual in-source reactions. Rapid Commun. Mass Spectrom. 2020, 34, e8780. Peng, H.; Shahidi, F., Bioactive Compounds and Bioactive Properties of Chaga (Inonotus obliquus) Mushroom: A Review. Journal of Food Bioactives 2020, 12, 9-75. Qin, H.; Xu, J.-W.; Xiao, J.-H.; Tang, Y.-J.; Xiao, H.; Zhong, J.-J., Cell Factories of Higher Fungi for Useful Metabolite Production. Advances in biochemical engineering/biotechnology 2015, 155, 199-235. Ryu, D. H.; Cho, J. Y.; Bin Sadiq, N.; Kim, J. C.; Lee, B.; Hamayun, M.; Lee, T. S.; Kim, H. S.; Park, S. H.; Nho, C. W.; Kim, H. Y., Optimization of antioxidant, anti-diabetic, and anti-inflammatory activities and ganoderic acid content of differentially dried Ganoderma lucidum using response surface methodology. Food Chem. 2021, 335, e127645. Saltarelli, R.; Palma, F.; Gioacchini, A. M.; Calcabrini, C.; Mancini, U.; De Bellis, R.; Stocchi, V.; Potenza, L., Phytochemical composition, antioxidant and antiproliferative activities and effects on nuclear DNA of ethanolic extract from an Italian mycelial isolate of Ganoderma lucidum. Journal of Ethnopharmacology 2019, 231, 464-473. Schymanski, E. L.; Jeon, J.; Gulde, R.; Fenner, K.; Ruff, M.; Singer, H. P.; Hollender, J., Identifying Small Molecules via High Resolution Mass Spectrometry: Communicating Confidence. Environmental Science & Technology 2014, 48, 2097-2098. Shin, M.-K.; Sasaki, F.; Ki, D.-W.; Win, N. N.; Morita, H.; Hayakawa, Y., Anti-metastatic effects of ergosterol peroxide from the entomopathogenic fungus Ophiocordyceps gracilioides on 4T1 breast cancer cells. Journal of Natural Medicines 2021, 75, 824-832. Su, C. H.; Yang, Y. Z.; Ho, H. O.; Hu, C. H.; Sheu, M. T., High-performance liquid chromatographic analysis for the characterization of triterpenoids from Ganoderma. J Chromatogr Sci 2001, 39, 93-100. Sudheer, S.; Taha, Z.; Manickam, S.; Ali, A.; Cheng, P. G., Development of antler-type fruiting bodies of Ganoderma lucidum and determination of its biochemical properties. Fungal Biology 2018, 122, 293-301. Taofiq, O.; Heleno, S. A.; Calhelha, R. C.; Alves, M. J.; Barros, L.; González-Paramás, A. M.; Barreiro, M. F.; Ferreira, I. C. F. R., The potential of Ganoderma lucidum extracts as bioactive ingredients in topical formulations, beyond its nutritional benefits. Food and Chemical Toxicology 2017, 108, 139-147. Wang, W.-F.; Xiao, H.; Zhong, J.-J., Biosynthesis of a ganoderic acid in Saccharomyces cerevisiae by expressing a cytochrome P450 gene from Ganoderma lucidum. Biotechnology and Bioengineering 2018, 115, 1842-1854. Wang, W.-F.; Xiao, H.; Zhong, J.-J., Biosynthesis of a novel ganoderic acid by expressing CYP genes from Ganoderma lucidum in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology 2022, 106, 523-534. Wang, J.; Chow, W., Applications of Ultrahigh Performance Liquid Chromatography Electrospray Ionization Q-Orbitrap Mass Spectrometry and QuEChERS for Fingerprinting and Identification of Molecular Markers in Orange Juices. ACS Food Science & Technology 2023, 3, 729-737. Watson, D. G., A rough guide to metabolite identification using high resolution liquid chromatography mass spectrometry in metabolomic profiling in metazoans. Comput Struct Biotechnol J 2013, 4, e201301005. Wu, T.-S.; Shi, L.-S.; Kuo, S.-C., Cytotoxicity of Ganoderma lucidum Triterpenes. Journal of Natural Products 2001, 64, 1121-1122. Xiong, M.; Huang, Y.; Liu, Y.; Huang, M.; Song, G.; Ming, Q.; Ma, X.; Yang, J.; Deng, S.; Wen, Y.; Shen, J.; Liu, Q.-H.; Zhao, P.; Yang, X., Antidiabetic Activity of Ergosterol from Pleurotus Ostreatus in KK-Ay Mice with Spontaneous Type 2 Diabetes Mellitus. Molecular Nutrition & Food Research 2018, 62, e1700444. Yang, M.; Wang, X. M.; Guan, S. H.; Xia, J. M.; Sun, J. H.; Guo, H.; Guo, D. A., Analysis of triterpenoids in Ganoderma lucidum using liquid chromatography coupled with electrospray ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 2007, 18, 927-939. Yang, C.; Li, W.; Li, C.; Zhou, Z.; Xiao, Y.; Yan, X., Metabolism of ganoderic acids by a Ganoderma lucidum cytochrome P450 and the 3-keto sterol reductase ERG27 from yeast. Phytochemistry 2018, 155, 83-92. Yan, Z.; Xia, B.; Qiu, M. H.; Li Sheng, D.; Xu, H. X., Fast analysis of triterpenoids in Ganoderma lucidum spores by ultra-performance liquid chromatography coupled with triple quadrupole mass spectrometry. Biomedical Chromatography 2013, 27, 1560-1567. Ye, L.; Liu, S.; Xie, F.; Zhao, L.; Wu, X., Enhanced production of polysaccharides and triterpenoids in Ganoderma lucidum fruit bodies on induction with signal transduction during the fruiting stage. PLOS ONE 2018, 13, e0196287. Yuan, W.; Jiang, C.; Wang, Q.; Fang, Y.; Wang, J.; Wang, M.; Xiao, H., Biosynthesis of mushroom-derived type II ganoderic acids by engineered yeast. Nature Communications 2022, 13, e7740. Yue, Q. X.; Song, X. Y.; Ma, C.; Feng, L. X.; Guan, S. H.; Wu, W. Y.; Yang, M.; Jiang, B. H.; Liu, X.; Cui, Y. J.; Guo, D. A., Effects of triterpenes from Ganoderma lucidum on protein expression profile of HeLa cells. Phytomedicine 2010, 17, 606-613. Zhao, L.; Dong, Y.; Chen, G.; Hu, Q., Extraction, purification, characterization and antitumor activity of polysaccharides from Ganoderma lucidum. Carbohydrate Polymers 2010, 80, 783-789. Zhang, H.; Jiang, H. J.; Zhang, X. J.; Tong, S. Q.; Yan, J. Z., Development of Global Chemical Profiling for Quality Assessment of Ganoderma Species by ChemPattern Software. Journal of Analytical Methods in Chemistry 2018, 2018, e1675721. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90763 | - |
| dc.description.abstract | 靈芝 (Ganoderma genus) 是一種藥用真菌,因抵抗內源或外源性的氧化壓力,會產生以三萜與固醇等具有生理活性的植化素。不同的靈芝包含赤芝、松杉靈芝及臺灣紫芝會由於不同內生性的酵素在真菌體內反應產生具結構多樣性的靈芝三萜,分為 30 碳骨架的主要型和雙烯型、27 碳的赤芝酸型、24 碳的短鏈型等四種,並在骨架上的不同位置產生羥化、去氫、乙醯化等反應。因為需要有效的分析平台去偵測這些結構複雜的植化素,以作為品質管制依據,本研究使用超高效液相層析串聯高解析軌道阱質譜儀 (Ultra-high performance liquid chromatography coupled to high-resolution Orbitrap mass spectrometry, UHPLC-HRMS/MS) 建立靈芝三萜與固醇化學組成輪廓 (Chemical profile) 之分析平台。本研究所使用的分析平台定性策略包含在層析上化合物因極性不同而產生的分離,包含化合物的氧化取代基的個數、種類、是否發生分子內氫鍵而遮蔽應有的極性及側枝的長短等性質;而後利用高解析一次質譜,針對化合物的不同加成離子、同位素分布及精確分子量進行定性,由此確認碳氫氧個數並確認其潛在的三萜或固醇骨架型式;最後利用化合物在高能碰撞解離 (Higher energy Collision-induced Dissociation, HCD) 後的高解析二次質譜,因依照不同位置取代基的穩定性造成的選擇性斷裂、脫水,利用這些資訊建構整個化合物的結構。依此我們建構了總共可以定性 65 種三萜或固醇化合物的分析平台。包含 29 個 M、D 型靈芝三萜、12 個 L 型靈芝三萜、2 個 S 型靈芝三萜及 5 個固醇,另外也定性了目前文獻尚未報導,然而具有與三萜或固醇相同分子式的潛在 17 種質譜訊號,這些化合物皆能被穩定的相對定量。利用此分析平台進行赤芝、松杉靈芝及臺灣紫芝的樣品分析,可以發現在本平台的分析下,皆發現了相關的固醇訊號。然而在三萜的組成輪廓有很大的區別,台灣紫芝 (G. formosaum) 僅具有微量的靈芝酸 A 及 D;赤芝 (G. lucidum) 具有高量的 27 碳赤芝酸,相對豐度最多的三萜為赤芝酸 A 及 D;松杉靈芝 (G. tsugae) 的三萜廣泛分布,相對豐度最多的主要是30碳的靈芝酸A、12-乙醯氧基靈芝酸F 及靈芝酸H。本研究所利用的UHPLC-HRMS/MS 所建立的分析平台,能有效篩選鑑別靈芝中的三萜與固醇,以利後續定量,並且協助靈芝健康食品工業的原材料篩選以及製程品質管控的應用。 | zh_TW |
| dc.description.abstract | Ganoderma mushroom is a type of medicinal fungus. In order to resist endogenous or exogenous oxidative stress, Ganoderma mushroom would produce bioactive phytochemicals such as Triterpenoids and Steroids. Different Ganoderma mushroom including G. lucidum, G. tsugae and G. formosaum will secrete triterpenoids with structural diversity by different endogenous enzymes in the mushroom. These triterpenoids are divided into four skeleton types: M-type and D-type with 30 carbons skeleton, L-type with 27 carbons skeleton and S-type with 24 carbons. There are also different reactions such as hydroxylation, dehydrogenation and acetylation at different positions on the triterpenoid skeletons. In order to monitor these structurally complex phytochemicals for quality control purpose, this study establish an analysis platform for triterpenoids and steroids chemical profiling analysis based on Ultra-High Performance Liquid Chromatography coupled to high-resolution Orbitrap Mass Spectrometry (UHPLC-HRMS/MS). The qualitative strategy used by this analysis platform included the chromatographic separation of compounds by polarity differences, the exact mass of adducts and isotope-substituted ion, isotope distribution and the fragments of the molecules after Higher energy Collision-induced Dissociation (HCD). In this way, an analysis platform for qualitatively and quantitatively analyzing 65 triterpenoids or steroids was built, including 29 M, D-type triterpenoids, 12 L-type triterpenoids, 2 S-type triterpenoids, 5 steroids and 17 potential signals with triterpenoid and steroid characteristics which had not been reported in the literature. With this analysis platform, ergosterol peroxide were found in G. lucidum, G. tsugae and G. formosaum sample. However, there are a noticeable differences on the triterpenoid chemical profiles: there are only trace Ganoderic acid A and Ganoderic acid D in G. formosaum sample. G. lucidum sample has a large amount of 27-carbon Lucidenic acids, such as Lucidenic acid A and Lucidenic acid D. The triterpenoids in G. tsugae sample are widely distributed, and the most abundant are mainly Ganoderic acid A, 12-Acetoxyganoderic acid F and Ganoderic acid H with 30-carbon triterpenoids. The UHPLC-HRMS/MS analysis platform utilized in this study effectively screens and identifies triterpenoids and steroids in Ganoderma mushrooms. Additionally, this quantitative method serves as a valuable tool for raw material screening and process quality control within the Ganoderma health food industry. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T17:30:38Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-10-03T17:30:38Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 I
摘要 II Abstract IV 目錄 VI 圖目錄 IX 表目錄 XXVI 壹、前言 1 貳、文獻回顧 2 第一章、靈芝 2 1.1 靈芝之介紹 2 1.2 靈芝之生物活性成分 2 第二章、靈芝三萜及固醇 3 2.1 靈芝三萜及固醇的結構及分類 3 2.2 靈芝三萜及固醇之潛在之生物合成途徑 8 2.3 靈芝三萜及固醇個別化合物之生理活性差異 13 第三章、三萜及固醇結構解析 14 3.1 高解析質譜儀於天然物分析上的應用 14 3.2 三萜與固醇於電噴灑串聯質譜法下結構解析 19 第四章、利用分子資訊進行靈芝種源分析 22 4.1 靈芝的基因序列親緣關係分析 22 4.2 靈芝三萜的指紋圖譜區別 22 4.3 非特定目標分析 23 參、研究目的及架構 25 肆、材料與方法 26 第一章、實驗材料 26 1.1 靈芝樣品 26 第二章、實驗藥品 26 2.1 標準品 26 2.2 化學藥品 27 第三章、實驗儀器及數據處理軟體 27 3.1 前處理儀器設備 27 3.2 超高液相層析串聯質譜儀 28 3.3 數據處理軟體 28 第四章、實驗方法 29 4.1 樣品前處理 29 4.2 層析儀移動相配置 29 4.3 層析儀相關參數設定 29 4.4 質譜儀參數設定 31 伍、結果與討論 33 第一章、靈芝三萜及固醇以超高效能液相層析串聯高解析質譜法分析 33 1.1 靈芝三萜及固醇以超高效能液相層析分離 33 1.2 靈芝三萜及固醇的定性 41 第二章、靈芝三萜及固醇於靈芝中的分布情形 96 2.1 靈芝種源間對靈芝中三萜及固醇類化合物之影響 96 2.2 正常型態松杉靈芝與鹿角型態松杉靈芝中三萜及固醇類化合物之比較 103 陸、結論 112 柒、參考文獻 113 捌、附錄 119 第一章、附錄圖次 119 第二章、靈芝三萜及固醇分析平台的品質管制 122 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 超高效液相層析串聯高解析質譜法 | zh_TW |
| dc.subject | 固醇 | zh_TW |
| dc.subject | 三萜 | zh_TW |
| dc.subject | 靈芝 | zh_TW |
| dc.subject | Ganoderma | en |
| dc.subject | Steroids | en |
| dc.subject | Triterpenoids | en |
| dc.subject | UHPLC-HRMS/MS | en |
| dc.title | 以液相層析質譜法建立靈芝中固醇及三萜類化合物輪廓分析 | zh_TW |
| dc.title | Profiling analysis of steroids and triterpenoids in Ganoderma genus by LC-DAD-ESI-HRMS/MS | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 羅翊禎;方銘志;王惠珠;張永和 | zh_TW |
| dc.contributor.oralexamcommittee | Yi-Chen Lo;Ming-Chih Fang;Huei-Ju Wang;Yung-Ho Chang | en |
| dc.subject.keyword | 靈芝,三萜,固醇,超高效液相層析串聯高解析質譜法, | zh_TW |
| dc.subject.keyword | Ganoderma,Triterpenoids,Steroids,UHPLC-HRMS/MS, | en |
| dc.relation.page | 295 | - |
| dc.identifier.doi | 10.6342/NTU202303846 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-08-12 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 食品科技研究所 | - |
| dc.date.embargo-lift | 2028-08-06 | - |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 24.87 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
