Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 食品科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90732
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭光成zh_TW
dc.contributor.advisorKuan-Chen Chengen
dc.contributor.author黃宏毅zh_TW
dc.contributor.authorHong-Yi Huangen
dc.date.accessioned2023-10-03T17:22:45Z-
dc.date.available2023-11-09-
dc.date.copyright2023-10-03-
dc.date.issued2023-
dc.date.submitted2023-08-08-
dc.identifier.citation李貽華、徐慈鴻、黃偉銘 (2004)。粒狀汙染物型態觀察與成分鑑定。行政院農業委員會農業藥物毒物試驗所。
林書永、王鶴健 (2020)。病人真的有吸到藥嗎?為阻塞性呼吸道疾病患者雪則最適合之吸入器。台北市醫師公會會刊,64 (7),31-37。
事業廢棄物萃出液中元素檢測方法-微波輔助酸消化法 (NIEA R317.11C) (2022)。環境檢驗所,行政院環保署。
鄭伊娟 (2021)。臺灣藜之開發應用成果介紹。行政院農務委員會林務局。
認識細懸浮微粒 (2015)。行政院環保署。
臺灣空氣污染物排放量清冊 (2021)。行政院環保署。
簡則宇 (2018) 以固態發酵開發機能性臺灣藜產品。國立臺灣大學生物資源暨農學院食品科技研究所碩士學位論文。臺北,臺灣。
陳詩瑤 (2019) 評估臺灣紫芝萃取物抗PM2.5誘導ROS之潛力。國立臺灣大學生物資源暨農學院食品科技研究所碩士學位論文。臺北,臺灣。
許妤安 (2019) 評估臺灣紫芝萃取物於PM2.5誘發ROS及細胞傷害之保護效果。國立臺灣大學生物資源暨農學院生物科技研究所碩士學位論文。臺北,臺灣。
盧宛萱 (2021) 評估發芽臺灣藜發酵產物對延緩皮膚光衰老之潛力。國立臺灣大學生物資源暨農學院食品科技研究所碩士學位論文。臺北,臺灣。
劉于維 (2021) 評估固態發酵發芽臺灣藜減緩PM2.5誘導ROS之潛力。國立臺灣大學生物資源暨農學院食品科技研究所碩士學位論文。臺北,臺灣。
洪胤慈 (2022) 評估臺灣紫芝菌絲體萃取物延緩PM2.5對肺部巨噬細胞損傷之效果。國立臺灣大學生物資源暨農學院生物科技研究所碩士學位論文。臺北,臺灣。
黃映綺 (2022) 臺灣藜麴味噌品質之研究。國立臺灣大學生物資源暨農學院食品科技研究所碩士學位論文。臺北,臺灣。
嚴婗 (2022) 評估臺灣藜甘糀延緩人類纖維母細胞衰老之功效。國立臺灣大學生物資源暨農學院食品科技研究所碩士學位論文。臺北,臺灣。
Abdel-Hakeem, M. A., Mongy, S., Hassan, B., Tantawi, O. I., & Badawy, I. (2021). Curcumin loaded chitosan-protamine nanoparticles revealed antitumor activity via suppression of NF-κB, proinflammatory cytokines and Bcl-2 gene expression in the breast cancer cells. Journal of Pharmaceutical Sciences, 110(9), 3298-3305.
Abdel-Moneim, A., El-Shahawy, A., Yousef, A. I., Abd El-Twab, S. M., Elden, Z. E., & Taha, M. (2020). Novel polydatin-loaded chitosan nanoparticles for safe and efficient type 2 diabetes therapy: In silico, in vitro and in vivo approaches. International Journal of Biological Macromolecules, 154, 1496-1504.
Abdelaziz, H. M., Gaber, M., Abd-Elwakil, M. M., Mabrouk, M. T., Elgohary, M. M., Kamel, N. M., Kabary, D. M., Freag, M. S., Samaha, M. W., Mortada, S. M., Elkhodairy, K. A., Fang, J.-Y., & Elzoghby, A. O. (2018). Inhalable particulate drug delivery systems for lung cancer therapy: Nanoparticles, microparticles, nanocomposites and nanoaggregates. Journal of Controlled Release, 269, 374-392.
Abdelrady, H., Hathout, R. M., Osman, R., Saleem, I., & Mortada, N. D. (2019). Exploiting gelatin nanocarriers in the pulmonary delivery of methotrexate for lung cancer therapy. European Journal of Pharmaceutical Sciences, 133, 115-126.
Abe, Y., & Krimm, S. (1972). Normal vibrations of crystalline polyglycine I. Biopolymers: Original Research on Biomolecules, 11(9), 1817-1839.
Adebo, O. A., & Medina-Meza, I. G. (2020). Impact of Fermentation on the Phenolic Compounds and Antioxidant Activity of Whole Cereal Grains: A Mini Review. Molecules, 25(4), Article 927.
Adhirajan, N., Shanmugasundaram, N., Shanmuganathan, S., & Babu, M. (2009). Functionally modified gelatin microspheres impregnated collagen scaffold as novel wound dressing to attenuate the proteases and bacterial growth. European Journal of Pharmaceutical Sciences, 36(2-3), 235-245.
Agregán, R., Guzel, N., Guzel, M., Bangar, S. P., Zengin, G., Kumar, M., & Lorenzo, J. M. (2022). The Effects of Processing Technologies on Nutritional and Anti-nutritional Properties of Pseudocereals and Minor Cereal. Food and Bioprocess Technology, 1-26.
Alipour, S., Mahmoudi, L., & Ahmadi, F. (2023). Pulmonary drug delivery: an effective and convenient delivery route to combat COVID-19. Drug Delivery and Translational Research, 13(3), 705-715.
Alnaief, M., Obaidat, R. M., & Alsmadi, M. t. M. (2020). Preparation of Hybrid Alginate-Chitosan Aerogel as Potential Carriers for Pulmonary Drug Delivery. Polymers, 12(10), 2223
Anal, A. K., Stevens, W. F., & Remunan-Lopez, C. (2006). Ionotropic cross-linked chitosan microspheres for controlled release of ampicillin. International Journal of Pharmaceutics, 312(1-2), 166-173.
Annamalai, R. T., Turner, P. A., Carson, W. F., Levi, B., Kunkel, S., & Stegemann, J. P. (2018). Harnessing macrophage-mediated degradation of gelatin microspheres for spatiotemporal control of BMP2 release. Biomaterials, 161, 216-227.
Aramwit, P., Jaichawa, N., Ratanavaraporn, J., & Srichana, T. (2015). A comparative study of type A and type B gelatin nanoparticles as the controlled release carriers for different model compounds. Materials Express, 5(3), 241-248.
Arisaka, M., Nakamura, T., Yamada, A., Negishi, Y., & Aramaki, Y. (2010). Involvement of protein kinase Cδ in induction of apoptosis by cationic liposomes in macrophage-like RAW264. 7 cells. FEBS Letters, 584(5), 1016-1020.
Azhar, F. F., & Olad, A. (2014). A study on sustained release formulations for oral delivery of 5-fluorouracil based on alginate–chitosan/montmorillonite nanocomposite systems. Applied Clay Science, 101, 288-296.
Babu, K., & Satyanarayana, T. (1996). Production of bacterial enzymes by solid state fermentation. Journal of Scientific & Industrial Research, 55(5-6), 464-467.
Bates, J. T., Fang, T., Verma, V., Zeng, L., Weber, R. J., Tolbert, P. E., Abrams, J. Y., Sarnat, S. E., Klein, M., Mulholland, J. A., & Russell, A. G. (2019). Review of Acellular Assays of Ambient Particulate Matter Oxidative Potential: Methods and Relationships with Composition, Sources, and Health Effects. Environmental Science & Technology, 53(8), 4003-4019.
Beck-Broichsitter, M., Schmehl, T., Gessler, T., Seeger, W., & Kissel, T. (2012). Development of a biodegradable nanoparticle platform for sildenafil: Formulation optimization by factorial design analysis combined with application of charge-modified branched polyesters. Journal of Controlled Release, 157(3), 469-477.
Bein, K. J., & Wexler, A. S. (2015). Compositional variance in extracted particulate matter using different filter extraction techniques. Atmospheric Environment, 107, 24-34.
Benabda, O., M’hir, S., Kasmi, M., Mnif, W., & Hamdi, M. (2019). Optimization of protease and amylase production by Rhizopus oryzae cultivated on bread waste using solid-state fermentation. Journal of Chemistry, 2019, 1-9.
Benavente, L., Coetsier, C., Venault, A., Chang, Y., Causserand, C., Bacchin, P., & Aimar, P. (2016). FTIR mapping as a simple and powerful approach to study membrane coating and fouling. Journal of Membrane Science, 520, 477-489.
Bhattacharjee, S. (2016). DLS and zeta potential – What they are and what they are not? Journal of Controlled Release, 235, 337-351.
Bhumkar, D. R., & Pokharkar, V. B. (2006). Studies on effect of pH on cross-linking of chitosan with sodium tripolyphosphate: A technical note. AAPS PharmSciTech, 7(2), 50.
Brumbarova, T., Bauer, P., & Ivanov, R. (2015). Molecular mechanisms governing Arabidopsis iron uptake. Trends in Plant Science, 20(2), 124-133.
Buchrieser, J., Oliva-Martin, M., Moore, M.D. (2018). RIPK1 is a critical modulator of both tonic and TLR-responsive inflammatory and cell death pathways in human macrophage differentiation. Cell Death Disease, 9, 973
Buhecha, M. D., Lansley, A. B., Somavarapu, S., & Pannala, A. S. (2019). Development and characterization of PLA nanoparticles for pulmonary drug delivery: Co-encapsulation of theophylline and budesonide, a hydrophilic and lipophilic drug. Journal of Drug Delivery Science and Technology, 53, 101128.
Chae, J., Choi, Y., Tanaka, M., & Choi, J. (2021). Inhalable nanoparticles delivery targeting alveolar macrophages for the treatment of pulmonary tuberculosis. Journal of Bioscience and Bioengineering, 132(6), 543-551.
Chaisri, W., Hennink, W. E., & Okonogi, S. (2009). Preparation and characterization of cephalexin loaded PLGA microspheres. Current Drug Delivery, 6(1), 69-75.
Charrier, J. G., & Anastasio, C. (2012). On dithiothreitol (DTT) as a measure of oxidative potential for ambient particles: evidence for the importance of soluble transition metals. Atmospheric Chemistry and Physics (Print), 12(5), 11317.
Chaurasiya, B., & Zhao, Y.-Y. (2021). Dry Powder for Pulmonary Delivery: A Comprehensive Review. Pharmaceutics, 13(1), 31.
Chen, C.-L., Wang, Y.-M., Liu, C.-F., & Wang, J.-Y. (2008). The effect of water-soluble chitosan on macrophage activation and the attenuation of mite allergen-induced airway inflammation. Biomaterials, 29(14), 2173-2182.
Chen, S. Y., Chu, C. C., Chyau, C. C., Yang, J. W., & Duh, P. D. (2019). Djulis (Chenopodium formosanum) and its bioactive compounds affect vasodilation, angiotensin converting enzyme activity, and hypertension. Food Bioscience, 32, 100469.
Chyau C-C, Chu C-C, Chen S-Y, Duh P-D. (2018). The Inhibitory Effects of Djulis (Chenopodium formosanum) and Its Bioactive Compounds on Adipogenesis in 3T3-L1 Adipocytes. Molecules. 23(7):1780.
Chen, H., Du, R., Zhang, Y., Du, P., Zhang, S., Ren, W., & Yang, M. (2021). Evolution of PM2.5 bacterial community structure in Beijing's suburban atmosphere. Science of the Total Environment, 799, 149387.
Chen, H.-Y., Hsieh, C.-W., Chen, P.-C., Lin, S.-P., Lin, Y.-F., & Cheng, K.-C. (2021). Development and Optimization of Djulis Sourdough Bread Fermented by Lactic Acid Bacteria for Antioxidant Capacity. Molecules, 26(18), 5658.
Chen, S.-Y., Chu, C.-C., Chyau, C.-C., Yang, J.-W., & Duh, P.-D. (2019). Djulis (Chenopodium formosanum) and its bioactive compounds affect vasodilation, angiotensin converting enzyme activity, and hypertension. Food Bioscience, 32, 100469.
Chi, C.-H., & Cho, S.-J. (2016). Improvement of bioactivity of soybean meal by solid-state fermentation with Bacillus amyloliquefaciens versus Lactobacillus spp. and Saccharomyces cerevisiae. LWT - Food Science and Technology, 68, 619-625.
Ching, S. H., Bansal, N., & Bhandari, B. (2017). Alginate gel particles–A review of production techniques and physical properties. Critical Reviews in Food Science and Nutrition, 57(6), 1133-1152.
Chuang, K. J., Chen, Z. J., Cheng, C. L., & Hong, G. B. (2018). Investigation of the Antioxidant Capacity, Insecticidal Ability and Oxidation Stability of Chenopodium formosanum Seed Extract. International Journal of Molecular Sciences, 19(9), Article 2726.
Cirri, M., Mennini, N., Maestrelli, F., Mura, P., Ghelardini, C., & Mannelli, L. D. C. (2017). Development and in vivo evaluation of an innovative “Hydrochlorothiazide-in Cyclodextrins-in Solid Lipid Nanoparticles” formulation with sustained release and enhanced oral bioavailability for potential hypertension treatment in pediatrics. International Journal of Pharmaceutics, 521(1-2), 73-83.
Costa, A., Pinheiro, M., Magalhães, J., Ribeiro, R., Seabra, V., Reis, S., & Sarmento, B. (2016). The formulation of nanomedicines for treating tuberculosis. Advanced Drug Delivery Reviews, 102, 102-115.
Cunha, L., Rodrigues, S., Rosa da Costa, A. M., Faleiro, L., Buttini, F., & Grenha, A. (2019). Inhalable chitosan microparticles for simultaneous delivery of isoniazid and rifabutin in lung tuberculosis treatment. Drug Development and Industrial Pharmacy, 45(8), 1313-1320.
Deng, Q., Deng, L., Miao, Y., Guo, X., & Li, Y. (2019). Particle deposition in the human lung: Health implications of particulate matter from different sources. Environmental Research, 169, 237-245.
Duan, S., Zhang, M., Sun, Y., Fang, Z., Wang, H., Li, S., Peng, Y., Li, J., Li, J., Tian, J., Yin, H., Yao, S., & Zhang, L. (2020). Mechanism of PM2.5-induced human bronchial epithelial cell toxicity in central China. Journal of Hazardous Materials, 396, 122747.
Duong-Ly, K. C., & Gabelli, S. B. (2014). Salting out of proteins using ammonium sulfate precipitation. In Methods in Enzymology, 541, 85-94.
ECHA. (2020). Nanomaterials,″Characterisation of Nanoforms or Sets of Nanoforms Covered by the Registration (Annex VI), REACH″.
Egbune, E. O., Avwioroko, O. J., Anigboro, A. A., Aganbi, E., Amata, A. I., & Tonukari, N. J. (2022). Characterization of a surfactant-stable α-amylase produced by solid-state fermentation of cassava (Manihot esculenta Crantz) tubers using Rhizopus oligosporus: Kinetics, thermal inactivation thermodynamics and potential application in laundry industries. Biocatalysis and Agricultural Biotechnology, 39, 102290.
Ejaz, S., Ihsan, A., Noor, T., Shabbir, S., & Imran, M. (2020). Mannose functionalized chitosan nanosystems for enhanced antimicrobial activity against multidrug resistant pathogens. Polymer Testing, 91, 106814.
El-Sherbiny, I. M., El-Baz, N. M., & Yacoub, M. H. (2015). Inhaled nano- and microparticles for drug delivery. Global Cardiology Science & Practice, 2015, 2-2.
Elzoghby, A. O. (2013). Gelatin-based nanoparticles as drug and gene delivery systems: Reviewing three decades of research. Journal of Controlled Release, 172(3), 1075-1091.
Esmaeilzadeh-Gharedaghi, E., Faramarzi, M. A., Amini, M. A., Rouholamini Najafabadi, A., Rezayat, S. M., & Amani, A. (2012). Effects of processing parameters on particle size of ultrasound prepared chitosan nanoparticles: An Artificial Neural Networks Study. Pharmaceutical Development and Technology, 17(5), 638-647.
Fang, T., Guo, H., Zeng, L., Verma, V., Nenes, A., & Weber, R. J. (2017). Highly Acidic Ambient Particles, Soluble Metals, and Oxidative Potential: A Link between Sulfate and Aerosol Toxicity. Environmental Science & Technology, 51(5), 2611-2620.
Fatima, M., Sheikh, A., Hasan, N., Sahebkar, A., Riadi, Y., & Kesharwani, P. (2022). Folic acid conjugated poly(amidoamine) dendrimer as a smart nanocarriers for tracing, imaging, and treating cancers over-expressing folate receptors. European Polymer Journal, 170, 111156.
Feng, S., Gao, D., Liao, F., Zhou, F., & Wang, X. (2016). The health effects of ambient PM2.5 and potential mechanisms. Ecotoxicology and Environmental Safety, 128, 67-74.
Feng, Y., Li, Y., & Cui, L. (2018). Critical review of condensable particulate matter. Fuel, 224, 801-813.
Filho, A. M. M., Pirozi, M. R., Borges, J. T. D. S., Pinheiro Sant'Ana, H. M., Chaves, J. B. P., & Coimbra, J. S. D. R. (2017). Quinoa: Nutritional, functional, and antinutritional aspects. Critical Reviews in Food Science and Nutrition, 57(8), 1618-1630.
Fröhlich, E. (2012). The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. International Journal of Nanomedicine, 7, 5577-5591.
Fu, H., Liu, X., Li, W., Zu, Y., Zhou, F., Shou, Q., & Ding, Z. (2020). PM2.5 Exposure Induces Inflammatory Response in Macrophages via the TLR4/COX-2/NF-κB Pathway. Inflammation, 43(5), 1948-1958.
George, A., Shah, P. A., & Shrivastav, P. S. (2019). Natural biodegradable polymers based nano-formulations for drug delivery: A review. International Journal of Pharmaceutics, 561, 244-264.
Ghadiri, M., Young, P. M., & Traini, D. (2019). Strategies to Enhance Drug Absorption via Nasal and Pulmonary Routes. Pharmaceutics, 11(3), 113.
Ghitman, J., Biru, E. I., Stan, R., & Iovu, H. (2020). Review of hybrid PLGA nanoparticles: Future of smart drug delivery and theranostics medicine. Materials & Design, 193, 108805.
Ghribi, A. M., Sila, A., Przybylski, R., Nedjar-Arroume, N., Makhlouf, I., Blecker, C., Attia, H., Dhulster, P., Bougatef, A., & Besbes, S. (2015). Purification and identification of novel antioxidant peptides from enzymatic hydrolysate of chickpea protein concentrate. Journal of Functional Foods, 12, 516-525.
Gil, E. S., Wu, L., Xu, L., & Lowe, T. L. (2012). β-Cyclodextrin-poly (β-amino ester) nanoparticles for sustained drug delivery across the blood–brain barrier. Biomacromolecules, 13(11), 3533-3541.
Godara, S., Lather, V., Kirthanashri, S. V., Awasthi, R., & Pandita, D. (2020). Lipid-PLGA hybrid nanoparticles of paclitaxel: Preparation, characterization, in vitro and in vivo evaluation. Materials Science and Engineering: C, 109, 110576.
Gordillo-Galeano, A., & Mora-Huertas, C. E. (2018). Solid lipid nanoparticles and nanostructured lipid carriers: A review emphasizing on particle structure and drug release. European Journal of Pharmaceutics and Biopharmaceutics, 133, 285-308.
Grigoratos, T., & Martini, G. (2015). Brake wear particle emissions: a review. Environmental Science and Pollution Research, 22(4), 2491-2504.
Guimarães, D., Cavaco-Paulo, A., & Nogueira, E. (2021). Design of liposomes as drug delivery system for therapeutic applications. International Journal of Pharmaceutics, 601, 120571.
Hadji, H., & Bouchemal, K. (2022). Effect of micro- and nanoparticle shape on biological processes. Journal of Controlled Release, 342, 93-110.
Han, F. Y., Thurecht, K. J., Whittaker, A. K., & Smith, M. T. (2016). Bioerodable PLGA-Based Microparticles for Producing Sustained-Release Drug Formulations and Strategies for Improving Drug Loading [Mini Review]. Frontiers in Pharmacology, 7.
Han, J., Zhao, D., Li, D., Wang, X., Jin, Z., & Zhao, K. (2018). Polymer-Based Nanomaterials and Applications for Vaccines and Drugs. Polymers, 10(1), 31.
Harrison, R. M., & Yin, J. (2000). Particulate matter in the atmosphere: which particle properties are important for its effects on health? Science of the Total Environment, 249(1-3), 85-101.
Hassan, M. S., & Lau, R. W. M. (2009). Effect of particle shape on dry particle inhalation: Study of flowability, aerosolization, and deposition properties. American Association of Pharmaceutical Scientists, 10(4), 1252.
Hayes, M., Stanton, C., Fitzgerald, G. F., & Ross, R. P. (2007). Putting microbes to work: dairy fermentation, cell factories and bioactive peptides. Part II: bioactive peptide functions. Biotechnology Journal: Healthcare Nutrition Technology, 2(4), 435-449.
Hong, Y.-H., Huang, Y.-L., Liu, Y.-C., & Tsai, P.-J. (2016). Djulis (Chenopodium formosanum Koidz.) Water Extract and Its Bioactive Components Ameliorate Dermal Damage in UVB-Irradiated Skin Models. BioMed Research International, 2016, 7368797.
Hou, C.-Y., Hsieh, C.-C., Huang, Y.-C., Kuo, C.-H., Chen, M.-H., Hsieh, C.-W., & Cheng, K.-C. (2022). Development of Functional Fermented Dairy Products Containing Taiwan Djulis (Chenopodium formosanum Koidz.) in Regulating Glucose Utilization. Fermentation, 8(9), 423.
Hsieh, C. C., Yu, S. H., Cheng, K. W., Liou, Y. W., Hsu, C. C., Hsieh, C. W., Kuo, C. H., Cheng, K. C. (2023). Production and analysis of metabolites from solid-state fermentation of Chenopodium formosanum (Djulis) sprouts in a bioreactor. Food Research International, 168, 112707.
Hu, B., Ting, Y., Zeng, X., & Huang, Q. (2012). Cellular uptake and cytotoxicity of chitosan–caseinophosphopeptides nanocomplexes loaded with epigallocatechin gallate. Carbohydrate Polymers, 89(2), 362-370.
Hu, C.-M. J., Zhang, L., Aryal, S., Cheung, C., Fang, R. H., & Zhang, L. (2011). Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proceedings of the National Academy of Sciences, 108(27), 10980-10985.
Hu, W., van Steijn, L., Li, C., Verbeek, F. J., Cao, L., Merks, R. M. H., & Spaink, H. P. (2021). A Novel Function of TLR2 and MyD88 in the Regulation of Leukocyte Cell Migration Behavior During Wounding in Zebrafish Larvae. Frontiers in Cell and Developmental Biology, 9.
Hu, Y., Qiu, C., McClements, D. J., Qin, Y., Fan, L., Xu, X., Wang, J., & Jin, Z. (2021). Simple Strategy Preparing Cyclodextrin Carboxylate as a Highly Effective Carrier for Bioactive Compounds. Journal of Agricultural and Food Chemistry, 69(37), 11006-11014.
Hu, Y., Zhang, J., Zou, L., Fu, C., Li, P., & Zhao, G. (2017). Chemical characterization, antioxidant, immune-regulating and anticancer activities of a novel bioactive polysaccharide from Chenopodium quinoa seeds. International Journal of Biological Macromolecules, 99, 622-629.
Huang, Y.-C., Chen, J.-K., Lam, U.-I., & Chen, S.-Y. (2014). Preparing, characterizing, and evaluating chitosan/fucoidan nanoparticles as oral delivery carriers. Journal of Polymer Research, 21(5), 1-9.
Huang, Y. C., Vieira, A., Yeh, M. K., & Chiang, C. H. (2007). Pulmonary Anti-inflammatory Effects of Chitosan Microparticles Containing Betamethasone. Journal of Bioactive and Compatible Polymers, 22(1), 30-41.
Hur, J., Nguyen, T. T. H., Park, N., Kim, J., & Kim, D. (2018). Characterization of quinoa (Chenopodium quinoa) fermented by Rhizopus oligosporus and its bioactive properties. Applied Microbiology and Biotechnology Express, 8(1), 1-8.
Hur, S. J., Lee, S. Y., Kim, Y.-C., Choi, I., & Kim, G.-B. (2014). Effect of fermentation on the antioxidant activity in plant-based foods. Food Chemistry, 160, 346-356.
Imani, R., Rafienia, M., & Emami, S. H. (2013). Synthesis and characterization of glutaraldehyde-based crosslinked gelatin as a local hemostat sponge in surgery: an in vitro study. Bio-Medical Materials and Engineering, 23(3), 211-224.
Islam, N., Dmour, I., & Taha, M. O. (2019). Degradability of chitosan micro/nanoparticles for pulmonary drug delivery. Heliyon, 5(5), e01684.
Iwaoka, S., Nakamura, T., Takano, S., Tsuchiya, S., & Aramaki, Y. (2006). Cationic liposomes induce apoptosis through p38 MAP kinase–caspase‐8–Bid pathway in macrophage‐like RAW264. 7 cells. Journal of Leukocyte Biology, 79(1), 184-191.
Jamalzadeh, L., Ghafoori, H., Sariri, R., Rabuti, H., Nasirzade, J., Hasani, H., & Aghamaali, M. R. (2016). Cytotoxic effects of some common organic solvents on MCF-7, RAW-264.7 and human umbilical vein endothelial cells. Avicenna Journal of Medical Biochemistry, 4(1), 10-33453.
Javiya, C., & Jonnalagadda, S. (2016). Physicochemical characterization of spray-dried PLGA/PEG microspheres, and preliminary assessment of biological response. Drug Development and Industrial Pharmacy, 42(9), 1504-1514.
Jayabalan, R., Marimuthu, S., & Swaminathan, K. (2007). Changes in content of organic acids and tea polyphenols during kombucha tea fermentation. Food Chemistry, 102(1), 392-398.
Jeong, C.-H., Wang, J. M., Hilker, N., Debosz, J., Sofowote, U., Su, Y., Noble, M., Healy, R. M., Munoz, T., Dabek-Zlotorzynska, E., Celo, V., White, L., Audette, C., Herod, D., & Evans, G. J. (2019). Temporal and spatial variability of traffic-related PM2.5 sources: Comparison of exhaust and non-exhaust emissions. Atmospheric Environment, 198, 55-69.
Jiang, L., Wang, Y., Wei, X., Yang, L., Liu, S., Wang, Y., Xu, Y., Wang, Z., Zhang, C., Zhang, M., Zhang, Y., Jin, F., & Yin, X. (2022). Improvement in phenotype homeostasis of macrophages by chitosan nanoparticles and subsequent impacts on liver injury and tumor treatment. Carbohydrate Polymers, 277, 118891.
Jin, Z., Hu, G., & Zhao, K. (2022). Mannose-anchored quaternized chitosan/thiolated carboxymethyl chitosan composite NPs as mucoadhesive carrier for drug delivery. Carbohydrate Polymers, 283, 119-174.
Jogala, S., Sunder Rachamalla, S., & Aukunuru, J. (2016). Development of PEG-PLGA based intravenous low molecular weight heparin (LMWH) nanoparticles intended to treat venous thrombosis. Current Drug Delivery, 13(5), 698-710.
Kaul, G., & Amiji, M. (2002). Long-circulating poly (ethylene glycol)-modified gelatin nanoparticles for intracellular delivery. Pharmaceutical Research, 19, 1061-1067.
Kelly, F. J., & Fussell, J. C. (2012). Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter. Atmospheric Environment, 60, 504-526.
Kesharwani, P., Jain, K., & Jain, N. K. (2014). Dendrimer as nanocarrier for drug delivery. Progress in Polymer Science, 39(2), 268-307.
Kessler, A., Hedberg, J., McCarrick, S., Karlsson, H. L., Blomberg, E., & Odnevall, I. (2021). Adsorption of Horseradish Peroxidase on Metallic Nanoparticles: Effects on Reactive Oxygen Species Detection Using 2',7'-Dichlorofluorescin Diacetate. Chemical Research in Toxicology, 4(6), 1481-1495.
Kim, K.-H., Kabir, E., & Kabir, S. (2015). A review on the human health impact of airborne particulate matter. Environment International, 74, 136-143.
Kim, K. E., Cho, D., & Park, H. J. (2016). Air pollution and skin diseases: Adverse effects of airborne particulate matter on various skin diseases. Life Sciences, 152, 126-134.
Kolte, A., Patil, S., Lesimple, P., Hanrahan, J. W., & Misra, A. (2017). PEGylated composite nanoparticles of PLGA and polyethylenimine for safe and efficient delivery of pDNA to lungs. International Journal of Pharmaceutics, 524(1), 382-396.
Kumar, R., Mehta, P., Shankar, K. R., Rajora, M. A. K., Mishra, Y. K., Mostafavi, E., & Kaushik, A. (2022). Nanotechnology-Assisted Metered-Dose Inhalers (MDIs) for High-Performance Pulmonary Drug Delivery Applications. Pharmaceutical Research, 39(11), 2831-2855.
Kumar, S., Dutta, J., Dutta, P. K., & Koh, J. (2020). A systematic study on chitosan-liposome based systems for biomedical applications. International Journal of Biological Macromolecules, 160, 470-481.
Kumar, V., Ahluwalia, V., Saran, S., Kumar, J., Patel, A. K., & Singhania, R. R. (2021). Recent developments on solid-state fermentation for production of microbial secondary metabolites: Challenges and solutions. Bioresource Technology, 323, 124566.
Kuo, H.-C., Kwong, H. K., Chen, H.-Y., Hsu, H.-Y., Yu, S.-H., Hsieh, C.-W., Lin, H.-W., Chu, Y.-L., & Cheng, K.-C. (2021). Enhanced antioxidant activity of Chenopodium formosanum Koidz. by lactic acid bacteria: Optimization of fermentation conditions. PLOS ONE, 16(5), e0249250.
Lababidi, N., Montefusco-Pereira, C. V., de Souza Carvalho-Wodarz, C., Lehr, C.-M., & Schneider, M. (2020). Spray-dried multidrug particles for pulmonary co-delivery of antibiotics with N-acetylcysteine and curcumin-loaded PLGA-nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 157, 200-210.
Large, D. E., Abdelmessih, R. G., Fink, E. A., & Auguste, D. T. (2021). Liposome composition in drug delivery design, synthesis, characterization, and clinical application. Advanced Drug Delivery Reviews, 176, 113851.
Lee, C.-W., Chen, H.-J., Xie, G.-R., & Shih, C.-K. (2019). Djulis (Chenopodium Formosanum) Prevents Colon Carcinogenesis via Regulating Antioxidative and Apoptotic Pathways in Rats. Nutrients, 11(9), 2168.
Lee, W.-H., Loo, C.-Y., Traini, D., & Young, P. M. (2015). Nano-and micro-based inhaled drug delivery systems for targeting alveolar macrophages. Expert Opinion on Drug Delivery, 12(6), 1009-1026.
Leinardi, R., Pavan, C., Yedavally, H., Tomatis, M., Salvati, A., & Turci, F. (2020). Cytotoxicity of fractured quartz on THP-1 human macrophages: role of the membranolytic activity of quartz and phagolysosome destabilization. Archives of Toxicology, 94(9), 2981-2995.
Lengyel, M., Kállai-Szabó, N., Antal, V., Laki, A. J., & Antal, I. (2019). Microparticles, Microspheres, and Microcapsules for Advanced Drug Delivery. Scientia Pharmaceutica, 87(3), 20.
Li, D., & Wu, M. (2021). Pattern recognition receptors in health and diseases. Signal Transduction and Targeted Therapy, 6(1), 291.
Li, P., Yang, Z., Wang, Y., Peng, Z., Li, S., Kong, L., & Wang, Q. (2015). Microencapsulation of coupled folate and chitosan nanoparticles for targeted delivery of combination drugs to colon. Journal of Microencapsulation, 32(1), 40-45.
Li, P.-H., Chan, Y.-J., Hou, Y.-W., Lu, W.-C., Chen, W.-H., Tseng, J.-Y., & Mulio, A. T. (2021). Functionality of Djulis (Chenopodium formosanum) By-Products and In Vivo Anti-Diabetes Effect in Type 2 Diabetes Mellitus Patients. Biology, 10(2), 160.
Li, P.-H., Chan, Y.-J., Lu, W.-C., Huang, D.-W., Chang, T.-C., Chang, W.-H., Nie, X.-B., Jiang, C.-X., & Zhang, X.-L. (2020). Bioresource Utilization of Djulis (Chenopodium formosanum) Biomass as Natural Antioxidants. Sustainability, 12(15), 5926.
Li, Z., Hopke, P. K., Husain, L., Qureshi, S., Dutkiewicz, V. A., Schwab, J. J., Drewnick, F., & Demerjian, K. L. (2004). Sources of fine particle composition in New York city. Atmospheric Environment, 38(38), 6521-6529.
Lin, Y.-K., Chung, Y.-M., Lin, Y.-H., Lin, Y.-H., Hu, W.-C., & Chiang, C.-F. (2021). Health functional properties of unhulled red djulis (Chenopodium formosanum) in anti-aging. International Journal of Food Properties, 24(1), 833-844.
Liu, Q., Guan, J., Qin, L., Zhang, X., & Mao, S. (2020). Physicochemical properties affecting the fate of nanoparticles in pulmonary drug delivery. Drug Discovery Today, 25(1), 150-159.
Liu, X.-q., Zhao, X.-x., Liu, Y., & Zhang, T.-a. (2022). Review on preparation and adsorption properties of chitosan and chitosan composites. Polymer Bulletin, 79(4), 2633-2665.
Li, X., Lin, B., Zhang, H., Xie, F., Ta, N., Tian, L., Liu, H., & Xi, Z. (2016). Cytotoxicity and mutagenicity of sidestream cigarette smoke particulate matter of different particle sizes. Environmental Science and Pollution Research, 23(3), 2588-2594.
Li, Z.-R., Wang, B., Chi, C.-f., Zhang, Q.-H., Gong, Y.-d., Tang, J.-J., Luo, H.-y., & Ding, G.-f. (2013). Isolation and characterization of acid soluble collagens and pepsin soluble collagens from the skin and bone of Spanish mackerel (Scomberomorous niphonius). Food Hydrocolloids, 31(1), 103-113.
Liu, T., Zhang, L., Joo, D., & Sun, S.-C. (2017). NF-κB signaling in inflammation. Signal Transduction and Targeted Therapy, 2(1), 17023.
Lu, B., Lv, X., & Le, Y. (2019). Chitosan-Modified PLGA Nanoparticles for Control-Released Drug Delivery. Polymers (Basel), 11(2).
Ma, G. (2014). Microencapsulation of protein drugs for drug delivery: strategy, preparation, and applications. Journal of Controlled Release, 193, 324-340.
Ma, J.-J., Yu, Y.-G., Yin, S.-W., Tang, C.-H., & Yang, X.-Q. (2018). Cellular Uptake and Intracellular Antioxidant Activity of Zein/Chitosan Nanoparticles Incorporated with Quercetin. Journal of Agricultural and Food Chemistry, 66(48), 12783-12793.
Mahar, R., Chakraborty, A., Nainwal, N., Bahuguna, R., Sajwan, M., & Jakhmola, V. (2023). Application of PLGA as a Biodegradable and Biocompatible Polymer for Pulmonary Delivery of Drugs. AAPS PharmSciTech, 24(1), 39.
Maity, S., Mukhopadhyay, P., Kundu, P. P., & Chakraborti, A. S. (2017). Alginate coated chitosan core-shell nanoparticles for efficient oral delivery of naringenin in diabetic animals—An in vitro and in vivo approach. Carbohydrate Polymers, 170, 124-132.
Makadia, H. K., & Siegel, S. J. (2011). Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers, 3(3), 1377-1397.
Manca, M.-L., Mourtas, S., Dracopoulos, V., Fadda, A. M., & Antimisiaris, S. G. (2008). PLGA, chitosan or chitosan-coated PLGA microparticles for alveolar delivery?: A comparative study of particle stability during nebulization. Colloids and Surfaces B: Biointerfaces, 62(2), 220-231.
Manca, M. L., Mourtas, S., Dracopoulos, V., Fadda, A. M., & Antimisiaris, S. G. (2008). PLGA, chitosan or chitosan-coated PLGA microparticles for alveolar delivery? A comparative study of particle stability during nebulization. Colloids Surf B Biointerfaces, 62(2), 220-231.
Mao, S., Xu, J., Cai, C., Germershaus, O., Schaper, A., & Kissel, T. (2007). Effect of WOW process parameters on morphology and burst release of FITC-dextran loaded PLGA microspheres. International Journal of Pharmaceutics, 334(1), 137-148.
Marcianes, P., Negro, S., Barcia, E., Montejo, C., & Fernández-Carballido, A. (2019). Potential Active Targeting of Gatifloxacin to Macrophages by Means of Surface-Modified PLGA Microparticles Destined to Treat Tuberculosis. American Association of Pharmaceutical Scientists, 21(1), 15.
Mazzoli, A., & Favoni, O. (2012). Particle size, size distribution and morphological evaluation of airborne dust particles of diverse woods by Scanning Electron Microscopy and image processing program. Powder Technology, 225, 65-71.
Mehanna, M. M., Mohyeldin, S. M., & Elgindy, N. A. (2014). Respirable nanocarriers as a promising strategy for antitubercular drug delivery. Journal of Controlled Release, 187, 183-197.
Menon, J. U., Ravikumar, P., Pise, A., Gyawali, D., Hsia, C. C. W., & Nguyen, K. T. (2014). Polymeric nanoparticles for pulmonary protein and DNA delivery. Acta Biomaterialia, 10(6), 2643-2652.
Mifflin, L., Ofengeim, D. & Yuan, J. (2020). Receptor-interacting protein kinase 1 (RIPK1) as a therapeutic target. Nature Reviews Drug Discovery,19, 553–571.
Mignani, S., El Kazzouli, S., Bousmina, M., & Majoral, J.-P. (2013). Expand classical drug administration ways by emerging routes using dendrimer drug delivery systems: A concise overview. Advanced Drug Delivery Reviews, 65(10), 1316-1330.
Mirchandani, Y., Patravale, V. B., & S, B. (2021). Solid lipid nanoparticles for hydrophilic drugs. Journal of Controlled Release, 335, 457-464.
Mohammed, M. A., Syeda, J. T. M., Wasan, K. M., & Wasan, E. K. (2017). An Overview of Chitosan Nanoparticles and Its Application in Non-Parenteral Drug Delivery. Pharmaceutics, 9(4).
Molavi, F., Barzegar-Jalali, M., & Hamishehkar, H. (2020). Polyester based polymeric nano and microparticles for pharmaceutical purposes: A review on formulation approaches. Journal of Controlled Release, 320, 265-282.
Mostafa, F., Galaly, S. R., Mohamed, H. M., Abdel-Moneim, A., & Abdul-Hamid, M. (2021). Ameliorative effect of polydatin and polydatin-loaded chitosan nanoparticles against diabetes-induced pulmonary disorders in rats. Journal of Taibah University for Science, 15(1), 37-49.
Nahar, M., & Jain, N. K. (2009). Preparation, Characterization and Evaluation of Targeting Potential of Amphotericin B-Loaded Engineered PLGA Nanoparticles. Pharmaceutical Research, 26(12), 2588.
Naskar, S., Kuotsu, K., & Sharma, S. (2019). Chitosan-based nanoparticles as drug delivery systems: a review on two decades of research. Journal of Drug Targeting, 27(4), 379-393.
Negm, N. A., Hefni, H. H. H., Abd-Elaal, A. A. A., Badr, E. A., & Abou Kana, M. T. H. (2020). Advancement on modification of chitosan biopolymer and its potential applications. International Journal of Biological Macromolecules, 152, 681-702.
Ni, S., Liu, Y., Tang, Y., Chen, J., Li, S., Pu, J., & Han, L. (2018). GABAB receptor ligand-directed trimethyl chitosan/tripolyphosphate nanoparticles and their pMDI formulation for survivin siRNA pulmonary delivery. Carbohydrate Polymers, 179, 135-144.
Obayemi, J., Danyuo, Y., Dozie-Nwachukwu, S., Odusanya, O., Anuku, N., Malatesta, K., Yu, W., Uhrich, K., & Soboyejo, W. (2016). PLGA-based microparticles loaded with bacterial-synthesized prodigiosin for anticancer drug release: Effects of particle size on drug release kinetics and cell viability. Materials Science and Engineering: C, 66, 51-65.
Pai, R. V., Jain, R. R., Bannalikar, A. S., & Menon, M. D. (2016). Development and evaluation of chitosan microparticles based dry powder inhalation formulations of rifampicin and rifabutin. Journal of Aerosol Medicine and Pulmonary Drug delivery, 29(2), 179-195.
Paranjpe, M., & Müller-Goymann, C. C. (2014). Nanoparticle-mediated pulmonary drug delivery: a review. International Journal of Molecular Sciences, 15(4), 5852-5873.
Park, J.-H., Jin, H.-E., Kim, D.-D., Chung, S.-J., Shim, W.-S., & Shim, C.-K. (2013). Chitosan microspheres as an alveolar macrophage delivery system of ofloxacin via pulmonary inhalation. International Journal of Pharmaceutics, 441(1), 562-569.
Patel, B., Gupta, N., & Ahsan, F. (2015). Particle engineering to enhance or lessen particle uptake by alveolar macrophages and to influence the therapeutic outcome. European Journal of Pharmaceutics and Biopharmaceutics, 89, 163-174.
Pawar, V. K., Singh, Y., Meher, J. G., Gupta, S., & Chourasia, M. K. (2014). Engineered nanocrystal technology: In-vivo fate, targeting and applications in drug delivery. Journal of Controlled Release, 183, 51-66.
Pawde, D. M., Viswanadh, M. K., Mehata, A. K., Sonkar, R., Narendra, Poddar, S., Burande, A. S., Jha, A., Vajanthri, K. Y., Mahto, S. K., Azger Dustakeer, V. N., & Muthu, M. S. (2020). Mannose receptor targeted bioadhesive chitosan nanoparticles of clofazimine for effective therapy of tuberculosis. Saudi Pharmaceutical Journal, 28(12), 1616-1625.
Pei, Y., & Yeo, Y. (2016). Drug delivery to macrophages: Challenges and opportunities. Journal of Controlled Release, 240, 202-211.
Pham, D. T., Chokamonsirikun, A., Phattaravorakarn, V., & Tiyaboonchai, W. (2021). Polymeric micelles for pulmonary drug delivery: a comprehensive review. Journal of Materials Science, 56(3), 2016-2036.
Pramanik, S., & Sali, V. (2021). Connecting the dots in drug delivery: A tour d'horizon of chitosan-based nanocarriers system. International Journal of Biological Macromolecules, 169, 103-121.
Rahman Sabuj, M. Z., & Islam, N. (2021). Inhaled antibiotic-loaded polymeric nanoparticles for the management of lower respiratory tract infections [10.1039/D1NA00205H]. Nanoscale Advances, 3(14), 4005-4018.
Ramazani, F., Chen, W., van Nostrum, C. F., Storm, G., Kiessling, F., Lammers, T., Hennink, W. E., & Kok, R. J. (2016). Strategies for encapsulation of small hydrophilic and amphiphilic drugs in PLGA microspheres: State-of-the-art and challenges. International Journal of Pharmaceutics, 499(1), 358-367.
Rampino, A., Borgogna, M., Blasi, P., Bellich, B., & Cesàro, A. (2013). Chitosan nanoparticles: Preparation, size evolution and stability. International Journal of Pharmaceutics, 455(1), 219-228.
Rao, L., Zhang, L., Wang, X., Xie, T., Zhou, S., Lu, S., Liu, X., Lu, H., Xiao, K., Wang, W., & Wang, Q. (2020). Oxidative potential induced by ambient particulate matters with acellular assays: A Review. Processes, 8(11), 1410.
Riediker, M., Zink, D., Kreyling, W., Oberdörster, G., Elder, A., Graham, U., Lynch, I., Duschl, A., Ichihara, G., & Ichihara, S. (2019). Particle toxicology and health-where are we? Particle and Fibre Toxicology, 16(1), 1-33.
Rivas, C. J. M., Tarhini, M., Badri, W., Miladi, K., Greige-Gerges, H., Nazari, Q. A., Rodriguez, S. A. G., Roman, R. A., Fessi, H., & Elaissari, A. (2017). Nanoprecipitation process: From encapsulation to drug delivery. International Journal of Pharmaceutics, 532(1), 66-81.
Rázga, F., Vnuková, D., Némethová, V., Mazancová, P., & Lacík, I. (2016). Preparation of chitosan-TPP sub-micron particles: Critical evaluation and derived recommendations. Carbohydrate Polymers, 151, 488-499.
Rodriguez, L. B., Avalos, A., Chiaia, N., & Nadarajah, A. (2017). Effect of Formulation and Process Parameters on Chitosan Microparticles Prepared by an Emulsion Crosslinking Technique. American Association of Pharmaceutical Scientists, 18(4), 1084-1094.
Ruan, R., Tan, H., Wang, X., & Hu, Z. (2020). Investigation on PM formation from combustion of lignite with high contents of AAEMs (alkali and alkaline earth metals) and Fe: Effect of the reaction temperature. Journal of the Energy Institute, 93(6), 2464-2473.
Rui, W., Guan, L., Zhang, F., Zhang, W., & Ding, W. (2016). PM2.5-induced oxidative stress increases adhesion molecules expression in human endothelial cells through the ERK/AKT/NF-κB-dependent pathway. Journal of Applied Toxicology, 36(1), 48-59.
Sang, Z., Qian, J., Han, J., Deng, X., Shen, J., Li, G., & Xie, Y. (2020). Comparison of three water-soluble polyphosphate tripolyphosphate, phytic acid, and sodium hexametaphosphate as crosslinking agents in chitosan nanoparticle formulation. Carbohydrate Polymers, 230, 115577.
Sanjeewa, K. K. A., Jayawardena, T. U., Kim, S.-Y., Lee, H. G., Je, J.-G., Jee, Y., & Jeon, Y.-J. (2020). Sargassum horneri (Turner) inhibit urban particulate matter-induced inflammation in MH-S lung macrophages via blocking TLRs mediated NF-κB and MAPK activation. Journal of Ethnopharmacology, 249, 112363.
Sauvain, J.-J., Rossi, M. J., & Riediker, M. (2013). Comparison of Three Acellular Tests for Assessing the Oxidation Potential of Nanomaterials. Aerosol Science and Technology, 47(2), 218-227.
Scherließ, R., Bock, S., Bungert, N., Neustock, A., & Valentin, L. (2022). Particle engineering in dry powders for inhalation. European Journal of Pharmaceutical Sciences, 172, 106158.
Severino, P., da Silva, C. F., da Silva, M. A., Santana, M. H., & Souto, E. B. (2016). Chitosan cross-linked pentasodium tripolyphosphate micro/nanoparticles produced by ionotropic gelation. Sugar Tech, 18, 49-54.
Shah, B. R., Li, Y., Jin, W., An, Y., He, L., Li, Z., Xu, W., & Li, B. (2016). Preparation and optimization of Pickering emulsion stabilized by chitosan-tripolyphosphate nanoparticles for curcumin encapsulation. Food Hydrocolloids, 52, 369-377.
Shan, C., Xiong, Y., Miao, F., Liu, T., Akhtar, R. W., Shah, S. A. H., Zhu, E., Cheng, Z. (2023). Hydroxytyrosol mitigates Mycoplasma gallisepticum-induced pulmonary injury through downregulation of the NF-κB/NLRP3/IL-1β signaling pathway in chicken. Poultry Science, 102(5), 102582.
Sharma, H., Ozogul, F., Bartkiene, E., & Rocha, J. M. (2023). Impact of lactic acid bacteria and their metabolites on the techno-functional properties and health benefits of fermented dairy products. Critical Reviews in Food Science and Nutrition, 63(21), 4819-4841.
Sharma, P. R., Dravid, A. A., Kalapala, Y. C., Gupta, V. K., Jeyasankar, S., Goswami, A., & Agarwal, R. (2022). Cationic inhalable particles for enhanced drug delivery to M. tuberculosis infected macrophages. Biomaterials Advances, 133, 112612.
Sheikholeslami, Z. S., Salimi-Kenari, H., Imani, M., Atai, M., & Nodehi, A. (2017). Exploring the effect of formulation parameters on the particle size of carboxymethyl chitosan nanoparticles prepared via reverse micellar crosslinking. Journal of Microencapsulation, 34(3), 270-279.
Shoenfelt, J., Mitkus, R. J., Zeisler, R., Spatz, R. O., Powell, J., Fenton, M. J., Squibb, K. A., & Medvedev, A. E. (2009). Involvement of TLR2 and TLR4 in inflammatory immune responses induced by fine and coarse ambient air particulate matter. Journal of Leukocyte Biology, 86(2), 303-312.
Starzyńska‐Janiszewska, A., Bączkowicz, M., Sabat, R., Stodolak, B., & Witkowicz, R. (2017). Quinoa tempe as a value‐added food: Sensory, nutritional, and bioactive parameters of products from white, red, and black seeds. Cereal Chemistry, 94(3), 491-496.
Starzyńska-Janiszewska, A., Duliński, R., Stodolak, B., Mickowska, B., & Wikiera, A. (2016). Prolonged tempe-type fermentation in order to improve bioactive potential and nutritional parameters of quinoa seeds. Journal of Cereal Science, 71, 116-121.
Stone, V., Miller, M. R., Clift, M. J. D., Elder, A., Mills, N. L., Møller, P., Schins, R. P. F., Vogel, U., Kreyling, W. G., Jensen, K. A., Kuhlbusch, T. A. J., Schwarze, P. E., Hoet, P., Pietroiusti, A., Vizcaya-Ruiz, A. D., Baeza-Squiban, A., Teixeira, J. P., Tran, C. L., & Cassee, F. R. (2017). Nanomaterials Versus Ambient Ultrafine Particles: An Opportunity to Exchange Toxicology Knowledge. Environmental Health Perspectives, 125(10), 106002.
Subramaniyam, R., & Vimala, R. (2012). Solid state and submerged fermentation for the production of bioactive substances: a comparative study. International Journal of Natural Sciences, 3(3), 480-486.
Swanson, K.V., Deng, M. & Ting, J.PY. (2019). The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nature Reviews Immunology, 19, 477–489.
Takeuchi, I., Tetsuka, Y., Nii, T., Shinogase, M., & Makino, K. (2017). Inhalable nanocomposite particles using amino acids with improved drug content and humidity resistance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 529, 387-393.
Tenchov, R., Bird, R., Curtze, A. E., & Zhou, Q. (2021). Lipid Nanoparticles─From Liposomes to mRNA Vaccine Delivery, a Landscape of Research Diversity and Advancement. ACS Nano, 15(11), 16982-17015.
Thangavel P, Park D, Lee Y-C. Recent Insights into Particulate Matter (PM2.5)-Mediated Toxicity in Humans: An Overview. (2022) International Journal of Environmental Research and Public Health. 19(12), 7511.
Tiwari, S., Chaturvedi, A. P., Tripathi, Y. B., & Mishra, B. (2011). Macrophage-specific targeting of isoniazid through mannosylated gelatin microspheres. American Association of Pharmaceutical Scientists, 12(3), 900-908.
Tsai, P.-J., Sheu, C.-H., Wu, P.-H., & Sun, Y.-F. (2010). Thermal and pH Stability of Betacyanin Pigment of Djulis (Chenopodium formosanum) in Taiwan and Their Relation to Antioxidant Activity. Journal of Agricultural and Food Chemistry, 58(2), 1020-1025.
Tsai, P. J., Chen, Y. S., Sheu, C. H., & Chen, C. Y. (2011). Effect of nanogrinding on the pigment and bioactivity of Djulis (Chenopodium formosanum Koidz.). Journal of Agricultural and Food Chemistry, 59(5), 1814-1820.
USFDA. (2021). Use of International Standard Iso 10993-1,″Biological Evaluation of Medical Devices-Part 1: Evaluation and Testing within a Risk Management Process ″.
Vandervoort, J., and Ludwig, A. (2004) Preparation and evaluation of drug-loaded gelatin nanoparticles for topical ophthalmic use. European Journal of Pharmaceutics and Biopharmaceutics, 57(2), 251-261.
Venuste, M., Zhang, X., Shoemaker, C. F., Karangwa, E., Abbas, S., & Kamdem, P. E. (2013). Influence of enzymatic hydrolysis and enzyme type on the nutritional and antioxidant properties of pumpkin meal hydrolysates. Food & Function, 4(5), 811-820.
Verma, R. K., Ibrahim, M., & Garcia-Contreras, L. (2015). Lung Anatomy and Physiology and Their Implications for Pulmonary Drug Delivery. Pulmonary Drug Delivery (pp. 1-18).
Verma, V., Shafer, M. M., Schauer, J. J., & Sioutas, C. (2010). Contribution of transition metals in the reactive oxygen species activity of PM emissions from retrofitted heavy-duty vehicles. Atmospheric Environment, 44(39), 5165-5173.
Vicente, J., Baran, Y., Navascués, E., Santos, A., Calderón, F., Marquina, D., Rauhut, D., Benito, S. (2022). Biological management of acidity in wine industry: A review. International Journal of Food Microbiology, 375, 109726.
Vlachopoulos, A., Karlioti, G., Balla, E., Daniilidis, V., Kalamas, T., Stefanidou, M., Bikiaris, N. D., Christodoulou, E., Koumentakou, I., Karavas, E., & Bikiaris, D. N. (2022). Poly(Lactic Acid)-Based Microparticles for Drug Delivery Applications: An Overview of Recent Advances. Pharmaceutics, 14(2), 359.
Wang, L. Y., Gu, Y. H., Su, Z. G., & Ma, G. H. (2006). Preparation and improvement of release behavior of chitosan microspheres containing insulin. International Journal of Pharmaceutics, 311(1-2), 187-195.
Wang, S.-P., Yeh, Y.-T., Sridhar, K., & Tsai, P.-J. (2022). Effect of stress on germination of djulis (Chenopodium formosanum Koidz.) sprouts: a natural alternative to enhance the betacyanin and phenolic compounds. Journal of the Science of Food and Agriculture, 102(11), 4561-4569.
Wang, W., Xue, C., & Mao, X. (2020). Chitosan: Structural modification, biological activity and application. International Journal of Biological Macromolecules, 164, 4532-4546.
Wang, W. H., Li, W. L., Chen, C. Y., Chang, M. Y., Huang, S. L., Shih, C. H., & Lin, Y. S. (2022). Antioxidant ability of Chenopodium formosanum extracted using an ethanol-ammonium sulfate two-phase system. Chemical and Biological Technologies in Agriculture, 9(1), Article 14.
Wang, Y., & Tang, M. (2019). PM2.5 induces ferroptosis in human endothelial cells through iron overload and redox imbalance. Environmental Pollution, 254, 112937.
William, B., Noémie, P., Brigitte, E., & Géraldine, P. (2020). Supercritical fluid methods: An alternative to conventional methods to prepare liposomes. Chemical Engineering Journal, 383, 123106.
Williams, L. J., & Zosky, G. R. (2019). The Inflammatory Effect of Iron Oxide and Silica Particles on Lung Epithelial Cells. Lung, 197(2), 199-207.
Wnorowski, A., & Charland, J. P. (2017). Profiling quinones in ambient air samples collected from the Athabasca region (Canada). Chemosphere, 189, 55-66.
Wong, P. K., Ghadikolaei, M. A., Chen, S. H., Fadairo, A. A., Ng, K. W., Lee, S. M. Y., Xu, J. C., Lian, Z. D., Li, S., Wong, H. C., Zhao, J., Ning, Z., & Gali, N. K. (2022). Physicochemical and cell toxicity properties of particulate matter (PM) from a diesel vehicle fueled with diesel, spent coffee ground biodiesel, and ethanol. Science of the Total Environment, 824, 153873.
Wu, C.-T., Wang, W.-H., Lin, W.-S., Hu, S.-Y., Chen, C.-Y., Chang, M.-Y., Lin, Y.-S., & Li, C.-P. (2021). Effects of Different Chenopodium formosanum Parts on Antioxidant Capacity and Optimal Extraction Analysis by Taguchi Method. Materials, 14(16), 4679.
Yamamoto, H., Kuno, Y., Sugimoto, S., Takeuchi, H., & Kawashima, Y. (2005). Surface-modified PLGA nanosphere with chitosan improved pulmonary delivery of calcitonin by mucoadhesion and opening of the intercellular tight junctions. Journal of Controlled Release, 102(2), 373-381.
Yang, C., Qin, Y., Tu, K., Xu, C., Li, Z., & Zhang, Z. (2018). Star-shaped polymer of β‑cyclodextrin-g-vitamin E TPGS for doxorubicin delivery and multidrug resistance inhibition. Colloids and Surfaces B: Biointerfaces, 169, 10-19.
Yao, Q., Li, S.-Q., Xu, H.-W., Zhuo, J.-K., & Song, Q. (2010). Reprint of: Studies on formation and control of combustion particulate matter in China: A review. Energy, 35(11), 4480-4493.
Yao, Q., Li, S. Q., Xu, H. W., Zhuo, J. K., & Song, Q. (2009). Studies on formation and control of combustion particulate matter in China: A review. Energy, 34(9), 1296-1309.
You, R., Xiao, C., Zhang, L., & Dong, Y. (2015). Versatile particles from water-soluble chitosan and sodium alginate for loading toxic or bioactive substance. International Journal of Biological Macromolecules, 79, 498-503.
Yu, X., Wen, T., Cao, P., Shan, L., & Li, L. (2019). Alginate-chitosan coated layered double hydroxide nanocomposites for enhanced oral vaccine delivery. Journal of colloid and interface science, 556, 258-265.
Zhang, R., Wang, G., Guo, S., Zamora, M. L., Ying, Q., Lin, Y., Wang, W., Hu, M., & Wang, Y. (2015). Formation of urban fine particulate matter. Chemical Reviews, 115(10), 3803-3855.
Zhang, X., Zhao, X., Ji, G., Ying, R., Shan, Y., & Lin, Y. (2019). Seasonal variations and source apportionment of water-soluble inorganic ions in PM2.5 in Nanjing, a megacity in southeastern China. Journal of Atmospheric Chemistry, 76(1), 73-88.
Zhao, J., & Riediker, M. (2014). Detecting the oxidative reactivity of nanoparticles: a new protocol for reducing artifacts. Journal of Nanoparticle Research, 16(7), 2493.
Zhou, L., Tao, Y., Li, H., Niu, Y., Li, L., Kan, H., Xie, J., & Chen, R. (2021). Acute effects of fine particulate matter constituents on cardiopulmonary function in a panel of COPD patients. Science of the Total Environment, 770, 144753.
Zorov, D. B., Juhaszova, M., & Sollott, S. J. (2014). Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiological Reviews, 94(3), 909-950.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90732-
dc.description.abstract懸浮微粒 (PM) 會帶入或誘導細胞產生活性氧化物 (ROS),過量的 ROS 會活化促發炎轉錄因子 NF- κB 與促發炎相關細胞激素包括 Interleukin family 和TNF-α 的表達。並由於肺泡中的 PM 主要由肺泡巨噬細胞 (AM) 吞噬清除,因此 AM 可被視為抑制 PM 誘導之發炎的主要目標。本實驗室先前的研究發現,發酵臺灣藜萃取出之 G-rich peptide (GP) 能夠有效大幅降低 PM 引發之小鼠肺泡巨噬細胞 (MH-S) 的胞內自由基與提升其細胞存活率。本研究目的為發展幾丁聚醣微粒作為搭載 GP 之生物相容性載體,期望提升 MH-S 對 GP 利用效率,以利未來進一步發展吸入式載體。本實驗測試四種不同 PM 其金屬含量、粒徑大小、界達電位、外觀形態、細胞存活率和胞內外自由基,並發現組成分是否主要為石英及顆粒形狀和大小可能是影響細胞毒性的主要因素。本實驗之幾丁聚醣微粒 (Chitosan particle, CS) 濃度在 1,000 ppm 處理 24 hr 下細胞存活率為 84%,且不會顯著性引發細胞內之自由基,顯示其改善了傳統造粒法之溶劑殘留問題,而具生物可相容性。在經過搭載 G-rich peptide (GP) 後之幾丁聚醣微粒 (CS-GP),尺寸為 850.8 ± 59.5 nm,界達電位為 +24 ± 0.62 mV,屬於易促進巨噬細胞吞噬作用的表面電荷與大小。在細胞存活率、胞內自由基實驗中,CS-GP group (48.9 ppm GP) 與 GP group (100 ppm GP) 皆能顯著提升細胞存活率從 34% 至 76%,將胞內自由基從 2.44 倍分別降至 1.58 與 1.47 倍。發炎相關基因方面與 PM group 相較下,CS-GP group 與 GP group 能將 TNF-α 基因表現量顯著降低 9.8 與 7.3 倍,TLR2 基因表現量為顯著降低 8.12 與 7.47 倍;IL-1β 基因表現量顯著降低 8.6 與 4.1 倍。此外相較於GP group,CS-GP group 含有之 GP 濃度為其二分之一,顯示搭載幾丁聚醣顆粒可提高 GP 被 MH-S 利用之效率。zh_TW
dc.description.abstractAlveolar macrophages (AM) play a crucial role in clearing deposited PM. And particulate matter (PM) elevates the expression of inflammatory cytokines, including the Interleukin family and TNF-α. Therefore, AM is a suitable target for inhibiting PM-induced inflammation. Previous studies have shown that G-rich peptide (GP), extracted from fermented Chenopodium formosanum, significantly reduces PM-induced intracellular ROS and improves cell viability of murine alveolar macrophages (MH-S). In this study, we aimed to develop chitosan particles as a biocompatible carrier for GP, improving the efficiency of MH-S utilization. We measure four types of PMs’ (Standard, Fire plant, Huwei 2.5, Huwei 10) metal content, particle size, zeta potential, morphology and intra-, extracellular ROS. And find that whether component is quartz and it’s shape and size maybe are the dominant factors for cytotoxicity. We select Standard for the subsequent experiments based on its’ lowest viability and highest ROS. Chitosan particles (CS) exhibited a cell survival rate of 84% after 24hr of treatment and not significantly inducing intracellular ROS at 1,000 ppm. This result demonstrates CS improved cytotoxicity problem of conventional granulation methods. Chitosan particles loaded with G-rich peptide (CS-GP), with a size of 850.8 ± 59.5 nm and a zeta potential of +24 ± 0.62 mV, exhibit favorable characters for phagocytosis. In intracellular ROS and cell viability experiment, CS-GP and GP groups both significantly reduce PM-induced intracellular ROS from 2.44 to 1.58 and 1.47-fold of control respectively. And CS-GP (48.9 ppm GP) and GP groups (100 ppm GP) both significantly elevate cell viability from 34 to 76%. In the q-PCR experiment, the CS-GP group significantly reduce TNF-α gene expression from 16.3 to 6.5-fold of ctrl, which GP group is 9-fold of ctrl. And in TLR2 gene expression, the CS-GP group significantly reduce gene expression from 9.9 to 1.78-fold of ctrl, which GP group is 2.43-fold of ctrl. The IL-1β gene expression in PM group is 18.6-fold of ctrl. In CS-GP group is 10-fold of ctrl, which is significantly lower than the GP group’s 14.5-fold of ctrl. It’s worth to notice that CS-GP group only containing half of the GP concentration in the GP group. These results demonstrate that chitosan particle enhance the GP utilization efficiency. And its potential material for further investigating into pulmonary drug delivery.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T17:22:45Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-10-03T17:22:45Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents謝辭 ................................................................................................................................ I
摘要 ............................................................................................................................... II
Abstract ........................................................................................................................ III
目錄 ............................................................................................................................... V
圖目錄 ........................................................................................................................... X
表目錄 ..........................................................................................................................XI
List of Figures ............................................................................................................ XII
List of Tables ............................................................................................................. XIII
壹、前言 ........................................................................................................................ 1
貳、文獻回顧 ................................................................................................................ 2
一、懸浮微粒 ........................................................................................................ 2
1.1 空氣汙染物 ............................................................................................. 2
1.1.1 介紹 ...................................................................................................... 2
1.1.2 燃料來源懸浮微粒之生成機制與可能組成成分 .............................. 4
二、PM對於人體健康影響 ................................................................................. 5
2.1 PM 造成之健康危害 .............................................................................. 5
2.1.1 氧化壓力與發炎反應 .......................................................................... 7
2.1.2 PM 沉積與肺部轉移、清除 ............................................................... 9
2.1.3 初級免疫反應-類鐸受體與 NF-κB ................................................. 11
2.1.4 PM2.5 對巨噬細胞之影響 .................................................................. 12
三、臺灣藜 .......................................................................................................... 13
3.1 簡介 ....................................................................................................... 13
3.2 臺灣藜之生理活性功效 ....................................................................... 13
3.3 發酵 ....................................................................................................... 15
3.3.1 液態發酵 ............................................................................................ 15
3.3.2 固態發酵 ............................................................................................ 16
3.4 發酵臺灣藜 ........................................................................................... 17
3.4.1 臺灣藜發酵物於 PM2.5 引發之肺部細胞發炎減輕效果 ............... 17
四、微粒載體之設計 .......................................................................................... 18
4.1 吸入式/肺部給藥途徑介紹 .................................................................. 18
4.2傳送藥物載體 ........................................................................................ 20
4.2.1 脂質體與固態脂質奈米微粒 (Liposome and Solid lipid nanoparticle) ...................................................................................... 21
4.2.2. 奈米晶體 (Nanocrystal) ................................................................... 23
4.2.3. 聚合物奈米粒 (Polymeric nanoparticle) ......................................... 24
4.2.4 載體製備方法 (Carrier reparation methods) .................................... 28
4.3 影響肺部藥物傳送之因素 ................................................................... 35
4.3.1 粒徑大小的影響 ................................................................................ 35
4.3.2 粒子形狀與表面的影響 .................................................................... 40
4.3.3 粒子電荷 ............................................................................................ 41
參、研究目的及實驗架構 .......................................................................................... 42
一、研究目的 ...................................................................................................... 42
二、圖像式摘要 .................................................................................................. 42
三、研究架構 ...................................................................................................... 43
肆、材料與方法 .......................................................................................................... 44
一、材料及儀器設備 .......................................................................................... 44
1.1 材料 ....................................................................................................... 44
1.1.1 細胞實驗株 ........................................................................................ 44
1.1.2 實驗菌株 ............................................................................................ 44
1.1.3 實驗藥品 ............................................................................................ 44
1.1.4 細胞實驗用藥品 ................................................................................ 45
1.2 實驗儀器 ............................................................................................... 46
1.2.1 細胞儀器設備 .................................................................................... 47
二、製備 R. oligosporus 培養發芽臺灣藜之固態發酵產物 .......................... 47
2.1 培養基製備 ........................................................................................... 47
2.2 R. oligosporus 菌株活化與孢子懸浮液製作 ...................................... 47
2.3 臺灣藜之發芽條件 ............................................................................... 48
2.4 R. oligosporus 固態發酵流程 .............................................................. 48
2.4.1 以生物反應器培養 R. oligosporus 發酵發芽臺灣藜 .................... 48
2.4.2 發芽臺灣藜發酵產物之脫脂 ............................................................ 48
2.4.3 臺灣藜發酵凍乾磨碎後之胜肽 GP 萃取 ....................................... 49
三、PM ................................................................................................................ 50
3.1 四種不同懸浮微粒之物理化學分析 ................................................... 50
3.1.1 PM standard 之組成 .......................................................................... 50
3.1.2 不同 PM 樣品的前處理 .................................................................. 51
3.1.3 四種不同懸浮微粒表面之構型特徵 ................................................ 51
3.1.4 使用粒徑/界面電位分析儀 (Zetasizer) 測量粒徑、界達電位 ..... 51
3.1.5 測量懸浮微粒含有之金屬元素 ........................................................ 51
3.2 胞外自由基 (Extracellular ROS) ......................................................... 52
四、搭載發酵臺灣藜萃取物之幾丁聚醣微粒製備 .......................................... 53
4.1 幾丁聚醣微粒製備 ............................................................................... 53
4.2 以磷酸鹽緩衝溶液 (Phosphate buffer saline, PBS) 透析 ................. 53
4.3 吸附搭載發酵臺灣藜發酵物 (GP) ..................................................... 54
4.4 搭載率 ................................................................................................... 54
4.5 以官能基吸收遠紅外線圖譜變化測量 CS-D 與 GP 之交互作用 . 54
五、MH-S cell platform ...................................................................................... 55
5.1. 細胞培養 .............................................................................................. 55
5.2 細胞繼代 ............................................................................................... 56
5.3 細胞計數方式 ....................................................................................... 56
5.4 MH-S 細胞凍管保存 ............................................................................ 56
5.5 PM2.5 誘導 MH-S 細胞實驗之組別介紹與樣品預處理 (PM-MH-S model) ................................................................................................ 57
5.6 檢測胞內自由基 ................................................................................... 58
5.7 細胞存活率試驗 ................................................................................... 58
5.8 定量即時聚合酶連鎖反應 (q-PCR) ................................................... 59
5.8.1 抽取 MH-S 細胞 RNA ................................................................... 59
5.8.2 RNA 反轉錄成 cDNA ...................................................................... 59
5.8.3 定量即時聚合酶連鎖反應 (q-PCR) ................................................ 60
5.9 統計分析 ............................................................................................... 60
伍、結果與討論 .......................................................................................................... 62
一、PM ................................................................................................................ 62
1.1 四種不同懸浮微粒之物理化學分析結果 ........................................... 62
1.1.1 四種不同懸浮微粒表面之構型特徵 ................................................ 62
1.1.2 四種不同懸浮微粒之界達電位與粒徑測量結果 ............................ 64
1.1.3 四種不同懸浮微粒其金屬元素含量 ................................................ 66
1.1.4 四種不同懸浮微粒其胞外自由基含量 ............................................ 68
1.2 四種不同懸浮微粒對小鼠肺泡巨噬細胞之氧化壓力與存活率影響 ............................................................................................................ 70
二、製備幾丁聚醣微米微粒之結果 .................................................................. 72
2.1. 幾丁聚醣微米微粒之粒徑大小、界達電位與構型 .......................... 72
2.2 搭載臺灣藜發酵萃取胜肽之幾丁聚醣微粒 ....................................... 76
2.2.1 未搭載臺灣藜發酵萃取胜肽之幾丁聚醣微粒對 MH-S 細胞存活率影響 ................................................................................................ 76
2.2.2 未搭載臺灣藜發酵萃取胜肽之幾丁聚醣微粒對 MH-S 細胞內自由基之影響 ........................................................................................ 78
2.2.3 搭載率測定 ........................................................................................ 79
2.2.4 以官能基吸收遠紅外線圖譜變化測量 CS-D 與 GP 之交互作用 ............................................................................................................ 79
2.2.5 CS-GP 對於細胞存活率與胞內自由基之影響 ............................... 82
2.2.6 以發炎相關基因檢測 CS-GP 之效果 ............................................ 84
陸、結論與未來展望 .................................................................................................. 87
柒、參考文獻 .............................................................................................................. 89
捌、附錄 .................................................................................................................... 119
-
dc.language.isozh_TW-
dc.title發展幾丁聚醣微粒作為臺灣藜發酵物載體以提升其減緩PM2.5誘導活性氧化物產生zh_TW
dc.titleDeveloping chitosan microparticles as carriers for fermented Chenopodium formosanum extract to ameliorate PM2.5-induced ROS productionen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.coadvisor陳明煦zh_TW
dc.contributor.coadvisorMing-Hsu Chenen
dc.contributor.oralexamcommittee周正俊;蔡國珍;林泓廷;楊珺堯zh_TW
dc.contributor.oralexamcommitteeCheng-Chun Chou;Guo-Jane Tsai;Hong-Ting Victor Lin;Chun-Yao Yangen
dc.subject.keyword懸浮微粒,幾丁聚醣微粒,肺泡巨噬細胞,載體,臺灣藜,zh_TW
dc.subject.keywordparticulate matter,chitosan particle,alveolar macrophage,carrier,Chenopodium formosanum,en
dc.relation.page152-
dc.identifier.doi10.6342/NTU202302239-
dc.rights.note未授權-
dc.date.accepted2023-08-08-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept食品科技研究所-
顯示於系所單位:食品科技研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  目前未授權公開取用
3.61 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved