請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90679| 標題: | 室溫操作之準二維鈣鈦礦電漿子表面晶格共振雷射 Room-temperature Operation of 2D Perovskite Plasmonic Surface Lattice Resonances Lasers |
| 作者: | 李興澔 Xing-Hao Lee |
| 指導教授: | 呂宥蓉 Yu-Jung Lu |
| 關鍵字: | 電漿子雷射,準二維鈣鈦礦,表面晶格共振,室溫雷射,鋁奈米顆粒陣列, Plasmonic laser,Quasi-2D perovskite,Surface lattice resonance,Room-temperature laser,Aluminum nanoparticle arrays, |
| 出版年 : | 2023 |
| 學位: | 碩士 |
| 摘要: | 二維鉛基鹵素鈣鈦礦材料由於使用可溶液加工的材料成長方式,近年來在實現低成本、低耗能且可調波長的雷射元件方面受到了相當大的關注。其具有長載流子生命週期、高熒光量子產率、波長可調性等優異的光學屬性,以及與三維鈣鈦礦相比更加優異的溼度穩定性。然而,在室溫下使用準二維鉛基鹵素鈣鈦礦製作雷射元件仍然相當具有挑戰性,因此在本文中我們嘗試將準二維Ruddlesden-Popper鈣鈦礦(PEA2Csn−1PbnBr3n+1,n = 5)與電漿子表面晶格共振結合,並最終實現了輸出波長525奈米至550奈米的室溫單模雷射。電漿子表面晶格共振腔由石英基板上直徑為55奈米、高度為50奈米的鋁奈米顆粒陣列組成,其中奈米顆粒陣列是通過標準電子束光刻、金屬蒸發和剝離工藝所製造,最後用原子層沉積成長3奈米厚的氧化鋁層進行覆蓋。為了實現雷射輸出,我們使用時域有限差分 (FDTD)設計了與準二維鈣鈦礦(λPL = 516 nm)螢光能產生良好耦合的共振腔結構參數,透過模擬對共振頻率及對應的電場分佈進行調製。並且在目前的結果中發現與基於鈣鈦礦量子點的文獻報導相比,我們在室溫大氣環境中實現了相對較長的激光工作時間。最後,我們還將透過時間解析螢光光譜及瞬態吸收光譜進一步討論元件的工作機制。經過這些理論分析和實驗驗證,基於準二維鈣鈦礦的電漿子表面晶格共振雷射元件已被證明能在室溫下穩定操作,並且可以作為低成本、低能量電漿子雷射的代表之一。 Two-dimensional (2D) halide perovskite materials have recently received considerable attention for achieving an economic and tunable diode laser, owing to the use of solution-processable materials and the exceptional optical attributes of long carrier lifetimes, high fluorescence quantum yields, wavelength tunability, and excellent moisture stability. However, lasing at room temperature using 2D halide perovskite is still rather challenging. Here, we report the room-temperature single-mode lasing at 518 nm in quasi-2D Ruddlesden-Popper perovskites (PEA2Csn−1PbnBr3n+1, n = 5) integrated with plasmonic lattices. The plasmonic lattices consist of a square array of Al nanoparticles with 80 nm in diameter and 60 nm height on Quartz; the nanostructures were fabricated by standard electron-beam lithography, metal evaporation, and lift-off process, followed by capping with a 3 nm-thick Al2O3 layer. To achieve lasing, we designed the plasmonic nanostructures that are well-coupled with the emission from quasi-2D perovskites (λPL = 518 nm) using finite-difference time-domain (FDTD). Hence, the resonance frequency and the related field distribution of plasmonic lattices can be well controlled. In the present work, we achieved relatively long laser operating times in an atmospheric environment at room temperature compared to the literature report. After these theoretical analyses and experimental verification, the hybrid plasmonic surface lattice resonance perovskite laser has been proven to be stable at room temperature and can be used as one of the representatives of low-cost, low-energy plasmonic lasers. In the end, we will also discuss the detailed working mechanisms of the room-temperature quasi-2D perovskite plasmonic lasers. |
| URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90679 |
| DOI: | 10.6342/NTU202303878 |
| 全文授權: | 同意授權(限校園內公開) |
| 電子全文公開日期: | 2028-08-09 |
| 顯示於系所單位: | 物理學系 |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 5.33 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
