請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90679完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 呂宥蓉 | zh_TW |
| dc.contributor.advisor | Yu-Jung Lu | en |
| dc.contributor.author | 李興澔 | zh_TW |
| dc.contributor.author | Xing-Hao Lee | en |
| dc.date.accessioned | 2023-10-03T17:09:08Z | - |
| dc.date.available | 2023-11-10 | - |
| dc.date.copyright | 2023-10-03 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-11 | - |
| dc.identifier.citation | Wood, R.W., XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1902. 4(21): p. 396-402.
Fano, U., The Theory of Anomalous Diffraction Gratings and of Quasi-Stationary Waves on Metallic Surfaces (Sommerfeld’s Waves). Journal of the Optical Society of America, 1941. 31(3): p. 213-222. Otto, A., Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeitschrift für Physik A Hadrons and nuclei, 1968. 216(4): p. 398-410. Fan, Q., et al., Trilobite-inspired neural nanophotonic light-field camera with extreme depth-of-field. Nature communications, 2022. 13(1): p. 2130. Poddubny, A., et al., Hyperbolic metamaterials. Nature photonics, 2013. 7(12): p. 948-957. Lu, Y.-J., et al. Plasmonic nanolaser using epitaxially grown silver film. in CLEO: Science and Innovations. 2012. Optica Publishing Group. Fleischmann, M., P.J. Hendra, and A.J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode. Chemical Physics Letters, 1974. 26(2): p. 163-166. Kittel, C., Introduction to solid state physics. 4th ed. 1971, New York: John Wiley & Sons. Willets, K.A. and R.P. Van Duyne, Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem., 2007. 58: p. 267-297. Kravets, V.G., et al., Plasmonic surface lattice resonances: a review of properties and applications. Chemical reviews, 2018. 118(12): p. 5912-5951. DeVoe, H., Optical properties of molecular aggregates. I. Classical model of electronic absorption and refraction. The Journal of chemical physics, 1964. 41(2): p. 393-400. Yurkin, M.A. and A.G. Hoekstra, The discrete dipole approximation: an overview and recent developments. Journal of Quantitative Spectroscopy and Radiative Transfer, 2007. 106(1-3): p. 558-589. Bergman, D.J. and M.I. Stockman, Surface Plasmon Amplification by Stimulated Emission of Radiation: Quantum Generation of Coherent Surface Plasmons in Nanosystems. Physical Review Letters, 2003. 90(2): p. 027402. Einstein, A., Strahlungs-Emission und Absorption nach der Quantentheorie. Deutsche Physikalische Gesellschaft, 1916. 18: p. 318-323. Stockman, M.I., The spaser as a nanoscale quantum generator and ultrafast amplifier. Journal of Optics, 2010. 12(2): p. 024004. Hsieh, Y.-H., et al., Perovskite Quantum Dot Lasing in a Gap-Plasmon Nanocavity with Ultralow Threshold. ACS Nano, 2020. 14(9): p. 11670-11676. Lu, Y.-J., et al., Upconversion plasmonic lasing from an organolead trihalide perovskite nanocrystal with low threshold. ACS Photonics, 2020. 8(1): p. 335-342. Lu, Y.-J., et al., All-color plasmonic nanolasers with ultralow thresholds: autotuning mechanism for single-mode lasing. Nano letters, 2014. 14(8): p. 4381-4388. Rodriguez, S., et al., Collective resonances in plasmonic crystals: Size matters. Physica B: Condensed Matter, 2012. 407(20): p. 4081-4085. Anker, J.N., et al., Biosensing with plasmonic nanosensors. Nature materials, 2008. 7(6): p. 442-453. Kabashin, A.V., et al., Plasmonic nanorod metamaterials for biosensing. Nature materials, 2009. 8(11): p. 867-871. Kravets, V., et al., Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection. Nature materials, 2013. 12(4): p. 304-309. Sreekanth, K.V., et al., Extreme sensitivity biosensing platform based on hyperbolic metamaterials. Nature materials, 2016. 15(6): p. 621-627. Frenkel, J., On the Transformation of light into Heat in Solids. I. Physical Review, 1931. 37(1): p. 17-44. Yuan, L., Spatial and Temporal Imaging of Exciton Dynamics and transport in two-dimensional Semiconductors and heterostructures by ultrafast transient absorption microscopy. 2019. Utama, M., et al., Synthesis and optical properties of II-VI 1D nanostructures. Nanoscale, 2012. 4: p. 1422-35. Kim, J.C., D.R. Wake, and J.P. Wolfe, Thermodynamics of biexcitons in a GaAs quantum well. Physical Review B, 1994. 50(20): p. 15099-15107. 李榮展, 單層二維材料與量子點異質結構之載子動力學研究, in 物理學研究所. 2021, 國立臺灣大學. p. 1-139. Kojima, A., et al., Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society, 2009. 131(17): p. 6050-6051. Liu, F., et al., Enhanced Light Emission Performance of Mixed Cation Perovskite Films—The Effect of Solution Stoichiometry on Crystallization. Advanced Optical Materials, 2021. 9(21): p. 2100393. Jiang, D.-H., et al., Facile fabrication of stretchable touch-responsive perovskite light-emitting diodes using robust stretchable composite electrodes. ACS applied materials & interfaces, 2020. 12(12): p. 14408-14415. Veeramuthu, L., et al., Improving the performance and stability of perovskite light-emitting diodes by a polymeric nanothick interlayer-assisted grain control process. ACS omega, 2020. 5(15): p. 8972-8981. Li, Z., et al., Room-temperature continuous-wave operation of organometal halide perovskite lasers. ACS nano, 2018. 12(11): p. 10968-10976. Qin, C., et al., Stable room-temperature continuous-wave lasing in quasi-2D perovskite films. Nature, 2020. 585(7823): p. 53-57. Sutherland, B.R. and E.H. Sargent, Perovskite photonic sources. Nature Photonics, 2016. 10(5): p. 295-302. Umebayashi, T., et al., Electronic structures of lead iodide based low-dimensional crystals. Physical Review B, 2003. 67(15): p. 155405. Rahil, M., et al., Ruddlesden–Popper 2D perovskites of type (C6H9C2H4NH3)2(CH3NH3)n−1PbnI3n+1 (n = 1–4) for optoelectronic applications. Scientific Reports, 2022. 12(1): p. 2176. Chen, P., et al., Progress and Perspective in Low‐Dimensional Metal Halide Perovskites for Optoelectronic Applications. Solar Rrl, 2018. 2(3): p. 1700186. Mao, L., C.C. Stoumpos, and M.G. Kanatzidis, Two-dimensional hybrid halide perovskites: principles and promises. Journal of the American Chemical Society, 2018. 141(3): p. 1171-1190. Lin, D., et al., Unveiling hot carrier relaxation and carrier transport mechanisms in quasi-two-dimensional layered perovskites. Journal of Materials Chemistry A, 2020. 8(47): p. 25402-25410. Liu, Z., et al., Subwavelength-polarized quasi-two-dimensional perovskite single-mode nanolaser. ACS nano, 2021. 15(4): p. 6900-6908. He, H., et al., Exciton localization in solution-processed organolead trihalide perovskites. Nature communications, 2016. 7(1): p. 10896. Shibata, H., et al., Excitation-power dependence of free exciton photoluminescence of semiconductors. Japanese journal of applied physics, 2005. 44(8R): p. 6113. Schmidt, T., K. Lischka, and W. Zulehner, Excitation-power dependence of the near-band-edge photoluminescence of semiconductors. Physical Review B, 1992. 45(16): p. 8989. Xing, G., et al., Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence. Nature communications, 2017. 8(1): p. 14558. Chan, G.H., et al., Localized Surface Plasmon Resonance Spectroscopy of Triangular Aluminum Nanoparticles. The Journal of Physical Chemistry C, 2008. 112(36): p. 13958-13963. Huang, Z.-T., et al., Hybrid Plasmonic Surface Lattice Resonance Perovskite Lasers on Silver Nanoparticle Arrays. Advanced Optical Materials, 2021. 9(17): p. 2100299. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90679 | - |
| dc.description.abstract | 二維鉛基鹵素鈣鈦礦材料由於使用可溶液加工的材料成長方式,近年來在實現低成本、低耗能且可調波長的雷射元件方面受到了相當大的關注。其具有長載流子生命週期、高熒光量子產率、波長可調性等優異的光學屬性,以及與三維鈣鈦礦相比更加優異的溼度穩定性。然而,在室溫下使用準二維鉛基鹵素鈣鈦礦製作雷射元件仍然相當具有挑戰性,因此在本文中我們嘗試將準二維Ruddlesden-Popper鈣鈦礦(PEA2Csn−1PbnBr3n+1,n = 5)與電漿子表面晶格共振結合,並最終實現了輸出波長525奈米至550奈米的室溫單模雷射。電漿子表面晶格共振腔由石英基板上直徑為55奈米、高度為50奈米的鋁奈米顆粒陣列組成,其中奈米顆粒陣列是通過標準電子束光刻、金屬蒸發和剝離工藝所製造,最後用原子層沉積成長3奈米厚的氧化鋁層進行覆蓋。為了實現雷射輸出,我們使用時域有限差分 (FDTD)設計了與準二維鈣鈦礦(λPL = 516 nm)螢光能產生良好耦合的共振腔結構參數,透過模擬對共振頻率及對應的電場分佈進行調製。並且在目前的結果中發現與基於鈣鈦礦量子點的文獻報導相比,我們在室溫大氣環境中實現了相對較長的激光工作時間。最後,我們還將透過時間解析螢光光譜及瞬態吸收光譜進一步討論元件的工作機制。經過這些理論分析和實驗驗證,基於準二維鈣鈦礦的電漿子表面晶格共振雷射元件已被證明能在室溫下穩定操作,並且可以作為低成本、低能量電漿子雷射的代表之一。 | zh_TW |
| dc.description.abstract | Two-dimensional (2D) halide perovskite materials have recently received considerable attention for achieving an economic and tunable diode laser, owing to the use of solution-processable materials and the exceptional optical attributes of long carrier lifetimes, high fluorescence quantum yields, wavelength tunability, and excellent moisture stability. However, lasing at room temperature using 2D halide perovskite is still rather challenging. Here, we report the room-temperature single-mode lasing at 518 nm in quasi-2D Ruddlesden-Popper perovskites (PEA2Csn−1PbnBr3n+1, n = 5) integrated with plasmonic lattices. The plasmonic lattices consist of a square array of Al nanoparticles with 80 nm in diameter and 60 nm height on Quartz; the nanostructures were fabricated by standard electron-beam lithography, metal evaporation, and lift-off process, followed by capping with a 3 nm-thick Al2O3 layer. To achieve lasing, we designed the plasmonic nanostructures that are well-coupled with the emission from quasi-2D perovskites (λPL = 518 nm) using finite-difference time-domain (FDTD). Hence, the resonance frequency and the related field distribution of plasmonic lattices can be well controlled. In the present work, we achieved relatively long laser operating times in an atmospheric environment at room temperature compared to the literature report. After these theoretical analyses and experimental verification, the hybrid plasmonic surface lattice resonance perovskite laser has been proven to be stable at room temperature and can be used as one of the representatives of low-cost, low-energy plasmonic lasers. In the end, we will also discuss the detailed working mechanisms of the room-temperature quasi-2D perovskite plasmonic lasers. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T17:09:08Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-10-03T17:09:08Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 論文口試委員審定書 I
誌謝 II 摘要 IV Abstract V 目錄 VI 圖目錄 VIII 第1章 緒論 1 1.1 表面電漿子概述 1 1.1.1 物質中的馬克士威方程式(Maxwell’s equation) 2 1.1.2 古典理論 3 1.1.3 物質的光學性質 6 1.1.4 局域表面電漿子共振(Localized Surface Plasmon Resonance, LSPR) 7 1.1.5 電漿子表面晶格共振(Plasmonic Surface Lattice Resonances, SLRs) 11 1.2 電漿子雷射簡介 13 1.2.1 二能階系統的居量反轉 14 1.2.2 受激輻射引致表面電漿子放大(Surface Plasmon Amplification by Stimulated Emission of Radiation, SPASER) 16 1.3 研究動機與目的 18 第2章 實驗原理 19 2.1 光致螢光(Photoluminescence, PL) 19 2.1.1 輻射躍遷(Radiative Transition) 19 2.1.2 非輻射復合(Non-Radiative Recombination) 21 2.1.3 光學響應 22 2.2 時間解析光致螢光(Time-Resolved Photoluminescence, TRPL) 24 2.3 吸收光譜與瞬態吸收光譜(Absorption spectrum & Transient absorption spectrum) 26 第3章 實驗方法 29 3.1 樣品置備 29 3.1.1 二維鈣鈦礦薄膜 29 3.1.2 電漿子表面晶格共振腔 29 3.2 穿透光譜量測系統 30 3.3 光致發光共焦掃描量測系統 31 3.4 時間解析螢光光譜量測系統 33 3.5 瞬態吸收光譜量測系統 34 第4章 準二維鈣鈦礦的基礎光學特性探討與分析 36 4.1 鈣鈦礦材料簡介 36 4.1.1 鈣鈦礦結構 36 4.1.2 鈣鈦礦的能帶結構與發光 37 4.1.3 二維鈣鈦礦與其發光行為 38 4.2 螢光光譜與吸收光譜 40 4.3 光強相依螢光光譜(Power Dependent Photo-luminescence) 41 4.3.1 連續波雷射激發 41 4.3.2 脈衝雷射激發 42 4.4 時間解析螢光光譜 44 4.5 瞬態吸收光譜 45 4.6 第四章結語 47 第5章 電漿子表面晶格共振雷射 48 5.1 結構設計與模擬 48 5.1.1 準二維鈣鈦礦及鋁的介電係數與結構響應 48 5.1.2 準二維鈣鈦礦薄膜厚度的影響 52 5.1.3 鋁奈米顆粒尺寸與周期的影響 53 5.1.4 實際樣品製作結果 54 5.2 混合結構的遠場響應與穿透光譜量測 55 5.3 光強相依螢光量測 56 5.3.1 近閾值的超線性過程 56 5.3.2 雷射模態與偏振性 58 5.3.3 持續激發下的操作穩定性 59 5.4 時間解析螢光光譜 60 5.5 瞬態吸收光譜 61 5.6 第五章結語 68 第6章 結論與未來研究 69 參考資料 70 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 室溫雷射 | zh_TW |
| dc.subject | 鋁奈米顆粒陣列 | zh_TW |
| dc.subject | 表面晶格共振 | zh_TW |
| dc.subject | 準二維鈣鈦礦 | zh_TW |
| dc.subject | 電漿子雷射 | zh_TW |
| dc.subject | Aluminum nanoparticle arrays | en |
| dc.subject | Plasmonic laser | en |
| dc.subject | Surface lattice resonance | en |
| dc.subject | Room-temperature laser | en |
| dc.subject | Quasi-2D perovskite | en |
| dc.title | 室溫操作之準二維鈣鈦礦電漿子表面晶格共振雷射 | zh_TW |
| dc.title | Room-temperature Operation of 2D Perovskite Plasmonic Surface Lattice Resonances Lasers | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 施閔雄;陳永芳;闕居振 | zh_TW |
| dc.contributor.oralexamcommittee | Min-Hsiung Shih;Yang-Fang Chen;Chu-Chen Chueh | en |
| dc.subject.keyword | 電漿子雷射,準二維鈣鈦礦,表面晶格共振,室溫雷射,鋁奈米顆粒陣列, | zh_TW |
| dc.subject.keyword | Plasmonic laser,Quasi-2D perovskite,Surface lattice resonance,Room-temperature laser,Aluminum nanoparticle arrays, | en |
| dc.relation.page | 72 | - |
| dc.identifier.doi | 10.6342/NTU202303878 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-08-12 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 物理學系 | - |
| dc.date.embargo-lift | 2028-08-09 | - |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 5.33 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
