請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90677完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 莊東漢 | zh_TW |
| dc.contributor.advisor | Tung-Han Chuang | en |
| dc.contributor.author | 陳胤宏 | zh_TW |
| dc.contributor.author | Yin-Hung Chen | en |
| dc.date.accessioned | 2023-10-03T17:08:38Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-10-03 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-07 | - |
| dc.identifier.citation | 維基百科,化石燃料[website]https://zh.m.wikipedia.org/zh-tw/%E5%8C%96%E7%9F%B3%E7%87%83%E6%96%99
United Nations Foundation, SUSTAINABLE DEVELOPMENT GOALS[website] https://unfoundation.org/what-we-do/issues/sustainable-development-goals/ IEA analysis, Renewables 2022 Analysis and forecast to 2027, “Solar PV claims the most installed power capacity worldwide by 2027, surpassing coal, natural gas and hydropower.”, chapter 1:Renewable electricity, 26 (2022). 游勝閔、邱國創,可見光觸媒材料之技術發展,工業材料雜誌,365期,2017年。 Toptical Scientific Corp[website] http://www.toptical.com.tw/web/SG?pageID=41208 C. Riordan, R. Hulstron, “What is an air mass 1.5 spectrum?(solar cell performance calculations).” IEEE, 1085 (1990). A. E. Becquerel, “Recherches sur les effets de la radiation chimique de la lumiere solaire au moyen des courants electriques.” CR Acad. Sci, 9, 145 (1839). C.E. Fritts, “ART. LII.--On a New Form of Selenium Cell, and some Electrical Discoveries made by its use.” Am. J. Sci., 26, 465 (1883). D. M. Chapin, C. S. Fuller, G. L. Pearson, “A new silicon p‐n junction photocell for converting solar radiation into electrical power.” J. Appl. Phys., 25, 676 (1954). N. R. E. Laboratory, Best Research-Cell Efficiency Chart [website] https://www.nrel.gov/pv/cell-efficiency.html F. Ellis Jr, A. Delahoy, “Optical properties of hydrogenated amorphous silicon based solar cells.” Sol. Energy Mater., 13, 109 (1986). S. Chen, R.V. Kumar, A. Gedanken, A. Zaban, “Sonochemical synthesis of crystalline nanoporous zinc oxide spheres and their application in dye‐sensitized solar cells.” Isr. J. Chem., 41, 51 (2001). G.P. Kushto, W. Kim, Z.H. Kafafi, “Flexible organic photovoltaics using conducting polymer electrodes.” Appl. Phys. Lett., 86 093502 (2005). B. H. Jiang, Y. J. Peng, Y. W. Su, J. F Chang, C. C. Chueh, T. S. Shieh, I. H. Ching, C. P. Chen, “A polymer donor with versatility for fabricating high-performance ternary organic photovoltaics.” Chem. Eng. J., 431, 133950 (2022). C. H. Chiang, Z. L. Tseng, C. G. Wu, “Planar heterojunction perovskite/PC71BM solar cells with enhanced open-circuit voltage via a (2/1)-step spin-coating process.” J. Mater. Chem. A, 2, 15897 (2014). Y. Wei, K. Yao, X. Wang, Y. Jiang, X. Liu, N. Zhou, F. Li, “Improving the efficiency and environmental stability of inverted planar perovskite solar cells via silver-doped nickel oxide hole-transporting layer.” Appl. Surf. Sci., 427, 782 (2018). A. S. Subbiah, A. Halder, S. Ghosh, N. Mahuli, G. Hodes, S. K. Sarkar, “Inorganic hole conducting layers for perovskite-based solar cells.” J. Phys. Chem. Lett., 5, 1748 (2014). H. Q. Wang, N. Li, N. S. Guldal, C. J. Brabec, “Nanocrystal V2O5 thin film as hole-extraction layer in normal architecture organic solar cells.” Org. Electron., 13, 3014 (2012). J. Y. Jeng, K. C. Chen, T. Y. Chiang, P. Y. Lin, T. D. Tsai, Y. C. Chang, T. F. Guo, P. Chen, T. C. Wen, Y. J. Hsu, “Nickel Oxide Electrode Interlayer in CH3NH3PbI3 Perovskite/PCBM Planar-Heterojunction Hybrid Solar Cells.” Adv. Mater., 26, 4107 (2014). Y. Sun, C. J. Takacs, S. R. Cowan, J. H. Seo, X. Gong, A. Roy, A. J. Heeger, “Efficient, air‐stable bulk heterojunction polymer solar cells using MoOx as the anode interfacial layer.” Adv. Mater., 23, 2226 (2011). L. Lin, L. Jiang, P. Li, B. Fan, Y. Qiu, “A modeled perovskite solar cell structure with a Cu2O hole-transporting layer enabling over 20% efficiency by low-cost low-temperature processing.” J. Phys. Chem. Solids, 124, 205 (2019). W. Chen, Y. Wu, J. Fan, A. B. Djurišic´, F. Liu, H. W. Tam, A. Ng, C. Surya, W. K. Chan, D. Wang, Z. B. He, “Understanding the Doping Effect on NiO: Toward High-Performance Inverted Perovskite Solar Cells.” Adv. Energy Mater., 8, 1703519 (2018). G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, “Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions.” Science, 270, 1789, (1995). M. Kim, J. Jeong, H. Lu, T. K. Lee, F. T. Eickemeyer, Y. Liu, I. W. Choi, S. J. Choi, Y. Jo, H. B. Kim, “Conformal quantum dot–SnO2 layers as electron transporters for efficient perovskite solar cells.” Science, 375, 302 (2022). H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. H. Baker, J. H. Yum, J. E. Moser, M. Grätzel, N. G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%.” Sci. Rep., 2, 591 (2012). K. Tanaka, T. Takahashi, T. Ban, T. Kondo, K. Uchida, N. Miura, “Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 CH3NH3PbI3.” Solid State Commun., 127, 619 (2003). G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, T. C. Sum, “Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3.” Science, 342, 344 (2013). M. H. Li, P. S. Shen, K. C. Wang, T. F. Guo, P. Chen, “Inorganic p-type contact materials for perovskite-based solar cells.” J. Mater. Chem. A, 3, 9011 (2015). H. L. Hsu, H. T. Hsiao, T. Y. Juang, B. H. Jiang, S. C. Chen, R. J. Jeng, C. P. Chen, “Carbon nanodot additives realize high‐performance air‐stable p–i–n perovskite solar cells providing efficiencies of up to 20.2%.” Adv. Energy Mater., 8 1802323 (2018). A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells.” J. Am. Chem. Soc., 131, 6050 (2009). 蕭翔澤,添加碳量子點實現在空氣中高性能且穩定P-I-N 鈣鈦礦型太陽能電池,明志科技大學材料工程系碩士班碩士論文,2019年7月。 M. Rasheed, O. Y. Mohammed, S. Shihab, A. Al-Adili, “Explicit Numerical Model of Solar Cells to Determine Current and Voltage.” J Phys Conf Ser., 1795, 012043 (2021). V. Kouznetsov, K. Macak, J. M. Schneider, U. Helmersson, I. Petrov, “A novel pulsed magnetron sputter technique utilizing very high target power densities.” Surf. Coat. Technol., 122, 290 (1999). 德國Huettinger公司之電源系統簡介資料。 D. J. Christie, F. Tomasel, W. D. Sproul, D. C. Carter, “Power supply with arc handling for high peak power magnetron sputtering.” J. Vac. Sci. Technol. A, 22, 1415 (2004). D. V. Mozgrin, I. K. Fetisov, G. V. Khodachenko, “High-current low-pressure quasi-stationary discharge in a magnetic field: experimental research.” Plasma Phys. Rep., 21, 401 (1995). I. K. Fetisov, A. A. Filippov, G. V. Khodachenko, D. V. Mozgrin, A. A. Pisarev, “Impulse irradiation plasma technology for film deposition.” Vacuum, 53, 133(1999). B. Chapman, “Glow discharge processes: sputtering and plasma etching” 1st ed., John Wiley & Sons (1980). C. Christou and Z. H. Barber, “Ionization of sputtered material in a planar magnetron discharge.” J. Vac. Sci. Technol. A, 18, 2897 (2000). V. Stranak, M. Cada, Z. Hubicka, M. Tichy, R. Hippler, “Time-resolved investigation of dual high power impulse magnetron sputtering with closed magnetic field during deposition of Ti–Cu thin films.” J. Appl. Phys., 108, 043305 (2010). A. N. Reed, M. A. Lange, C. Muratore, J. E. Bultman, J. G. Jones, A. A. Voevodin, “Pressure effects on HiPIMS deposition of hafnium films.” Surf. Coat. Technol., 206, 3795 (2012). J. Bohlmark, J. Alami, C. Christou, A.P. Ehiasarian, U. Helmersson, “Ionization of sputtered metals in high power pulsed magnetron sputtering.” J. Vac. Sci. Technol. A, 23, 18 (2005). V. Stranak, A. P. Herrendorf, H. Wulff, S. Drache, M. Cada, Z. Hubicka, M. Tichy, R. Hippler, “Deposition of rutile (TiO2) with preferred orientation by assisted high power impulse magnetron sputtering.” Surf. Coat. Technol., 222, 112 (2013). J. Alami, P. O. Å. Persson, J. Böhlmark, J. T. Gudmundsson, J. Bohlmark, U. Helmersson, “Ion-assisted physical vapor deposition for enhanced film properties on nonflat surfaces.” J. Vac. Sci. Technol. A, 23, 278 (2005). J. Alami, P. Eklund, J.M. Andersson, M. Lattemann, E. Wallin, J. Bohlmark, P. Persson, U. Helmersson, “Phase tailoring of Ta thin films by highly ionized pulsed magnetron sputtering.” Thin Solid Films, 515, 3434 (2007). F. Ruske, A. Pflug, V. Sittinger, W. Werner, B. Szyszka et al., “Reactive deposition of aluminium-doped zinc oxide thin films using high power pulsed magnetron sputtering.” Thin Solid Films, 516, 4472 (2008). G. T. West, P. J. Kelly, J. W. Bradley, “A comparison of thin silver films grown onto zinc oxide via conventional magnetron sputtering and HiPIMS deposition.” IEEE Trans Plasma Sci IEEE Nucl Plasma Sci Soc, 38, 3057 (2010). M. Samuelsson, D. Lundin, K. Sarakinos, F. Björefors, B. Wälivaara, H. Ljungcrantz, U. Helmersson, “Influence of ionization degree on film properties when using high power impulse magnetron sputtering.” J. Vac. Sci. Technol. A, 30, 031507 (2012). A. Anders, “A structure zone diagram including plasma-based deposition and ion etching.” Thin Solid Films, 518, 4087 (2010). M. Abdelfatah, J. Ledig, A. El-Shaer, A. Wagner, A. Sharafeev et al., “Fabrication and characterization of flexible solar cell from electrodeposited Cu2O thin film on plastic substrate.” Sol. Energy, 122, 1193 (2015). K. Fujimoto, T. Oku, T. Akiyama, “Fabrication and characterization of ZnO/Cu2O solar cells prepared by electrodeposition.” Appl. Phys. Express, 6, 086503 (2013). Y. Nishi, T. Miyata, T. Minami, “The impact of heterojunction formation temperature on obtainable conversion efficiency in n-ZnO/p-Cu2O solar cells.” Thin Solid Films, 528, 72 (2013). S. D. Sun, “Recent advances in hybrid Cu2O-based heterogeneous nanostructures.” Nanoscale, 7, 10850 (2015). S. S. Jeong, A. Mittiga, E. Salza, A. Masci, S. Passerini, “Electrodeposited ZnO/Cu2O heterojunction Electrochim.” Electrochim. Acta, 53, 2226 (2008). V. Figueiredo, E. Elangovan, G. Goncalves, N. Franco, E. Alves ,S. H. K. Park, R. Martins, E. Fortunato, “Electrical, structural and optical characterization of copper oxide thin films as a function of post annealing temperature.” Phys. Status Solidi A, 206, 2143 (2009). V. Figueiredo, E. Elangovan, R. Barros, J. V. Pinto, T. Busani, R. Martins, E. Fortunato, “p-Type CuxO Films Deposited at Room Temperature for Thin-Film Transistors.” J. Disp. Technol., 8, 41 (2011). R. W. G. Wyckoff, “Crystal Structures” 2nd ed., John Wiley & Sons (1965). J. M. Zuo, M. Kim, M. O’Keeffe, J. C. H. Spence, “Direct observation of d-orbital holes and Cu–Cu bonding in Cu2O.” Nature, 401, 49 (1999). Materials Project, Materials Explorer, Cu2O mp-361[website]https://next-gen.materialsproject.org/materials/mp-361?_sort_fields=material_id&chemsys=Cu-O#crystal_structure N. Ohshima, M. Nakada, Y. Tsukamoto, “Structural and Magnetic Properties of Ni–O/Ni–Fe Bilayer Films.” Jpn. J. Appl. Phys., 35, L1585 (1996). O. Kohmoto, H. Takahashi, K. Kimoto, “Some physical properties of sputtered Ni0. 8Fe0.2–O films.” Physica status solidi (b), 224, 4478 (2007). B. D. Cullity, S. R. Stock, “Elements of X-ray diffraction” 3rd ed., Prentice Hall, p.48 (2001). Powder Diffraction File (PCPDFWIN v.2.02), JCPDS-International Centre for Diffraction Data 47-1049 (1999). D. Adler, J. Feinleib, “Electrical and optical properties of narrow-band materials.” Phys. Rev. B, 2, 3112 (1970). I. Popescu, E. Heracleous, Z. Skoufa, A. Lemonidoubc, I. C. Marcu, “Study by electrical conductivity measurements of semiconductive and redox properties of M-doped NiO (M= Li, Mg, Al, Ga, Ti, Nb) catalysts for the oxidative dehydrogenation of ethane.” PCCP., 16, 4962 (2014). S. Dolai, S. Das, S. Hussain, R. Bhar, A. K. Pal, “Cuprous oxide (Cu2O) thin films prepared by reactive dc sputtering technique.” Vacuum, 141, 296 (2017). Ø. Nordseth, R. Kumar, K. Bergum, I. Chilibon, S. E. Foss, E. Monakhov, “Nitrogen-doped Cu2O thin films for photovoltaic applications.” Materials, 12, 3038 (2019). M. J. Dai, S. S. Lin, Q. Shi, F. Liu, W. X. Wang, S. C. Chen, T. Y. Kuo, H. Sun, “Transparent conductive p-type cuprous oxide films in vis-nir region prepared by ion-beam assisted dc reactive sputtering.” Coatings, 10, 473 (2020). R. Bunea, A. K. Saikumar, K. Sundaram, “A comparison of optical properties of CuO and Cu2O thin films for solar cell applications.” Mater. Sci. Appl., 12, 182 (2021). B. A. Nejand, V. Ahmadi, S. Gharibzadeh, H. R. Shahverdi, “Cuprous oxide as a potential low‐cost hole‐transport material for stable perovskite solar cells." ChemSusChem, 9, 302 (2016). H. T. Li, Y. X. Jiang, L. M. Tu, S. H. Li, L. Pan, W. B. Li, S. E. Yang, Y. S. Chen, “Influence of annealing temperature on properties of Cu2O thin films deposited by electron beam evaporation.” Acta Phys. Sin., 67, 053301 (2018). X. Miao, S. Wang, W. Sun, Y. Zhu, C. Du, R. Ma, C. Wang, “Effect of Cu2O Content in Electrodeposited CuOx Film on Perovskite Solar Cells.” Nano, 14, 1950126 (2019). M. A. Islam, Y. A. Wahab, M. U. Khandaker, A. Alsubaie, A. S. A. Almalki, D. A. Bradley, N. Amin, “High mobility reactive sputtered CuxO thin film for highly efficient and stable perovskite solar cells.” Crystals, 11, 389 (2021). S. Aseena, N. Abraham, G. Sahaya Dennish Babu, S. Kathiresan, V. Suresh Babu, “Solution-Synthesized Cu2O As a Hole Transport Layer for a ZnO-Based Planar Heterojunction Perovskite Solar Cell Fabricated at Room Temperature.” J. Electron. Mater., 51, 1692 (2022). L. Luo, B. Zhou, Z. Liu, Q. Zhao, C. Wang, Z. Duan, Y. Hu, “Study of Se/Te-doped Cu2O as a hole transport material in perovskite solar cells.” RSC Adv., 13, 8476 (2023). H. Sun, C. K. Wen, S. C. Chen, T. H. Chuang, M. A. P. Yazdi, F. Sanchette, A. Billard, “Microstructures and optoelectronic properties of CuxO films deposited by high-power impulse magnetron sputtering.” J. Alloys Compd., 688, 672 (2016). 溫朝光,p型導電氧化物薄膜之高密度電漿製程開發,國立臺灣大學工學院材料科學與工程學研究所博士論文,2021年7月。 M. Yamashita, M. Agu, “Geometrical correction factor for semiconductor resistivity measurements by four-point probe method.” Jpn J Appl Phys., 23, 1499 (1984). W. L. Yu, F. Li, H. Wang, E. Alarousu, Y. Chen, B. Lin, L. F. Wang, M. N. Hedhili, Y. Y. Li, K. W. Wu, X. B. Wang, O. F. Mohammed, T. Wu, “Ultrathin Cu2O as an efficient inorganic hole transporting material for perovskite solar cells.” Nanoscale, 8, 6173 (2016). Y. J. Chen, M. H. Li, J. C. A. Huang, P. Chen, “Cu/Cu2O nanocomposite films as a p-type modified layer for efficient perovskite solar cells.” Sci. Rep., 8, 1 (2018). S. Sakalley, A. Saravanan, W. C. Cheng, S. C. Chen, H. Sun, M. H. Liao, B. R. Huang, “Cu3N thin film synthesized by selective in situ substrate heating during high power impulse magnetron sputtering for augmenting UV photodetection.” Sens. Actuator A Phys., 350, 114137 (2023). Q. Yao, L. Zhao, X. Sun, L. Zhu, Y. Zhao, Y. Qiang, J. Song, “Na2S decorated NiOx as effective hole transport layer for inverted planar perovskite solar cells.” Mater Sci Semicond Process, 153, 107107 (2023). C. Zuo, L. Ding, “Solution‐processed Cu2O and CuO as hole transport materials for efficient perovskite solar cells.” Small, 11, 5528 (2015). M. Makenali, I. Kazeminezhad, V. Ahmadi, F. A. Roghabadi, “Charge transfer balancing of planar perovskite solar cell based on a low cost and facile solution-processed CuOx as an efficient hole transporting layer.” J. Mater. Sci. Mater. Electron., 32, 2312 (2021). S. Chatterjee, A. J. Pal, “Introducing Cu2O thin films as a hole-transport layer in efficient planar perovskite solar cell structures.” J. Phys. Chem. C, 120, 1428 (2016). L. Liu, Q. Xi, G. Gao, W. Yang, H. Zhou, Y. Zhao, J. Xu, “Cu2O particles mediated growth of perovskite for high efficient hole-transporting-layer free solar cells in ambient conditions.” Sol. Energy Mater Sol. Cells, 157, 937 (2016). L. C. Chen, C. C. Chen, K. C. Liang, S. H. Chang, Z. L. Tseng, S. C. Yeh, C. G. Wu, “Nano-structured CuO-Cu2O complex thin film for application in CH3NH3PbI3 perovskite solar cells.” Nanoscale Res. Lett., 11, 420 (2016). Z. Zhang, S. Chen, P. Li, H. Li, J. Wu, P. Hu, J. Wang, “Aerosol-assisted chemical vapor deposition of ultra-thin CuOx films as hole transport material for planar perovskite solar cells.” Funct. Mater. Lett., 11, 1850035. (2018). A. P. Young, C. M. Schwartz, “Electrical conductivity and thermoelectric power of Cu2O.” J Phys Chem Solids, 30, 249 (1969). A. K. Mukhopadhyay, A. K. Chakraborty, A. P. Chatterjee, S. K. Lahiri, “Galvanostatic deposition and electrical characterization of cuprous oxide thin films.” Thin Solid Films, 209, 92 (1992). C. H. Chen, Y. T. Hsu, B. C. Wang, C. L. Chung, C. P. Chen, “Thienoisoindigo-based dopant-free hole transporting material for efficient p–i–n perovskite solar cells with the grain size in micrometer scale.” J. Phys. Chem. C, 123, 1602 (2018). Y. C. Chen, Y. H. Li, C. L. Chung, H. L. Hsu, C. P. Chen, “Triphenylamine dibenzofulvene–derived dopant‐free hole transporting layer induces micrometer‐sized perovskite grains for highly efficient near 20% for p‐i‐n perovskite solar cells.” Prog Photovolt, 28, 49 (2020). E. Erdenebileg, N. Tiwari, F. U. Kosasih, H. A. Dewi, L. Jia, N. Mathews, S. Mhaisalkar, A. Bruno, “Co-evaporated pin perovskite solar cells with sputtered NiOx hole transport layer.” Mater. Today Chem., 30, 101575 (2023). Z. Peng, Z. Zuo, Q. Qi, S. Hou, Y. Fu, D. Zou, “Managing the Double-Edged Sword of Ni3+ in Sputter-Deposited NiOx by Interfacial Redox Reactions for Efficient Perovskite Solar Cells.” ACS Appl. Energy Mater., 6, 1396 (2023). R. Zahran, Z. Hawash, “Fullerene‐Based Inverted Perovskite Solar Cell: A Key to Achieve Promising, Stable, and Efficient Photovoltaics.” Adv. Mater. Interfaces, 9, 2201438 (2022). E. Lamanna, F. Matteocci, E. Calabrò, L. Serenelli, E. Salza, L. Martini, F. Menchini, M. Izzi, A. Agresti, S. Pescetelli, S. Bellani, A. E. D. R. Castillo, F. Bonaccorso, M. Tucci, A. Di Carlo, “Mechanically stacked, two-terminal graphene-based perovskite/silicon tandem solar cell with efficiency over 26%.” Joule, 4, 865 (2020). | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90677 | - |
| dc.description.abstract | 太陽能是一種可再生能源,可以利用潔淨的能源技術將其轉換為電能。本研究第一部分運用直流磁控濺鍍(DCMS)以不同氧流率比(fO2)濺鍍p型CuxO薄膜作為鈣鈦礦太陽能電池的電洞傳輸層。研究發現在fO2=17.5%時可獲得較佳之能量轉換效率7.90%。接著我們改變不同Cu2O薄膜之厚度,發現膜層越薄效率越高,在膜厚5 nm時其能量轉換效率可升高至9.37%。隨後採用高功率脈衝磁控濺鍍(HiPIMS)系統鍍製p型Cu2O薄膜,元件之效率可達10.29%。因為HiPIMS具有高離化率的特點,鍍膜之薄膜更緻密且具有低表面粗糙度,此有助於減少薄膜內或界面的缺陷,使漏電流下降。進一步運用HiPIMS搭配中頻電源之疊加型高功率脈衝磁控濺鍍(疊加型HiPIMS)系統製備p型Cu2O薄膜以應用於鈣鈦礦太陽能電池之電洞傳輸層(HTL),其能量轉換效率可進一步提升至15.20%,短路電流密度(Jsc)、開路電壓(Voc)和填充因子(FF)值分別為20.57 mA/cm2、0.977 V和76.5%,此能量轉換效率為近年在全世界採用各種不同製程之單層Cu2O薄膜應用於鈣鈦礦太陽能電池的電洞傳輸層之所有團隊中居於領先地位。
接著第二部分我們更進一步採用疊加型HiPIMS p型Cu2O薄膜並塗佈sol-gel NiO薄膜以形成雙層(疊加型HiPIMS Cu2O+濕式NiO)電洞傳輸層,研究發現元件能量轉換效率可再提升至20.15%,其Jsc、Voc和 FF值也分別再升高為23.26 mA/cm2、1.096V和79.0%。最後將元件放置於手套箱內測試其保存1000小時以上之元件穩定性,結果發現疊加型HiPIMS Cu2O單層電洞傳輸層元件仍可維持98%的初始效率,而雙層(疊加型HiPIMS Cu2O+濕式NiO)電洞傳輸層更可維持99.4%的初始效率。相較於文獻採用有機高分子電洞傳輸層在相同的測試環境及時間下元件效率僅剩下70~90%之間,顯然本研究採用無機p型氧化物薄膜作為鈣鈦礦太陽能電池電洞傳輸層不僅可獲得高能量轉換效率,同時也具有優異的界面穩定性及耐久性。 | zh_TW |
| dc.description.abstract | Solar light is a renewable source of energy that can be used and transformed into electricity using clean energy technology. In this study uses direct current magnetron sputtering (DCMS) to sputter p-type CuxO films with different fO2 as the hole transport layer for perovskite solar cells. The study shows better PCE of 7.90% when fO2=17.5%. By changing the thickness of Cu2O thin films, the higher PCE can be further increased to 9.37% when the thickness is 10 nm. Subsequently, a high-power impulse magnetron sputtering (HiPIMS) p-type Cu2O film offers improved device efficiency of 10.29%. As HiPIMS has the characteristics of a high ionization rate, it can make the film denser with low surface roughness, which reduces the defects of the film and interface and also reduces leakage current. In addition, use the superimposed high power pulse magnetron sputtering (superimposed HiPIMS) system to deposit p-type Cu2O films for application as the hole transport layer of perovskite solar cells. With this method, the PCE improved by 15.20%, Jsc, Voc, and FF are 20.57 mA/cm2, 0.977 V and 76.5%, respectively. This efficiency is in the leading position among all teams in the world in recent years using single-layer Cu2O film as the hole transport layer of perovskite solar cells.
In the second part, superimposed HiPIMS p-type Cu2O films were coated with sol-gel NiO films to form a double-layer hole transport layer. The device accomplishes significant efficiency as high as 20.15%, and the Jsc, Voc, and FF further increased to 23.26 mA/cm2, 1.096 V, and 79.0%. Finally, we kept the devices in a glove box for more than 1000 hours to test their stability. The superimposed HiPIMS single-layer Cu2O can remain at 98% of the initial efficiency, and the double-layer (superimposed HiPIMS Cu2O+sol-gel NiO) can even maintain 99.4%. Compared with the literature using organic polymer hole transport layer, only about 70-90% remains at the same aging time. In this study, inorganic p-type oxide film as a hole transport layer in perovskite solar cells not only achieves high PCE but also has excellent interface stability and durability. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T17:08:38Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-10-03T17:08:38Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
誌 謝 ii 摘 要 iii Abstract v 圖目錄 x 表目錄 xvi 第一章 序論 1 1.1 前言 1 1.2 太陽光之放射光譜 4 1.3 太陽能電池簡介 6 1.4 研究動機與目的 7 第二章 理論基礎與文獻回顧 10 2.1元件結構發展 10 2.1.1有機太陽能電池之結構 10 2.1.2鈣鈦礦太陽能電池之結構 13 2.2鈣鈦礦太陽能電池簡介 15 2.3鈣鈦礦太陽能電池發電機制 16 2.4光電轉換之基本性質 17 2.4.1開路電壓 (Voc) 17 2.4.2短路電流 (Isc) 18 2.4.3填充因子 (FF) 18 2.4.4能量轉換效率 (PCE) 18 2.5高功率脈衝磁控濺鍍技術 20 2.5.1 高功率脈衝磁控濺鍍系統鍍製氧化物薄膜之優勢及理由 22 2.5.2 新型薄膜結構型態 28 2.6氧化亞銅及氧化鎳之特性 29 2.6.1 氧化亞銅之基本性質 29 2.6.2 氧化鎳之基本性質 31 2.7文獻回顧 32 2.7.1傳統磁控濺鍍製備Cu2O薄膜之相關研究成果 32 2.7.2 鈣鈦礦太陽能電池中Cu2O薄膜的相關研究成果 33 第三章 實驗方法及步驟 36 3.1基板準備與前處理 36 3.1.1 基板選取 36 3.1.2 基板前處理與清洗 36 3.2靶材選取與濺鍍設備 37 3.2.1 DCMS系統鍍製Cu2O薄膜 37 3.2.2 HiPIMS系統鍍製Cu2O薄膜 39 3.2.3 疊加型HiPIMS系統鍍製Cu2O薄膜 41 3.3鈣鈦礦太陽能電池元件製作 44 3.4薄膜性質分析儀器 45 3.4.1 X光繞射分析 (XRD) 45 3.4.2原子力顯微鏡 (AFM) 46 3.4.3紫外光/可見光光譜儀 (UV-Vis) 47 3.4.4四點探針量測 (Four point probe) 49 3.4.5螢光光譜儀 (PL) 50 3.4.6光電子能譜儀 (ESCA) 51 3.4.7紫外光光電子能譜儀 (UPS) 52 3.5元件性質分析儀器 53 3.5.1太陽光模擬器 (AAA Class Solar Simulators) 53 3.5.2外部量子效率 (EQE) 54 3.5.3時間解析螢光光譜儀 (TRPL) 55 3.5.4瞬態光電流 (TPC) 55 3.5.5瞬態光電壓 (TPV) 56 3.5.6通過線性增加電壓提取電荷 (CELIV) 56 3.5.7電化學阻抗分析 (EIS) 56 第四章 結果與討論 57 4.1 DCMS Cu2O薄膜應用於鈣鈦礦太陽能電池之電洞傳輸層 57 4.1.1 DCMS不同fO2製備Cu2O薄膜 57 4.1.2 DCMS Cu2O薄膜不同fO2之元件光電性能 63 4.1.3 DCMS Cu2O薄膜不同膜厚之元件光電性能 65 4.1.4小結 70 4.2 HiPIMS Cu2O薄膜應用於鈣鈦礦太陽能電池之電洞傳輸層 71 4.2.1 HiPIMS不同fO2製備Cu2O薄膜 71 4.2.2 HiPIMS Cu2O薄膜不同fO2之元件光電性能 73 4.2.3小結 74 4.3疊加型HiPIMS Cu2O薄膜應用於鈣鈦礦太陽能電池之電洞傳輸層 75 4.3.1疊加型HiPIMS不同fO2製備Cu2O薄膜 75 4.3.2疊加型HiPIMS Cu2O薄膜不同fO2元件之光電性能 76 4.3.3小結 78 4.4比較不同電源模式製備Cu2O薄膜應用於鈣鈦礦太陽能電池之電洞傳輸層 79 4.4.1不同電源模式之UV-Vis分析 79 4.4.2不同電源模式之AFM分析 80 4.4.3不同電源模式之水接觸角分析 82 4.4.4不同電源模式之元件性能 83 4.4.5不同電源模式之OES分析 86 4.4.6不同電源模式之UPS分析 88 4.4.7疊加型HiPIMS元件之室內弱光性能 89 4.4.8疊加型HiPIMS元件之穩定性 90 4.4.9小結 92 4.5 Cu2O/NiO雙層膜應用於鈣鈦礦太陽能電池之電洞傳輸層 93 4.5.1 DCMS Cu2O/濕式NiO雙層膜 93 4.5.2疊加型HiPIMS Cu2O/濕式NiO雙層膜 96 4.5.3小結 114 第五章 結論 115 未來展望 116 參考文獻 118 個人簡介 130 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 高功率脈衝磁控濺鍍 | zh_TW |
| dc.subject | 能量轉換效率 | zh_TW |
| dc.subject | 直流磁控濺鍍 | zh_TW |
| dc.subject | Cu2O薄膜 | zh_TW |
| dc.subject | 穩定性 | zh_TW |
| dc.subject | 疊加型高功率脈衝磁控濺鍍 | zh_TW |
| dc.subject | DCMS | en |
| dc.subject | Cu2O films | en |
| dc.subject | HiPIMS | en |
| dc.subject | superimposed HiPIMS | en |
| dc.subject | power conversion efficiency (PCE) | en |
| dc.subject | stability | en |
| dc.title | 氧化亞銅薄膜之高功率脈衝磁控濺鍍製程開發及其在鈣鈦礦太陽能電池之應用 | zh_TW |
| dc.title | Development of high-power impulse magnetron sputtering process of Cu2O thin films and its application of perovskite solar cells | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.coadvisor | 陳勝吉 | zh_TW |
| dc.contributor.coadvisor | Sheng-Chi Chen | en |
| dc.contributor.oralexamcommittee | 陳志平;周眾信;王彰盟 | zh_TW |
| dc.contributor.oralexamcommittee | Chih-Ping Chen;Ju-Stin Chou;Chang-Meng Wang | en |
| dc.subject.keyword | Cu2O薄膜,直流磁控濺鍍,高功率脈衝磁控濺鍍,疊加型高功率脈衝磁控濺鍍,能量轉換效率,穩定性, | zh_TW |
| dc.subject.keyword | Cu2O films,DCMS,HiPIMS,superimposed HiPIMS,power conversion efficiency (PCE),stability, | en |
| dc.relation.page | 131 | - |
| dc.identifier.doi | 10.6342/NTU202302626 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-08-09 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 材料科學與工程學系 | - |
| dc.date.embargo-lift | 2026-08-06 | - |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 7.9 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
