Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90627
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭富書zh_TW
dc.contributor.advisorFu-Shu Jengen
dc.contributor.author陳羿帆zh_TW
dc.contributor.authorYi-Fan Chenen
dc.date.accessioned2023-10-03T16:55:25Z-
dc.date.available2023-11-09-
dc.date.copyright2023-10-03-
dc.date.issued2023-
dc.date.submitted2023-08-06-
dc.identifier.citation[1] Yang, Z., Sun, Z., Fang, K., Jiang, Y., Gao, H., and Bai, Z. (2021). Cutting tool wear model for tunnel boring machine tunneling in heterogeneous grounds. Bulletin of Engineering Geology and the Environment, 80(7), 5709-5723.
[2] Huang, X., Liu, Q., Chen, L., Pan, Y., Liu, B., Kang, Y., and Liu, X. (2018). Cutting force measurement and analyses of shell cutters on a mixshield tunnelling machine. Tunnelling and Underground Space Technology, 82, 325-345.
[3] Wei, Y., Yang, Y., and Tao, M. (2018). Effects of gravel content and particle size on abrasivity of sandy gravel mixtures. Engineering geology, 243, 26-35.
[4] 鄧屬予 (1996),台灣卵礫石層的地質背景,地工技術,第55期,第5-24頁。
[5] 張吉佐、陳逸駿、嚴世傑、蔡宜璋 (1996),台灣地區中北部卵礫石層工程性質及施工探討,地工技術,第55期,第35-46頁。
[6] 洪如江 (1978),複合土工程特性之初步研究,台大工程學刊,第23期,第1-12頁。
[7] Liu, J., Ge, H., Zhang, Z., Wang, X., and Wang, J. (2022). Influence of mechanical contrast between the matrix and gravel on fracture propagation of glutenite. Journal of Petroleum Science and Engineering, 208, 109639.
[8] 蔡明欣、陳錦清、王銘德 (1995),台灣西部地區卵礫石層現地抗剪強度研究, 國際卵礫石層地下工程研討會,第21-30頁。
[9] Koerner, R. M. (1970). Effect of particle characteristics on soil strength. Journal of the Soil Mechanics and Foundations Division, 96(4), 1221-1234.
[10] Marachi, N. (1969). Strength and deformation characteristics of rockfill materials. University of California, Berkeley.
[11] Marsal, R. J. (1969). Mechanical properties of rock-fill and gravel materials. Special Session, 7th. ICSMFE, 3, 499-506.
[12] 張光宗、陳宥序、鄭敏杰 (2014),以數值方法探討卵礫石層的力學行為,中華水土保持學報,第45卷,第2期,第95-102頁。
[13] Hsieh, Y. M., Li, H. H., Huang, T. H., and Jeng, F. S. (2008). Interpretations on how the macroscopic mechanical behavior of sandstone affected by microscopic properties—Revealed by bonded-particle model. Engineering Geology, 99(1-2), 1-10.
[14] Tian, J., Liu, E., Jiang, L., Jiang, X., Sun, Y., and Xu, R. (2018). Influence of particle shape on the microstructure evolution and the mechanical properties of granular materials. Comptes Rendus Mécanique, 346(6), 460-476.
[15] Khanal, M., Raghuramakrishnan, R., and Tomas, J. (2008). Discrete element method simulation of effect of aggregate shape on fragmentation of particle composite. Chemical Engineering and Technology: Industrial Chemistry‐Plant Equipment‐Process Engineering‐Biotechnology, 31(10), 1526-1531.
[16] Lu, M. M. G. R., and McDowell, G. R. (2007). The importance of modelling ballast particle shape in the discrete element method. Granular matter, 9, 69-80.
[17] Fu, J., Xia, Y., Lan, H., Wu, D., and Lin, L. (2021). A case study on TBM cutterhead temperature monitoring and mud cake formation discrimination method. Scientific reports, 11(1), 19983.
[18] Tang, S. H., Zhang, X. P., Liu, Q. S., Xie, W. Q., Wang, H. J., Li, X. F., and Zhang, X. Y. (2022). New soil abrasion testing method for evaluating the influence of geological parameters of abrasive sandy ground on scraper wear in TBM tunneling. Tunnelling and Underground Space Technology, 128, 104604.
[19] Jakobsen, P. D., and Lohne, J. (2013). Challenges of methods and approaches for estimating soil abrasivity in soft ground TBM tunnelling. Wear, 308(1-2), 166-173.
[20] Berdal, T., Jakobsen, P. D., and Jacobsen, S. (2018). Utilising excavated rock material from tunnel boring machines (TBMs) for concrete. In Proceedings of the SynerCrete’18 International Conference on Interdisciplinary Approaches for Cement-based Materials and Structural Concrete, 24-26.
[21] Zhou, X. P., and Zhai, S. F. (2018). Estimation of the cutterhead torque for earth pressure balance TBM under mixed-face conditions. Tunnelling and Underground Space Technology, 74, 217-229.
[22] Farrokh, E. (2021). Cutter change time and cutter consumption for rock TBMs. Tunnelling and Underground Space Technology, 114, 104000.
[23] Evans I. (1958). Theoretical aspects of coal ploughing. In: Walton WH, editor. Mechanical properties of non-metallic brittle materials. London: Butterworths; p. 451-468.
[24] Evans I. (1965). The force required to cut coal with blunt wedges. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts; 2(1):1-12.
[25] Nishimatsu, Y. (1972, March). The mechanics of rock cutting. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts , 261-270.
[26] Evans, I. (1984). Theory of the cutting force for point-attack picks. Int. J. Min. Eng.;(United Kingdom), 2(1), 63-71.
[27] Roxborough, F. F., and Liu, Z. C. (1995). Theoretical considerations on pick shape in rock and coal cutting.
[28] Goktan, R. M. (1997, July). A suggested improvement on Evans’ cutting theory for conical bits. In Proceedings of fourth symposium on mine mechanization automation, 1, 57-61.
[29] Yasar, S., and Yilmaz, A. O. (2018). Drag pick cutting tests: A comparison between experimental and theoretical results. Journal of Rock Mechanics and Geotechnical Engineering, 10(5), 893-906.
[30] Bao, R. H., Zhang, L. C., Yao, Q. Y., and Lunn, J. (2011). Estimating the peak indentation force of the edge chipping of rocks using single point-attack pick. Rock mechanics and rock engineering, 44, 339-347.
[31] Entacher, M., Schuller, E., and Galler, R. (2015). Rock failure and crack propagation beneath disc cutters. Rock Mechanics and Rock Engineering, 48, 1559-1572.
[32] Organiscak, J. A., Khair, A. W., and Ahmad, M. (1995). Studies of bit wear and respirable dust generation. TRANSACTIONS-SOCIETY FOR MINING METALLURGY AND EXPLORATION INCORPORATED, 298, 1874-1879.
[33] Ates, U., and Copur, H. (2023). Investigation of parameters affecting vibration patterns generated during excavation by EPB TBMs. Tunnelling and Underground Space Technology, 138, 105185.
[34] Bilgin, N., Demircin, M. A., Copur, H., Balci, C., Tuncdemir, H., and Akcin, N. (2006). Dominant rock properties affecting the performance of conical picks and the comparison of some experimental and theoretical results. International journal of rock mechanics and mining sciences, 43(1), 139-156.
[35] Su, O., and Akcin, N. A. (2011). Numerical simulation of rock cutting using the discrete element method. International journal of rock mechanics and mining sciences, 48(3), 434-442.
[36] Zhang, Z., Zhang, K., Dong, W., and Zhang, B. (2020). Study of rock-cutting process by disc cutters in mixed ground based on three-dimensional particle flow model. Rock Mechanics and Rock Engineering, 53, 3485-3506.
[37] Zhang, X. P., Ji, P. Q., Liu, Q. S., Liu, Q., Zhang, Q., and Peng, Z. H. (2018). Physical and numerical studies of rock fragmentation subject to wedge cutter indentation in the mixed ground. Tunnelling and Underground Space Technology, 71, 354-365.
[38] Gharahbagh, E. A., Mooney, M. A., Frank, G., Walter, B., and DiPonio, M. A. (2013). Periodic inspection of gauge cutter wear on EPB TBMs using cone penetration testing. Tunnelling and Underground Space Technology, 38, 279-286.
[39] Liu, Z., Wang, B., and Shang, W. (2017). Study of wireless detection system of shield cutter wear based on ultrasonic. Tunnel Construction, 37(11), 1469-1474.
[40] Rong, X., Lu, H., Wang, M., Wen, Z., and Rong, X. (2019). Cutter wear evaluation from operational parameters in EPB tunneling of Chengdu Metro. Tunnelling and Underground Space Technology, 93, 103043.
[41] Li, Y., Di, H., Yao, Q., Fu, L., and Zhou, S. (2020). Prediction model for disc cutter wear of tunnel boring machines in sandy cobble strata. KSCE Journal of Civil Engineering, 24, 1010-1019.
[42] Wen, S., and Huang, P. (2018). Principles of tribology, fifth printing. Tsinghua University Press, Beijing, China.
[43] Amoun, S., Sharifzadeh, M., Shahriar, K., Rostami, J., and Azali, S. T. (2017). Evaluation of tool wear in EPB tunneling of Tehran Metro, Line 7 Expansion. Tunnelling and Underground Space Technology, 61, 233-246.
[44] Frenzel, C., Käsling, H., and Thuro, K. (2008). Factors influencing disc cutter wear. Geomechanik und Tunnelbau: Geomechanik und Tunnelbau, 1(1), 55-60.
[45] Hassanpour, J., Rostami, J., Azali, S. T., and Zhao, J. (2014). Introduction of an empirical TBM cutter wear prediction model for pyroclastic and mafic igneous rocks; a case history of Karaj water conveyance tunnel, Iran. Tunnelling and underground space technology, 43, 222-231.
[46] Macias, F. J., Dahl, F., and Bruland, A. (2016). New rock abrasivity test method for tool life assessments on hard rock tunnel boring: the rolling indentation abrasion test (RIAT). Rock Mechanics and Rock Engineering, 49(5), 1679-1693.
[47] Wu, L., Guan, T., and Lei, L. (2013). Discrete element model for performance analysis of cutterhead excavation system of EPB machine. Tunnelling and Underground Space Technology, 37, 37-44.
[48] Shen, X., Chen, X., Fu, Y., Cao, C., Yuan, D., Li, X., and Xiao, Y. (2022). Prediction and analysis of slurry shield TBM disc cutter wear and its application in cutter change time. Wear, 498, 204314.
[49] Gehring, K. (1995). Prognosis of advance rates and wear for underground mechanized excavations. Felsbau, 13(6), 439-448.
[50] Ozdemir, L. (1977). Development of theoretical equations for predicting tunnel boreability (Doctoral dissertation, Colorado School of Mines).
[51] Rostami, J. (1997). Development of a force estimation model for rock fragmentation with disc cutters through theoretical modeling and physical measurement of crushed zone pressure , 38, 56-64.
[52] Bruland, A. (2000). Hard Rock Tunnel Boring. Dissertation, Norwegian University of Science and Technology.
[53] Liu, Q., Liu, J., Pan, Y., Zhang, X., Peng, X., Gong, Q., and Du, L. (2017). A wear rule and cutter life prediction model of a 20-in. TBM cutter for granite: a case study of a water conveyance tunnel in China. Rock Mechanics and Rock Engineering, 50, 1303-1320.
[54] Wijk, G. (1992). A model of tunnel boring machine performance. Geotechnical and Geological Engineering, 10, 19-40.
[55] Wang, L., Kang, Y., Zhao, X., and Zhang, Q. (2015). Disc cutter wear prediction for a hard rock TBM cutterhead based on energy analysis. Tunnelling and Underground Space Technology, 50, 324-333.
[56] Wang, L., Li, H., Zhao, X., and Zhang, Q. (2017). Development of a prediction model for the wear evolution of disc cutters on rock TBM cutterhead. Tunnelling and Underground Space Technology, 67, 147-157.
[57] Ren, D. J., Shen, S. L., Arulrajah, A., and Cheng, W. C. (2018). Prediction model of TBM disc cutter wear during tunnelling in heterogeneous ground. Rock Mechanics and Rock Engineering, 51, 3599-3611.
[58] Elbaz, K., Shen, S. L., Zhou, A., Yin, Z. Y., and Lyu, H. M. (2021). Prediction of disc cutter life during shield tunneling with AI via the incorporation of a genetic algorithm into a GMDH-type neural network. Engineering, 7(2), 238-251.
[59] Mahmoodzadeh, A., Mohammadi, M., Ibrahim, H. H., Abdulhamid, S. N., Ali, H. F. H., Hasan, A. M., ... and Mahmud, H. (2021). Machine learning forecasting models of disc cutters life of tunnel boring machine. Automation in Construction, 128, 103779.
[60] Yu, H., Tao, J., Huang, S., Qin, C., Xiao, D., and Liu, C. (2021). A field parameters-based method for real-time wear estimation of disc cutter on TBM cutterhead. Automation in Construction, 124, 103603.
[61] Archard, J. (1953). Contact and rubbing of flat surfaces. Journal of applied physics, 24(8), 981-988.
[62] Teale, R. (1965, March). The concept of specific energy in rock drilling. In International journal of rock mechanics and mining sciences and geomechanics abstracts , 2(1), 57-73.
[63] Liu, H. Y., Kou, S. Q., Lindqvist, P. A., and Tang, C. A. (2002). Numerical simulation of the rock fragmentation process induced by indenters. International Journal of Rock Mechanics and Mining Sciences, 39(4), 491-505.
[64] Cho, J. W., Jeon, S., Yu, S. H., and Chang, S. H. (2010). Optimum spacing of TBM disc cutters: A numerical simulation using the three-dimensional dynamic fracturing method. Tunnelling and Underground Space Technology, 25(3), 230-244.
[65] Menezes, P. L. (2016). Influence of friction and rake angle on the formation of built-up edge during the rock cutting process. International Journal of Rock Mechanics and Mining Sciences, 88, 175-182.
[66] Xiao, N., Zhou, X. P., and Gong, Q. M. (2017). The modelling of rock breakage process by TBM rolling cutters using 3D FEM-SPH coupled method. Tunnelling and Underground Space Technology, 61, 90-103.
[67] Fan, Q., Chen, C., Zhang, Q., and Liu, G. (2023). A dynamic analysis of a conical pick during rock-cutting process based on the smooth finite element method. Wear, 512, 204523.
[68] Cundall, P. A. (1971). A computer model for simulating progressive, large-scale movement in blocky rock system. In Proceedings of the international symposium on rock mechanics, 8, 129-136.
[69] Itasca Consulting Group Inc. (2019). User’s manual for pfc3d, Minneapolis, USA.
[70] 許珮筠、林辰宇、李宏輝、翁祖炘、王泰典 (2018),以實驗設計法探討個別元素法微觀組構因子與介觀力學特性參數關係,岩盤工程研討會,第75-80頁。
[71] Yoon, J. (2007). Application of experimental design and optimization to PFC model calibration in uniaxial compression simulation. International Journal of Rock Mechanics and Mining Sciences, 44(6), 871-889.
[72] Ting, J. M., Meachum, L., and Rowell, J. D. (1995). Effect of particle shape on the strength and deformation mechanisms of ellipse‐shaped granular assemblages. Engineering computations, 12(2), 99-108.
[73] Lu, Y., Tan, Y., Li, X., and Liu, C. (2017). Methodology for simulation of irregularly shaped gravel grains and its application to DEM modeling. Journal of Computing in Civil Engineering, 31(5), 04017023.
[74] Chang, Y. L., Chu, B. L., and Lin, S. S. (2003). Numerical simulation of gravel deposits using multi‐circle granule model. Journal of the Chinese Institute of Engineers, 26(5), 681-694.
[75] 褚炳麟、潘進明、張國雄 (1996),台灣西部卵礫石層現地之大地工程性質,地工技術,第55期,第47-58頁。
[76] Weng, M. C., and Li, H. H. (2012). Relationship between the deformation characteristics and microscopic properties of sandstone explored by the bonded-particle model. International Journal of Rock Mechanics and Mining Sciences, 56, 34-43.
[77] Kozicki, J., Tejchman, J., and Mühlhaus, H. B. (2014). Discrete simulations of a triaxial compression test for sand by DEM. International Journal for Numerical and Analytical Methods in Geomechanics, 38(18), 1923-1952.
[78] Ho, T. K. T., and Weng, M. C. (2021). Evaluating Influence of Microscopic Properties on Mechanical Behavior of Gravelly Soils by Using Discrete-Element Method. International Journal of Geomechanics, 21(12), 04021228.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90627-
dc.description.abstract過去幾十年來,隨著都市化的發展對基礎設施需求提升,往往應用潛盾工法進行地下空間開發,以土壓平衡式潛盾機應用最為廣泛。潛盾面盤由推進旋轉的方式與地層岩土材料接觸,複雜的開挖過程經常使潛盾機前端切刃面盤產生嚴重磨損,尤其在卵礫石層更是嚴重。將大幅地增加施工成本與工期,由此可知切刃磨損議題之重要性。然而近年來有諸多預測切刃磨損的模型,這些預測模型多半用於特定條件或經驗公式,並且也鮮少投入刀具與卵礫石切削關係的研究,評估礫石層潛盾隧道磨損率的方法還有待發展。
本研究旨在建立一套方法以探討影響卵礫石層切刃磨損的因素,並評估隧道開挖切刃磨損率。以離散元素法進行數值分析為基礎,利用PFC3D建構卵礫石地層潛盾開挖刀刃磨損數值模型,力求更符合實際考量礫石不規則形狀與粒徑分布,抑低可能造成結果不確定的因素。並採前人實驗結果作為數值模擬中微觀參數的驗證對象,過程中進行複迴歸分析與變異數分析,釐清礫石微觀組構對磨損率的影響。最終,探配置不同開口率、切刃型式與切刃高度的面盤對隧道開挖的影響,以及切刃破碎礫石土壤的機制。
研究結果顯示,砂礫石微觀參數中,顆粒摩擦係數、鍵結抗拉強度、鍵結楊氏模數與礫石含量四項因子與磨損指標具高度相關,交互項則以摩擦係數與鍵結拉力強度項對磨損最具影響力。峰前刀具磨損主因和顆粒鍵結有關,峰後則與摩擦係數有關。最後,基於切刃齒配置的分析結果,齒式切刃採剝落切削的方式破壞,輪式切刃則採切割破碎的方式,而同時配置兩種切刃於切刃面盤上能更有效的進行隧道開挖。故本文發展的卵礫石對切刃齒磨損模擬方法,可以提供礫石層潛盾刀盤分析設計的參考。
zh_TW
dc.description.abstractIn recent decades, the development of urbanization has led to a rapid demand for infrastructure. The shield tunneling method has been widely used to underground space development, with the earth pressure balance shield machine being the most commonly used approach. The tunnel boring machine (TBM) cuts through the geological strata via rotational and advancing motion during excavation. The complex excavation process often leads to severe wear of the TBM’s cutting tools, especially in gravelly soils. It always end up with a significant increase in construction cost and construction period, thus highlighting the importance of cutting tools wear issues. In recent years some studies have been developed to predict wear prediction model for disc cutters, mostly based on specific conditions or empirical formulas. However, there is limited research regarding the relationship between the tools and soils. The methods on assessing the wear of TBM in gravelly soils are still under development.

This study aims to establish a methodology to investigate the factors affecting cutter wear in sandy cobble strata and evaluate the wear rate during tunnel excavation. A numerical analysis approach based on discrete element method, PFC3D is conducted to construct a wear model for gravelly soils. It can better capture the irregular shape and particle size distribution of gravel, reducing potential uncertainties. Previous experimental results are used to validate the microscopic parameters in the numerical simulations. Multiple regression analysis and analysis of variance are performed to clarify the influence of gravel microstructure on the wear rate. Finally, the impact of cutters allocation with different opening ratios, cutter types, and cutter heights on tunnel excavation is investigated, along with the mechanism of cutter-induced gravelly soils fragmentation.
The preliminary results from this research indicated that main factors for cutter are friction coefficient, bonding tensile strength and bond Young's modulus between particles plus gravel content are highly correlated with the wear index. The interaction term between the friction coefficient and bond tensile strength have the most significant influence on wear. The primary cause of wear before the peak is related to particles bonding, while after the peak, it is associated with the friction coefficient. Based on the analysis of cutters allocation, cutter bits exhibit peeling cutting, while disc cutters adopt cutting and fragmentation. Simultaneously employing both types of cutting tools on the cutterhead can enhance tunnel excavation efficiency. The developed simulation method for cutter wear on gravels in this study can provide a reference for the analysis and design of shield cutterheads in gravel layers.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T16:55:25Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-10-03T16:55:25Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
摘要 ii
ABSTRACT iii
目錄 v
圖目錄 viii
表目錄 xi
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的與流程 3
1.3 論文架構及主要內容 4
第二章 文獻回顧 6
2.1 卵礫石層之相關文獻 6
2.1.1 臺灣卵礫石層分布區域與形成機制 6
2.1.2 卵礫石層力學特性 9
2.1.3 形狀對力學之影響 11
2.1.4 粒徑大小與試體尺寸之影響 12
2.1.5 顆粒力學之數值模擬分析 12
2.2 岩石切割之理論機制與數值分析 17
2.2.1 岩石切割理論與破壞機制 18
2.2.2 岩石切割實驗 23
2.2.3 岩石切割之數值模擬分析 24
2.3 切刃磨損相關研究 26
2.3.1 切刃磨損原理與因素 27
2.3.2 切刃磨損預測模型 29
2.3.3 磨損率指標 31
2.3.4 砂礫石土壤磨損率試驗 32
2.4 顆粒流力學與數值模擬 35
2.4.1 離散元素法簡介 35
2.4.2 PFC程式簡介 36
2.4.3 PFC程式運算邏輯 37
2.4.4 接觸模型 37
2.4.5 鍵結模型 38
2.5 實驗設計法率定微觀參數 39
2.5.1 實驗設計法 40
2.5.2 部分實驗設計法 41
第三章 數值模型試驗建立跟驗證 42
3.1 PFC3D數值模型 42
3.1.1 數值模型的設計 43
3.1.2 數值模型建置流程 46
3.1.3 卵礫石模型基本性質 47
3.2 微觀參數評估與選定 49
3.3 磨損模型之數值分析結果 53
3.3.1 切刃齒受力分析 53
3.3.2 卵礫石土壤破壞型態 56
3.4 部分實驗設計法於磨損模型驗證 59
3.4.1 磨損指標 59
3.4.2 二水平六因子實驗結果 63
3.4.3 三水平六因子實驗結果 63
3.4.4 綜合討論 64
第四章 不同刀具配置開挖特性 71
4.1 潛盾轉盤刀具設計 71
4.2 隧道開挖模型分析結果 73
4.2.1 切刃轉盤開口率影響 73
4.2.2 切刃齒型式影響 75
4.2.3 切刃高度影響 77
4.3 隧道開挖效益評估 80
第五章 結論與建議 83
5.1 結論 83
5.1.1 切刃模型磨損模擬 83
5.1.2 面盤刀具配置分析 84
5.2 後續研究 85
參考文獻 86
附錄一 線性接觸鍵結模擬結果 91
附錄二 問題與回覆 99
-
dc.language.isozh_TW-
dc.subject卵礫石層zh_TW
dc.subject潛盾工法zh_TW
dc.subject切刃磨損zh_TW
dc.subject隧道開挖zh_TW
dc.subject離散元素法zh_TW
dc.subjectTunnel excavationen
dc.subjectShield tunneling methoden
dc.subjectTool wearen
dc.subjectGravelly soilsen
dc.subjectDiscrete element methoden
dc.title卵礫石層潛盾切刃磨損影響因素數值模擬zh_TW
dc.titleNumerical Simulation Study on Factors Influencing Cutting Tools Wear in Gravelly Soils for Shield Tunnelen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.coadvisor王泰典zh_TW
dc.contributor.coadvisorTai-Tien Wangen
dc.contributor.oralexamcommittee熊彬成;邱家吉;李安叡zh_TW
dc.contributor.oralexamcommitteeBin-Chen Hsiung;Chia-Chi Chiu;An-Jui Lien
dc.subject.keyword潛盾工法,切刃磨損,卵礫石層,離散元素法,隧道開挖,zh_TW
dc.subject.keywordShield tunneling method,Tool wear,Gravelly soils,Discrete element method,Tunnel excavation,en
dc.relation.page102-
dc.identifier.doi10.6342/NTU202303104-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-08-09-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
dc.date.embargo-lift2025-07-01-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf9.26 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved