請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90626
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳肇欣 | zh_TW |
dc.contributor.advisor | Chao-Hsin Wu | en |
dc.contributor.author | 楊順 | zh_TW |
dc.contributor.author | Lucas Yang | en |
dc.date.accessioned | 2023-10-03T16:55:09Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-10-03 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-08-08 | - |
dc.identifier.citation | [1] J. Bardeen, and W. H. Brattain, “The Transistor, A Semi-Conductor Triode,” Phys. Rev. 74, pp.230-231, 1948.
[2] W. Shockley: 'Circuit Element Utilizing Semiconductive Material', United States Patent 2,569,347, 1951. [3] H. Kroemer, “Theory of a Wide-Gap Emitter for Transistors,” Proc. IRE, vol. 45, pp. 1535-1537, 1957 [4] C. H. Wu, G. Walter, H. W. Then, M. Feng, and N. Holonyak, Jr., “Scaling of light emitting transistor for multigigahertz optical bandwidth,” Appl. Phys. Lett. 94, p. 171101, 2009 [5] N. Holonyak, Jr. and SF Bevacqua, “Coherent (visible) Light Emission from Ga(As1-xPx) Junctions, ” Appl. Phys. Lett., vol. 1, no. 4, p. 82-83, 1962. [6] C. H. Chen, M. Hargis, J. M. Woodall, M. R. Melloch, J. S. Reynolds, W. Wang, and E. Yablonovitch, “GHz bandwidth GaAs light-emitting didoes,”Appl. Phys. Lett., vol. 74, pp. 3140-3142, 1999. [7] J. Heinen, W. Hurber, and W. Harth, “Light-emitting diodes with a modulation bandwidth of more than 1 GHz,” Electron Lett., vol. 12, pp. 553 -554, 1976. [8] M. Akbulut, C. H. Chen, M. Hargis, A. M. Weiner, M. R. Melloch, and J. M. Woodall, “Digital communications above 1 Gb/s using 890-nm surface-emitting light-emitting diodes,” IEEE Photon. Technol. Lett., vol. 13, pp. 85-87, 2001. [9] E. F. Schubert, Y. H. Wang, A. Y. Cho, L. W. Tu, and G. J. Zydzik, “Resonant cavity light-emitting diode,”Appl. Phys. Lett., vol. 60, pp. 921–923, 1992 [10] E. F. Schubert, N. E. J. Hunt, R. J. Malik, M. Micovic, and D. L. Miller, “Temperature and modulation characteristics of resonant-cavity light-emitting diodes,” J. Lightw. Technol., vol. 14, no. 7, pp. 1721–1729, 1996. [11] T. P. Lee, “Effect of junction capacitance on the rise time of LED’s and on the turn-on delay of injection lasers,” Bell Syst. Tech. J., vol. 54, no.1, pp. 53–68, Jan. 1975. [12] M. Feng, N. Holonyak, Jr., and W. Hafez, “Light-emitting transistor: Light emission from InGaP/GaAs heterojunction bipolar transistors,” Appl. Phys. Lett. 84, p.151, 2004 [13] M. Feng, N. Holonyak, Jr., and R. Chan, “Quantum-well-base heterojunction bipolar light-emitting transistor,” Appl. Phys. Lett. 84, p. 1952, 2004 [14] G. Walter, C. H. Wu, H. W. Then, M. Feng and N. Holonyak, Jr., “4.3 GHz optical bandwidth light emitting transistor,” Appl. Phys. Lett. 94, p.241101, 2009 [15] C.-H. Wu and C.-H. Wu, “12 GHz spontaneous optical bandwidth tunnel junction light-emitting transistor,” Applied Physics Letters, vol. 115, no. 18, p. 181102, Oct. 2019, doi: 10.1063/1.5124959. [16] I. CISCO Systems, “Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2016-2027,” 2022. [17] A. Kumar et al., “Monolithic integration of InGaAs n-FETs and lasers on Ge substrate,” Opt. Express, OE, vol. 25, no. 5, pp. 5146–5155, Mar. 2017, doi: 10.1364/OE.25.005146. [18] H. W. Then, M. Feng, N. Holonyak, and C. H. Wu, “Experimental determination of the effective minority carrier lifetime in the operation of a quantum-well n-p-n heterojunction bipolar light-emitting transistor of varying base quantum-well design and doping,” Applied Physics Letters, vol. 91, no. 3, p. 033505, Jul. 2007, doi: 10.1063/1.2759263. [19] B. Faraji, W. Shi, D. L. Pulfrey, and L. Chrostowski, “Analytical Modeling of the Transistor Laser,” IEEE Journal of Selected Topicsin Quantum Electronics, vol. 15, no. 3, pp. 594–603, May 2009, doi: 10.1109/JSTQE.2009.2013178. [20] M. Feng, N. Holonyak, H. W. Then, and G. Walter, “Charge control analysis of transistor laser operation,” Appl. Phys. Lett., vol. 91, no. 5, p. 053501, Jul. 2007, doi: 10.1063/1.2767172. [21] M. Feng, N. Holonyak, A. James, K. Cimino, G. Walter, and R. Chan, “Carrier lifetime and modulation bandwidth of a quantum well AlGaAs∕InGaP∕GaAs∕InGaAs transistor laser,” Appl. Phys. Lett., vol. 89, no. 11, p. 113504, Sep. 2006, doi: 10.1063/1.2346369. [22] L. Zhang and J.-P. Leburton, “Modeling of the Transient Characteristics of Heterojunction Bipolar Transistor Lasers,” IEEE Journal of Quantum Electronics, vol. 45, no. 4, Art. no. 4, Apr. 2009, doi: 10.1109/JQE.2009.2013215. [23] I. Taghavi, H. Kaatuzian, and J.-P. Leburton, “Bandwidth enhancement and optical performances of multiple quantum well transistor lasers,” Applied Physics Letters, vol. 100, no. 23, p. 231114, Jun. 2012, doi: 10.1063/1.4727898. [24] R. Basu, B. Mukhopadhyay, and P. K. Basu, “Modeling Resonance-Free Modulation Response in Transistor Lasers With Single and Multiple Quantum Wells in the Base,” IEEE Photonics Journal, vol. 4, no. 5, pp.1572–1581, Oct. 2012, doi: 10.1109/JPHOT.2012.2211075. [25] M. Feng, H. W. Then, N. Holonyak, G. Walter, and A. James, “Resonance-free frequency response of a semiconductor laser,” Appl. Phys. Lett., vol. 95, no. 3, p. 033509, Jul. 2009, doi: 10.1063/1.3184580. [26] Y. Li and J.-P. Leburton, “Quantum well capture and base carrier lifetime in light emitting transistor,” Applied Physics Letters, vol. 113, no. 17, Oct. 2018, doi: 10.1063/1.5044758. [27] Y.-H. Chang, Y.-L. Chou, S.-W. Chang, and C.-H. Wu, “Thermally-enhanced current gain of quantum-well heterojunction bipolar transistor,” Journal of Applied Physics, vol. 126, no. 1, Art. no. 1, Jul. 2019, doi: 10.1063/1.5091050. [28] C. -T. Tung, H. -Y. Lin, S. -W. Chang and C. -H. Wu, "Analytical Modeling of Tunnel-Junction Transistor Lasers," in IEEE Journal of Selected Topics in Quantum Electronics, vol. 28, no. 1: Semiconductor Lasers, pp. 1-8, Jan.-Feb. 2022, Art no. 1501008, doi: 10.1109/JSTQE.2021.3090527. [29] O. Heikkilä, J. Oksanen, and J. Tulkki, “Ultimate limit and temperature dependency of light-emitting diode efficiency,” Journal of Applied Physics, vol. 105, no. 9, Art. no. 9, May 2009, doi: 10.1063/1.3125514. [30] L. Yang, C.-H. Chang, and C.-H. Wu, “Analysis of quantum well optical modulation in light-emitting transistors,” in Proceedings of Photonics West, San Francisco, California, United States, 2017, doi: 10.1117/12.2257350. [31] H. W. Then, M. Feng, and N. Holonyak, “The transistor laser: Theory and experiment,” Proceedings of the IEEE, vol. 101, no. 10, pp. 2271–2298, Oct 2013, doi: 10.1109/JPROC.2013.2274935. [32] C.-T. Tung, S.-W. Chang, and C.-H. Wu, “Theoretical analysis on optical frequency response of tunnel-junction transistor lasers operated in different configurations,” Journal of Applied Physics, vol. 125, no. 2, p. 023105, Jan. 2019, doi: 10.1063/1.5067281. [33] J. Yan, J. Wang, C. Tang, X. Liu, G. Zhang and Y. He, "An Electrooptothermal-Coupled Circuit-Level Model for VCSELs Under Pulsed Condition," in IEEE Transactions on Industrial Electronics, vol. 66, no. 2, pp. 1315-1324, Feb. 2019, doi: 10.1109/TIE.2018.2833043. [34] D. Neamen, “Semiconductor Physics And Devices: Basic Principles” McGraw-Hill Education, 2012, pp. 379-389. [35] J. Cai et al., “On the Device Design and Drive-Current Capability of SOI Lateral Bipolar Transistors,” IEEE Journal of the Electron Devices Society, vol. 2, no. 5, pp. 105–113, Sep. 2014, doi: 10.1109/JEDS.2014.2331053. [36] Y. Taur and T. H. Ning, “Fundamentals of Modern VLSI Devices,” Higher Education from Cambridge University Press, Aug. 06, 2009. [37] J. M. Early, “Effects of Space-Charge Layer Widening in Junction Transistors,” Proceedings of the IRE, vol. 40, no. 11, pp. 1401–1406, Nov. 1952, doi: 10.1109/JRPROC.1952.273969. [38] S. Kargarrazi, H. Elahipanah, S. Rodriguez, and C.-M. Zetterling, “500 °C, High Current Linear Voltage Regulator in 4H-SiC BJT Technology,” IEEE Electron Device Letters, vol. 39, no. 4, pp. 548–551, Apr. 2018, doi: 10.1109/LED.2018.2805229. [39] C. T. Kirk, “A theory of transistor cutoff frequency (fT) falloff at high current densities,” IRE Transactions on Electron Devices, vol. 9, no. 2, pp. 164–174, Mar. 1962, doi: 10.1109/T-ED.1962.14965. [40] H. Kroemer, “Heterostructure bipolar transistors and integrated circuits,” Proceedings of the IEEE, vol. 70, no. 1, Art. no. 1, Jan. 1982, doi: 10.1109/PROC.1982.12226. [41] W. Liu, “Fundamentals of III-V Devices: HBTs, MESFETs, and HFETs/HEMTs,” Wiley, 1999. [42] C. Panchapakesan and J. S. Yuan, “Evaluation of aluminum mole fraction for controlled thermal behavior of AlGaAs/GaAs HBT,” in Conference Record Southcon, Mar. 1994, pp. 152–157. doi: 10.1109/SOUTHC.1994.498092. [43] N. E. Sepúlveda-Ramos, J. W. Teng, A. Ildefonso, H. P. Lee, S. G. Rao, and J. D. Cressler, “Impact of Device Layout on Thermal Parameters and RF Performance of 90-nm SiGe HBTs,” IEEE Transactions on Electron Devices, vol. 70, no. 3, pp. 850–856, Mar. 2023, doi: 10.1109/TED.2022.3232755. [44] J. Kruse, P. J. Mares, D. Scherrer, M. Feng, and G. E. Stillman, “Temperature dependent study of carbon-doped InP/InGaAs HBT’s,” IEEE Electron Device Letters, vol. 17, no. 1, Art. no. 1, Jan. 1996, doi: 10.1109/55.475561. [45] Z. Abid, S. P. McAlister, W. R. McKinnon, and E. E. Guzzo, “Temperature dependent DC characteristics of an InP/InGaAs/InGaAsP HBT,” IEEE Electron Device Letters, vol. 15, no. 5, Art. no. 5, May 1994, doi: 10.1109/55.291594. [46] A. J. Joseph, J. D. Cressler, R. C. Jaeger, D. M. Richey, and D. L. Harame, “Neutral base recombination in advanced SiGe HBTs and its impact on the temperature characteristics of precision analog circuits,” in Proceedings of International Electron Devices Meeting, Dec. 1995, pp. 755–758. doi: 10.1109/IEDM.1995.499328. [47] M. Feng, N. Holonyak, and R. Chan, “Quantum-well-base heterojunction bipolar light-emitting transistor,” Appl. Phys. Lett., vol. 84, no. 11, pp. 1952–1954, Mar. 2004, doi: 10.1063/1.1669071. [48] G. Walter, C. H. Wu, H. W. Then, M. Feng, and N. Holonyak, “4.3 GHz optical bandwidth light emitting transistor,” Appl. Phys. Lett., vol. 94, no. 24, p. 241101, Jun. 2009, doi: 10.1063/1.3153146. [49] C.-H. Wu and C.-H. Wu, “12 GHz spontaneous optical bandwidth tunnel junction light-emitting transistor,” Applied Physics Letters, vol. 115, no. 18, p. 181102, Oct. 2019, doi: 10.1063/1.5124959. [50] L. Yang, S.-W. Chang, and C.-H. Wu, “A Four-Port Model of Light-Emitting Transistors for Circuit Simulation and Application,” IEEE Transactions on Electron Devices, vol. 67, no. 12, pp. 5572–5580, Dec. 2020, doi: 10.1109/TED.2020.3028326. [51] M. J. Sun, K. H. Nichols, W. S. C. Chang, R. O. Gregory, F. J. Rosenbaum, and C. M. Wolfe, “Gallium arsenide electroabsorption avalanche photodiode waveguide detectors,” Appl. Opt., AO, vol. 17, no. 10, Art. no. 10, May 1978, doi: 10.1364/AO.17.001568. [52] K. Tharmalingam, “Optical Absorption in the Presence of a Uniform Field,” Phys. Rev., vol. 130, no. 6, Art. no. 6, Jun. 1963, doi: 10.1103/PhysRev.130.2204. [53] L. Yang, S.-W. Chang, and C.-H. Wu, “Steady-State Characterization for Capture and Escape Lifetimes of 2-D Electron Gas in Light-Emitting Transistors,” IEEE Transactions on Electron Devices, vol. 70, no. 7, pp. 3675–3683, Jul. 2023, doi: 10.1109/TED.2023.3279055. [54] Chin-Yi Tsai, L. F. Eastman, Yu-Hwa Lo, and Chin-Yao Tsai, “Carrier capture and escape in multisubband quantum well lasers,” IEEE Photonics Technology Letters, vol. 6, no. 9, Art. no. 9, Sep. 1994, doi: 10.1109/68.324677. [55] J. Fouquet and R. Burnham, “Recombination dynamics in GaAs/AlxGa1-xAs quantum well structures,” IEEE Journal of Quantum Electronics, vol. 22, no. 9, Art. no. 9, Sep. 1986, doi: 10.1109/JQE.1986.1073154. [56] R. K. Ahrenkiel, S. W. Johnston, D. Kuciauskas, and J. Tynan, “Dual-sensor technique for characterization of carrier lifetime decay transients in semiconductors,” Journal of Applied Physics, vol. 116, no. 21, Art. no. 21, Dec. 2014, doi: 10.1063/1.4903213. [57] S. C. Kan, D. Vassilovski, T. C. Wu, and K. Y. Lau, “On the effects of carrier diffusion and quantum capture in high speed modulation of quantum well lasers,” Applied Physics Letters, vol. 61, no. 7, Art. no. 7, Aug. 1992, doi: 10.1063/1.107787. [58] B. Romero, I. Esquivias, S. Weisser, E. C. Larkins, and J. Rosenzweig, “Carrier capture and escape processes in In0.25Ga0.75As-GaAs quantum-well lasers,” IEEE Photonics Technology Letters, vol. 11, no. 7, pp. 779–781, Jul. 1999, doi: 10.1109/68.769705. [59] S. Weisser, I. Esquivias, P. J. Tasker, J. D. Ralston, B. Romero, and J. Rosenzweig, “Impedance characteristics of quantum-well lasers,” IEEE Photonics Technology Letters, vol. 6, no. 12, Art. no. 12, Dec. 1994, doi: 10.1109/68.392224. [60] M. Feng, N. Holonyak, and R. Chan, “Quantum-well-base heterojunction bipolar light-emitting transistor,” Appl. Phys. Lett., vol. 84, no. 11, pp. 1952–1954, Mar. 2004, doi: 10.1063/1.1669071. [61] Y.-T. Chen, Y.-T. Liang, and C.-H. Wu, “Monolithically Integrated Optoelectronic Multiplexer Circuit Using Light Emitting Transistors,” in 26th Optoelectronics and Communications Conference (2021), paper T3E.2, Jul. 2021, p. T3E.2. doi: 10.1364/OECC.2021.T3E.2. [62] L.-C. Hsueh, H.-Y. Lin, M. Kumar, and C.-H. Wu, “Thermal Dynamic Performance and Integrated Optoelectronic System with InGaP/GaAs Quantum Well Light-Emitting Transistors (LETs),” in Asia Communications and Photonics Conference 2021 (2021), paper M5D.2, Oct. 2021, p. M5D.2. doi: 10.1364/ACPC.2021.M5D.2. [63] H. Kroemer, “Heterostructure bipolar transistors and integrated circuits,” Proceedings of the IEEE, vol. 70, no. 1, Art. no. 1, Jan. 1982, doi: 10.1109/PROC.1982.12226. [64] M. Leroux et al., “Quantum confined Stark effect due to built-in internal polarization fields in (Al,Ga)N/GaN quantum wells,” Phys. Rev. B, vol. 58, no. 20, pp. R13371–R13374, Nov. 1998, doi: 10.1103/PhysRevB.58.R13371. [65] C.-H. Wu and C.-H. Wu, “Analysis of different tunneling mechanisms of InxGa1−xAs/AlGaAs tunnel junction light-emitting transistors,” Appl. Phys. Lett., vol. 105, no. 17, Art. no. 17, Oct. 2014, doi: 10.1063/1.4898342. [66] G. Walter, A. James, N. Holonyak, and M. Feng, “Chirp in a transistor laser: Franz-Keldysh reduction of the linewidth enhancement,” Appl. Phys. Lett., vol. 90, no. 9, p. 091109, Feb. 2007, doi: 10.1063/1.2709964. [67] C. Hilsum, “Simple empirical relationship between mobility and carrier concentration,” Electronics Letters, vol. 10, no. 13, Art. no. 13, Jun. 1974, doi: 10.1049/el:19740205. [68] D. Chattopadhyay, S. K. Sutradhar, and B. R. Nag, “Electron transport in direct-gap III-V ternary alloys,” J. Phys. C: Solid State Phys., vol. 14, no. 6, Art. no. 6, 1981, doi: 10.1088/0022-3719/14/6/014. [69] Jessica L. Boland, Gözde Tütüncüoglu, Juliane Q. Gong, Sonia Conesa-Boj, Christopher L. Davies, Laura M. Herz, Anna i Fontcuberta and Michael B. Johnston, “Towards higher electron mobility in modulation doped GaAs/AlGaAs core shell nanowires,” Nanoscale, vol. 9, no. 23, Art. no. 23, Jun. 2017, doi: 10.1039/C7NR00680B. [70] Y.-H. Chang, Y.-L. Chou, S.-W. Chang, and C.-H. Wu, “Thermally-enhanced current gain of quantum-well heterojunction bipolar transistor,” Journal of Applied Physics, vol. 126, no. 1, Art. no. 1, Jul. 2019, doi: 10.1063/1.5091050. [71] Z. Abid, S. P. McAlister, W. R. McKinnon, and E. E. Guzzo, “Temperature dependent DC characteristics of an InP/InGaAs/InGaAsP HBT,” IEEE Electron Device Letters, vol. 15, no. 5, Art. no. 5, May 1994, doi: 10.1109/55.291594. [72] Y. Li and J.-P. Leburton, “Quantum well capture and base carrier lifetime in light emitting transistor,” Applied Physics Letters, vol. 113, no. 17, Art. no. 17, Oct. 2018, doi: 10.1063/1.5044758. [73] W. M. Webster, "On the Variation of Junction-Transistor Current-Amplification Factor with Emitter Current," in Proceedings of the IRE, vol. 42, no. 6, pp. 914-920, June 1954, doi: 10.1109/JRPROC.1954.274751. [74] D. V. Prashant, D. P. Samajdar, and Z. Arefinia, “FDTD-Based Optimization of Geometrical Parameters and Material Properties for GaAs-Truncated Nanopyramid Solar Cells,” IEEE Transactions on Electron Devices, vol. 68, no. 3, pp. 1135–1141, Mar. 2021, doi: 10.1109/TED.2021.3055190. [75] P. J. Bishop, M. E. Daniels, B. K. Ridley, and K. Woodbridge, “Radiative recombination in GaAs/AlxGa1-xAs quantum wells,” Phys. Rev. B, vol. 45, no. 12, Art. no. 12, Mar. 1992, doi: 10.1103/PhysRevB.45.6686. [76] U. Strauss, W. W. Rühle, and K. Köhler, “Auger recombination in intrinsic GaAs,” Appl. Phys. Lett., vol. 62, no. 1, pp. 55–57, Jan. 1993, doi: 10.1063/1.108817. [77] S. Hausser, G. Fuchs, A. Hangleiter, K. Streubel, and W. T. Tsang, “Auger recombination in bulk and quantum well InGaAs,” Appl. Phys. Lett., vol. 56, no. 10, Art. no. 10, Mar. 1990, doi: 10.1063/1.103175. [78] W. W. Bewley, J. R. Lindle, C. S. Kim, M. Kim, C. L. Canedy, I. Vurgaftmana, and J. R. Meyer, “Lifetimes and Auger coefficients in type-II W interband cascade lasers,” Appl. Phys. Lett., vol. 93, no. 4, p. 041118, Jul. 2008, doi: 10.1063/1.2967730. [79] B. K. Ridley, "The electron-phonon interaction in quasi-two-dimensional semiconductor quantum-well structures," J. Phys. C: Solid State Phys., vol. 15, no. 28, Art. no. 28, Oct. 1982, doi: 10.1088/0022-3719/15/28/021. [80] B. Romero, J. Arias, I. Esquivias, and M. Cada, “Simple model for calculating the ratio of the carrier capture and escape times in quantum-well lasers,” Appl. Phys. L ett., vol. 76, no. 12, Art. no. 12, Mar. 2000, doi: 10.1063/1.126077. [81] C.-Y. Tsai, C.-Y. Tsai, Y.-H. Lo, R. M. Spencer, and L. F. Eastman, "Nonlinear gain coefficients in semiconductor quantum-well lasers: effects of carrier diffusion, capture, and escape," IEEE Journal of Selected Topics in Quantum Electronics, vol. 1, no. 2, Art. no. 2, Jun. 1995, doi: 10.1109/2944.401211. [82] H. Schneider and K. v. Klitzing, “Thermionic emission and Gaussian transport of holes in a GaAs/AlxGa1-xAs multiple-quantum-well structure,” Phys. Rev. B, vol. 38, no. 9, Art. no. 9, Sep. 1988, doi: 10.1103/PhysRevB.38.6160. [83] B. Li, S. Prasad, L.-W. Yang, and S. C. Wang, “A semianalytical parameter-extraction procedure for HBT equivalent circuit,” IEEE Transactions on Microwave Theory and Techniques, vol. 46, no. 10, pp. 1427–1435, Oct. 1998, doi: 10.1109/22.721144. [84] B. Faraji, W. Shi, D. L. Pulfrey, and L. Chrostowski, “Analytical Modeling of the Transistor Laser,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 15, no. 3, Art. no. 3, May 2009, doi: 10.1109/JSTQE.2009.2013178. [85] A. Khanna, “Three-port S-parameters ease GaAs MESFET designing,” Microwav. RF (1985), pp. 81-84 [86] L. Degachi and F. M. Ghannouchi, “Systematic and rigorous extraction method of HBT small-signal model parameters,” IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 2, pp. 682–688, Feb. 2006, doi: 10.1109/TMTT.2005.862661. [87] J. Gao, X. Li, H. Wang, and G. Boeck, “An approach to determine small-signal model parameters for InP-based heterojunction bipolar transistors,” IEEE Transactions on Semiconductor Manufacturing, vol. 19, no. 1, pp. 138–145, Feb. 2006, doi: 10.1109/TSM.2005.863222. [88] B. Li, S. Prasad, L.-W. Yang, and S. C. Wang, “A semianalytical parameter-extraction procedure for HBT equivalent circuit,” IEEE Transactions on Microwave Theory and Techniques, vol. 46, no. 10, pp. 1427–1435, Oct. 1998, doi: 10.1109/22.721144. [89] T.-R. Yang, J. M.-L. Tsai, C.-L. Ho, and R. Hu, “SiGe HBT’s Small-Signal Pi Modeling,” IEEE Transactions on Microwave Theory and Techniques, vol. 55, no. 7, pp. 1417–1424, Jul. 2007, doi: 10.1109/TMTT.2007.900214. [90] D. A. Teeter and W. R. Curtice, “Comparison of hybrid pi and Tee HBT circuit topologies and their relationship to large signal modeling,” in 1997 IEEE MTT-S International Microwave Symposium Digest, Jun. 1997, pp. 375–378 vol.2. doi: 10.1109/MWSYM.1997.602812. [91] M. K. ACHUTHAN, “Analysis of a.c. and transient properties of junction transistors through the concept of complex lifetime,” International Journal of Electronics, vol. 28, no. 3, pp. 271–290, Mar. 1970, doi: 10.1080/00207217008900123. [92] M. K. ACHUTHAN and T. J. VITTO, “A new high frequency equivalent circuit of junction transistors derived from physical theory,” International Journal of Electronics, vol. 30, no. 2, pp. 101–120, Feb. 1971, doi: 10.1080/00207217108900294. [93] M. K. ACHUTHAN and T. J. VITTO, “High-frequency physical equivalent circuit of junction transistors in common collector configurationt,” International Journal of Electronics, vol. 34, no. 1, pp. 111–114, Jan. 1973, doi: 10.1080/00207217308938417. [94] Y. Li and J.-P. Leburton, “Quantum well capture and base carrier lifetime in light emitting transistor,” Applied Physics Letters, vol. 113, no. 17, Art. no. 17, Oct. 2018, doi: 10.1063/1.5044758. [95] B. Faraji, W. Shi, D. L. Pulfrey, and L. Chrostowski, “Analytical Modeling of the Transistor Laser,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 15, no. 3, Art. no. 3, May 2009, doi: 10.1109/JSTQE.2009.2013178. [96] Wang, H.-L., Huang, Y.-J., and Wu, C.-H., “Optical frequency response analysis of light-emitting transistors under different microwave configurations," Applied Physics Letters 103(5), 051110 (2013). [97] A. Haggag and K. Hess, “Analytical theory of semiconductor p-n junctions and the transition between depletion and quasineutral region,” IEEE Transactions on Electron Devices, vol. 47, no. 8, pp. 1624–1629, Aug. 2000, doi: 10.1109/16.853040. [98] R. K. Ahrenkiel, R. Ellingson, S. Johnston, and M. Wanlass, “Recombination lifetime of In0.53Ga0.47As as a function of doping density,” Applied Physics Letters, vol. 72, no. 26, pp. 3470–3472, Jun. 1998, doi: 10.1063/1.121669. [99] R. J. Widlar, “New developments in IC voltage regulators,” IEEE Journal of Solid-State Circuits, vol. 6, no. 1, pp. 2–7, Feb. 1971, doi: 10.1109/JSSC.1971.1050151. [100] M. A. P. Pertijs and J. H. Huijsing, PRECISION TEMPERATURE SENSORS IN CMOS TECHNOLOGY. Dordrecht: Springer Netherlands, 2006. doi: 10.1007/1-4020-5258-8. [101] H. Kamitsuna, “Ultra-wideband monolithic photoreceivers using HBT-compatible HPTs with novel base circuits, and simultaneously integrated with an HBT amplifier,” Journal of Lightwave Technology, vol. 13, no. 12, pp. 2301–2307, Dec. 1995, doi: 10.1109/50.475567. [102] W. Huang et al., “37-GHz bandwidth monolithically integrated InP HBT/evanescently coupled photodiode,” IEEE Photonics Technology Letters, vol. 18, no. 12, pp. 1323–1325, Jun. 2006, doi: 10.1109/LPT.2006.876733. [103] H. Kamitsuna, “Ultra-wideband monolithic photoreceivers using HBT-compatible HPTs with novel base circuits, and simultaneously integrated with an HBT amplifier,” Journal of Lightwave Technology, vol. 13, no. 12, pp. 2301–2307, Dec. 1995, doi: 10.1109/50.475567. [104] W.-Y. Yin, S.-J. Pan, and L.-W. Li, “Double-level spiral inductors with multiple-via interconnects on GaAs substrates,” IEEE Transactions on Magnetics, vol. 40, no. 3, pp. 1756–1758, May 2004, doi: 10.1109/TMAG.2004.826912. [105] H.-H. Chen, C.-W. Wang, and C.-H. Wu, “Monolithically Integrated Optical NAND Gate Using Light-Emitting Transistors,” in 2018 23rd Opto-Electronics and Communications Conference (OECC), Jul. 2018, pp. 1–2. doi: 10.1109/OECC.2018.8729956. [106] Y.-T. Chen, Y.-T. Liang, and C.-H. Wu, “Monolithically Integrated Optoelectronic Multiplexer Circuit Using Light Emitting Transistors,” in 26th Optoelectronics and Communications Conference (2021), paper T3E.2, Optica Publishing Group, Jul. 2021, p. T3E.2. doi: 10.1364/OECC.2021.T3E.2. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90626 | - |
dc.description.abstract | 本篇論文測量並比較了不同偏置情況下異質結雙極發光電晶體(也稱為 LET 和 HBLET)的光調製帶寬。基於量子井的異質結雙極發光晶體管由於其具有多端口操作能力,因此能夠作為光通信和光電集成電路(OEIC)中的候選器件。元件的調製帶寬受到載子複合以及載子捕獲-逃逸動態的限制,為了提高帶寬,有必要了解捕獲和逃逸的知識。 我們提供穩態方法作為動態方法(例如時間分辨光致發光和小信號響應)的替代,以描述發光電晶體的兩種壽命。 這種方法使我們能夠確定兩個生命週期的特徵。 作為實驗工作的一部分,我們通過直流測量探索 基極-發射極結的電氣特性。 為了開發電荷控制模型,我們使用連續性方程來描述量子井的未束縛和束縛子帶中的電子濃度。 相關的捕獲和逃逸壽命可以通過使用解析方程結合發光電晶體的當前增益來計算。 我們通過將觀察到的帶寬與研究中發現的 -3 dB 增益帶寬進行比較來驗證我們的模型。
從器件物理開始,我們構建了發光電晶體模型,用於光電集成電路和電氣設計自動化的仿真和使用。除了對器件功能很重要的發光電晶體基本特性之外,我們的模型還準確描述了 發光電晶體的電到電和電到光特性。 還提供導納矩陣,用於調製響應的通用模擬,包括共發射極、共集電極和共基極設置中的散射參數和電流增益。 為了確保電路模擬器SPICE兼容,還給出了發光電晶體的大信號眼圖。 在我們的模型的幫助下,可以加快電路設計的過程,這也可以幫助電路設計者分析自己電路的有效性。 本篇論文並模擬比較發光電晶體在熱感應器,光收發器的效能。另外也運用TCAD模擬元件内部電流以及載子複合的分佈,以及不同尺寸下的元件跟電路特性。希望本篇論文的分析可以用在改善類似元件以及電路架構的效能。 | zh_TW |
dc.description.abstract | In the thesis, the optical modulation bandwidths of light-emitting transistors (LETs) under various bias conditions are measured and contrasted in order to determine the effect of the voltage-dependent charge-removing mechanism within the active region. Due to their multiport operation properties, quantum-well-based heterojunction bipolar light-emitting transistors (HBLETs or LETs) could function as candidate devices in optical communication and optoelectronic integrated circuits (OEICs). Recombination and capture-escape dynamics of carriers limit the modulation bandwidth of a device. To enhance bandwidths, knowledge of capture and escape lifetimes is required. To characterize the two lifetimes of light-emitting transistors, we present a steady-state method as opposed to dynamic techniques such as time-resolved photoluminescence and small-signal response. On the experimental side, we investigate the electrical characteristics of the base-emitter junction of LETs via DC measurements. We formulate the charge-controlled model with continuity equations for electron concentrations in the quantum well's unbound and bound subbands. Using analytical expressions and the current gains of LETs, the related capture and escape lifetimes are extracted. In conclusion, we validate our model by comparing the measured bandwidths to the study's -3 dB gain bandwidths.
We construct the model of light-emitting transistors (LETs) for simulation and application in optoelectronic integrated circuits and electronic design automation, beginning with the device physics. Our model accurately describes the electrical-to-electrical and electrical-to-optical properties of LETs, as well as the fundamental properties of LETs pertinent to device operation. For general simulations of modulation responses such as scattering parameters and current gains in common-emitter, common-collector, and common-base configurations, an admittance matrix is also presented. For SPICE compatibility, the large-signal eye diagrams of LETs on the circuit simulator are also demonstrated. Our model can assist circuit designers in evaluating the efficacy of their circuits and accelerating the design process. We also simulate and compare the performance of light-emitting transistors in thermal sensors and optical transceivers. In addition, TCAD is also used to simulate the distribution of internal current and carrier recombination of components, as well as the characteristics of components and circuits at different sizes. It is hoped that the analysis in this paper can be used to improve the performance of similar components and circuit architectures. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T16:55:09Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-10-03T16:55:09Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | Acknowledgments I
摘要 III Abstract V Table of Contents VII List of Figures XIII List of Tables XXVII Chapter 1. Introduction 1 1.1. History of Bipolar Transistors and Background of Light-Emitting Transistors 1 1.2. Current Modeling Research Status in Light-Emitting Transistors and Transistor Lasers 4 1.3. Modeling Need of Light-Emitting Transistors 16 1.4. Organization of work 18 Chapter 2. Characteristics of Bipolar Devices 21 2.1 Preface 21 2.2 Characteristics of Homojunction Bipolar Transistors 21 2.2.1 Minority Carrier Concentration Profile in a sub-region 22 2.2.2 Nodal Current Expressions of Homojunction Bipolar Transistors 24 2.2.3 Current Gains Properties in Different Configurations 25 2.2.4 Current Gains Properties in Different B-C voltage operations 26 2.3 Characteristics of Heterojunction Bipolar Junction Transistors 28 2.3.1 Current Gains Properties with Different Heterojunction Designs 30 2.3.2 Current Gains Properties in Different Temperatures 31 2.3.3 Current Gains Properties with Different Regional Doping Concentrations 34 2.4 Characteristics of Heterojunction Bipolar Light Emitting Transistors 37 2.4.1 Comparison between HBTs and LETs 40 2.4.2 B-C Junction Controllability on LETs under Forward Active Operation 43 2.4.3 Forward Gummel and Reverse Gummel Operations of LETs 46 2.4.4 QW Light-Emitting Efficiency versus Temperature 48 2.4.5 Fanz-Kyldesh Effect on LETs [50] 49 Chapter 3. Charge-Controlled Analysis and 2DEG Capture-Escape Properties in InGaAs/GaAs Light-Emitting Transistors 55 3.1. Preface 55 3.2. Derivation of Nodal Currents 58 3.3. Experiment 64 3.4. Extraction Procedure 67 3.4.1. Recombination Lifetime 68 3.4.2. Ratio between Electron Concentrations in Bound and Unbound Subbands of QW 70 3.4.3. Quasi-Fermi Levels of Unbound and Bound Subbands 72 3.4.4. Capture and Escape Lifetimes 77 3.5. Discussion on Capture-Escape Dynamics with Inter-subband Transition Perspective 82 Chapter 4. Microwave Modeling of Light-Emitting Transistors 89 4.1. Preface 90 4.2. Configuration Transformation and Analysis 91 4.2.1. Transfer to common emitter configurations with S matrix [85] 92 4.2.2. Transfer to common emitter current gain with S matrix 94 4.3. Small Signal Model Extraction 94 4.3.1. External Parameters Extraction 95 4.3.2. Extraction Intrinsic Parameters 105 4.4. Electrical Microwave model 116 4.5. Electrical-to-Optical Modulation Branch 121 4.6. Four-Port Microwave model 127 Chapter 5. Discussion on Circuit and System Applications 139 5.1. Preface 139 5.2. Temperature Sensor 141 5.3. Photoreceiver and Phototranceiver 155 5.4. Signal Integrity 162 Chapter 6. Physical Simulations of HBTs and LETs 165 6.1. Preface 165 6.2. Device Structure and Layout 166 6.3. Characteristics of Recombination in the Base Region 167 6.4. Peripheral Recombination 170 6.5. QW Epitaxial Layer Comparison 172 6.5.1. QW mole fraction 172 6.5.2. QW width 173 6.6. Contact Width Scaling 175 6.6.1. Scaling Emitter Contact Width 176 6.6.2. Scaling Base Contact Width 177 6.6.3. Scaling Collector Contact Width 178 6.7. Mesa Area Scaling 180 6.7.1. Scaling Emitter Mesa Radius 181 6.7.2. Scaling Base Mesa Radius 183 6.8. Scaling Discussion on Circuit Application 185 Chapter 7. Conclusion 187 7.1. Summary 187 7.2. Suggestions for Future Work 190 References 192 APPENDIX A 213 Reverse Saturation Current Densities JE,t,fs and JE,t,rs 213 APPENDIX B 213 Elements of Admittance Matrix 213 APPENDIX C 214 Inter-subband Optical Phonon Scattering 214 APPENDIX D 216 The temperature properties of junction depletion capacitance and junction conductance 216 APPENDIX E 217 Bandgap energy change of strained quantum well 217 APPENDIX F 220 Publication List 220 APPENDIX G 222 學位論文原創性檢查 222 | - |
dc.language.iso | en | - |
dc.title | 適用於系統以及電路模擬的異質介面雙載子發光電晶體模型 | zh_TW |
dc.title | A Heterojunction Bipolar Light-Emitting Transistor Model for Circuit and System Application | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 博士 | - |
dc.contributor.oralexamcommittee | 張書維;吳育任;黃建璋;辛裕明 | zh_TW |
dc.contributor.oralexamcommittee | Shu-Wei Chang;Yuh-Renn Wu;JianJang Huang ;Yue-ming Hsin | en |
dc.subject.keyword | 發光電電體,電路模擬,光電集成電路,光通訊,載子逃逸-捕捉動力學,基極主動區設計,TCAD, | zh_TW |
dc.subject.keyword | Light-emitting transistors,SPICE,OEIC,optical communication,capture-escape dynamics,base active region design,TCAD, | en |
dc.relation.page | 250 | - |
dc.identifier.doi | 10.6342/NTU202303065 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2023-08-09 | - |
dc.contributor.author-college | 電機資訊學院 | - |
dc.contributor.author-dept | 光電工程學研究所 | - |
顯示於系所單位: | 光電工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf 目前未授權公開取用 | 10.54 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。