Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90587
標題: 精微線材彎壓成形產品應用與疲勞分析
Application and Fatigue Analysis of Fine-Wire Product Made by Bending-Compression Forming Process
作者: 邱壬彤
Ren-Tong Qiu
指導教授: 陳復國
Fuh-Kuo Chen
關鍵字: 精微線材,彎壓成形,接觸力,產品設計,有限元素分析,疲勞壽命分析,
Fine wire rods,Bending-compression forming,Contact force,Product design,Finite element analysis,Fatigue life,
出版年 : 2023
學位: 碩士
摘要: 隨著科技快速發展和全球化的加速,現代社會資訊傳遞速度飛快,對於3C產品的需求也在不斷增長。因此,產品檢驗已經成為電子零件製程中不可或缺的關鍵流程,此趨勢下製造商面對檢測客製化的需求大幅提升。另外,隨著電子零件製程日趨細緻,晶片日益精密,相對應的檢測設備尺寸隨之縮小,產品面臨微型化與強度下降的挑戰。因此,滿足客製化需求與提升產品強度為金屬精微成形產品面臨的重要議題。
本論文旨在研究精微線材彎壓產品,利用有限元素分析方法建立分析模型,探討相異機械性質之精微線材對於成形性與作動接觸力影響,並參考實際之作動邊界條件完成模擬模型優化,比對實驗數據驗證模擬具高正確性,提高產品後續分析的準確性。
後續根據此作動模型,探討各種特徵尺寸變化對作動接觸力的影響,建立接觸力預測模型,可對欲生產產品進行評估,取代傳統試誤法之設計方式,縮短產品開發時程,並滿足客製化需求。另外,產線會對生產之產品進行抽樣,透過擬合符合實際之產品尺寸機率分布,結合接觸力預測模型,完成虛實整合,分析極端尺寸下對於線徑公差的考量,小線徑產品對於接觸力變化更為敏感,因此需對線徑精度的要求提高,以符合接觸力公差範圍。
本論文所探討之精微線材彎壓產品,被應用於高精密測試設備,後續維修困難,製造商主要以提升產品使用壽命作為提高產品價值的策略。隨著產品的微型化,對於產品使用壽命的挑戰加劇,特別是在疲勞壽命方面被視為設計的關鍵指標之一。本論文完成對所用之線材的疲勞曲線,結合成形至作動的模擬模型,建立疲勞壽命分析模型,並經由實際驗證,確認其準確度。透過疲勞模擬,了解各部位疲勞破壞之機制,分析特徵尺寸對疲勞壽命的趨勢,結果顯示因線徑的縮小導致產品疲勞強度下降,可透過產品特徵尺寸的調整提升疲勞強度。
本論文主要進行模擬模型的優化,作動模擬之接觸力歷程曲線具高準確度,並使疲勞模擬符合現實疲勞試驗結果,提高對後續分析的準確性。疲勞單因子分析後續可結合接觸力預測模型,使產品設計除符合接觸力目標外,可達更高之疲勞壽命,提高產品之可靠度與價值。
As technology rapidly advances and globalization accelerates, modern society finds itself in an era where information transmission is incredibly fast-paced. Demand for 3C products is growing incessantly, making product testing an indispensable part of electronic parts processing. Under this trend, manufacturers are facing a significant increase in demand for customized testing. Meanwhile, the manufacturing process of electronic components is becoming more intricate, with chips becoming more precise and corresponding testing equipment shrinking in size. This leads to challenges of miniaturization and decreasing strength for the products. Therefore, meeting the demands of customization and enhancing product strength have become important issues for fine wire product.
The aim of this thesis is to investigate fine wire bending products, using finite element analysis methods to establish an analytical model. It explores the influence of diverse mechanical properties of fine wires on formability and actuation contact force, and refers to actual boundary conditions to optimize the simulation model. It compares experimental data to validate the accuracy of the simulation, improving the accuracy of subsequent product analysis.
Following this, the study explores the impact of various characteristic size changes on actuation contact force based on the actuation model, establishing a contact force prediction model. This allows evaluation of intended products, replacing traditional trial-and-error design methods, shortening product development time, and meeting customization needs. Moreover, the production line samples the products, fitting the probability distribution of actual product size, combining it with the contact force prediction model, accomplishing the integration of virtual and reality. It analyzes the consideration of wire diameter tolerance under extreme sizes, showing that small wire diameter products are more sensitive to changes in contact force. Hence, the requirement for wire diameter precision needs to be heightened to meet the tolerance range of contact force.
The fine wire bending product discussed in this thesis is applied in high-precision testing equipment, which is difficult to maintain afterwards. Manufacturers mainly enhance the product lifespan as a strategy to increase product value. However, with product miniaturization, the challenge of lifespan increases, making fatigue life a key factor in design. This thesis establishes a fatigue life model for the wires used, combining it with the simulation model from forming to actuation, and validates it through actual tests, confirming its accuracy. Fatigue simulation helps understand the fatigue failure mechanisms of different parts, and analyses the trend of characteristic sizes on fatigue life. Results indicate that shrinking wire diameter leads to a decrease in product fatigue strength, which can be enhanced through adjusting product characteristic size. Subsequently, it can be combined with the contact force prediction model, so product design meets not only the contact force target but also achieves higher fatigue life, thereby enhancing the reliability and value of the product.
This thesis mainly performed optimization of the simulation model. The contact force history curve of actuation simulation has high accuracy, and fatigue simulation conforms to real fatigue test results, enhancing the accuracy of subsequent analysis. Fatigue single factor analysis can be combined with a contact force prediction model, allowing product design to meet contact force targets while achieving higher fatigue life, thereby increasing product reliability and value.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90587
DOI: 10.6342/NTU202303397
全文授權: 同意授權(限校園內公開)
電子全文公開日期: 2028-08-31
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
7.12 MBAdobe PDF檢視/開啟
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved