請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90587完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳復國 | zh_TW |
| dc.contributor.advisor | Fuh-Kuo Chen | en |
| dc.contributor.author | 邱壬彤 | zh_TW |
| dc.contributor.author | Ren-Tong Qiu | en |
| dc.date.accessioned | 2023-10-03T16:45:08Z | - |
| dc.date.available | 2023-11-10 | - |
| dc.date.copyright | 2023-10-03 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-10 | - |
| dc.identifier.citation | [1]周敏傑.(2021,June.01). Design and Manufacture of Wafer Test Probe Card.機械工業雜誌.[Onile].pp.16-25.Available: https://www.airitilibrary.com/Publication/alDetailedMesh?DocID=P20171221002-202106-202106040008-202106040008-16-25.
[2] E. F. Smith, J. Kumnick, B. Quimby and A. Klein. (2013, June 9-12). New Generation of Probe Alloys [Online].Retrieved from https://www.swtest.org/swtw_library/2013proc/PDF/SWTW13-27.pdf. [3] Y. Chen. (2017, June 4-7). Vertical Probe Mechanical & Thermal-electrical Characterization using Finite Element Analysis [Online].Retrieved from http://www.svprobe.com/news/FEA_SVTCL_Chen_SWTW17.pdf. [4] S. Kim, J. Montero, J. Yoon, Y. Choi, S. Park, P. Song, & L. Österlund, “Embedded Oxidized Ag–Pd–Cu Ultrathin Metal Alloy Film Prepared at Low Temperature with Excellent Electronic, Optical, and Mechanical Properties,” ACS applied materials & interfaces, vol. 14, no. 13, pp.15756-15764, 2022. [5] T. Hauck, W. H. Müller, and I. Schmadlak, “Nonlinear buckling analysis of vertical wafer probe technology,” Microsystem technologies, vol. 16, no. 11, pp.1909-1920, 2010. [6] T. Rokkaku. (2015, June 7-10). Introduction of efficient design tools for vertical probe and innovative probe material, Rhodeo6 [Online].Retrieved from https://www.probeinnovation.jp/application/files/8315/3783/8171/SWTW_2015_Presentation.pdf. [7] Y. R. Oh, Y. J. Kim, H. S. Nam, U. G. Park, H. J. Lee, J. Y. Kim, & J. H. Park, “Design of vertical type probe tip using finite element analysis,”Transactions of the Korean Society of Mechanical Engineers A, vol. 36, no. 8, pp.851-856, 2012. [8] 吳宜暹,精微線材彎壓成形模擬與實驗分析,國立台灣大學機械工程研究所碩士論文,2018。 [9] 黃柏竣,精微線材彎壓成形模擬分析與製程模具設計,國立台灣大學機械工程研究所碩士論文,2020。 [10] 陳長欣,精微線材彎壓成形模擬分析與破壞力學分析,國立台灣大學機械工程研究所碩士論文,2021。 [11]劉思澔,精微線材彎壓成形產品功能分析與設計流程優化,國立台灣大學機械工程研究所碩士論文,2022。 [12] Brown, P., Wynder, R., Tenney, D., & Hunter, S. “Effects of probe marks on shear test of copper ball bonds in two pad aluminum thicknesses,’’ International Symposium on Microelectronics,vol. 2016,no. 1,pp. 219-226,Oct. 2016. [13] H. Y. Chang, W. F. Pan, & S. M. Lin, “Investigation of contact behavior and design of vertical probe for wafer level probing,” IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 2, no. 4, pp.710-718, 2012. [14] J. T. Chiu, & D. Y. Chang, “A new probe design combining finite element method and optimization used for vertical probe card in wafer probing,” Precision engineering, vol. 33, no. 4, pp. 395-40, 2009. [15] H. J. Kwon, J. Lee, B. Shin, S. Jeon, C. S. Han, and C. M. Im, “Geometry design of vertical probe needle using mechanical testing and finite element analysis,” International journal of precision engineering and manufacturing, vol. 15, no. 11, pp. 2335-2342, 2014. [16] T. C. Hsiao, S. C. Huang, & H. Y. Chang, “Design optimization of vertical needle geometry for bump wafer-level probing,” Transactions of the Canadian Society for Mechanical Engineering, vol. 41, no. 2, pp.313-326, 2017. [17] H. Hooputra,“ A comprehensive failure model for crashworthiness simulation of aluminium extrusions,” International Journal of Crashworthiness, vol. 9, pp. 449-464, 2004. [18] R. Hague, S. Mansour, and N. Sale, “Material and design considerations for rapid manufacturing,” International Journal of Production Research, vol. 45, no. 22, 4691-4708, 2004. [19] Bendat, J. S., & Piersol, A. G., Random data analysis and measurement procedures,3rd ed.J. Wiley,2000. [20] Newland, D. E., An introduction to random vibrations, spectral & wavelet analysis,3rd ed.Addison-Wesley,1996. [21] Al Sobhi, M. M., “The extended Weibull distribution with its properties, estimation and modeling skewed data,” Journal of King Saud University-Science, vol. 34 ,no. 12, pp.101801,2022. [22] B. Shin, H.-J. Kwon, S.-W. Han, & C. M. Im, "Fatigue life estimation of vertical probe needle for wafer probing," International Journal of Precision Engineering and Manufacturing, vol. 16, no. 12, pp. 2509-2515, 2015. [23] J. H. Park, and J. H. Song, “Detailed evaluation of methods for estimation of fatigue properties,” International journal of fatigue, vol. 17, no. 5, pp.365-373, 1995. [24] A. J. Bäumel, and T. Seeger, “Materials data for cyclic loading,” Materials Science Monographs, vol. 61, 1990. [25] J. Goodman. Mechanics applied to engineering, 8th ed. Londo: Longmans, Green & Co, 1914. [26] W. Z. Gerber, “Calculation of the Allowable Stresses in Iron Structures,” Z Bayer Archit Ing-Ver, vol. 6, no. 6, pp.101–110, 1874. [27] M. A. Miner, “Cumulative damage in fatigue,” Journal of Applied Mechanics , vol. 12, pp.A159-A164, 1945. [28] Gao, T., Sun, Z., Xue, H., & Retraint, D., “Effect of surface mechanical attrition treatment on high cycle and very high cycle fatigue of a 7075-T6 aluminium alloy,’’ International Journal of Fatigue,139,105798,2020 [29] R. G. Budynas, J. K Nisbett, and J. E. Shigley. Shigley's Mechanical Engineering Design, 9th ed. New York: McGraw-Hill, 2011 [30] O. H. Basquin, “The Exponential Law of Endurance Tests,” American Society for Testing and Materials Proceedings, vol. 10, pp. 625-630, 1910. [31] K. Lee, C. Ryu, S. Heo , and H. Choi,“Predictions of Fatigue Life of Copper Alloy for Regenerative Cooling Channel of Thrust Chamber,” Journal of the Korean Society of Propulsion Engineers, vol. 21, no. 6, pp. 73-82, 2017. [32] Hou, S. Q., & Xu, J. Q., “Relationship among SN curves corresponding to different mean stresses or stress ratios’’ Journal of Zhejiang University-SCIENCE A,vol. 11,no. 16,pp885-893,2015. [33] O. Weeden. (2003). Probe card tutorial [Online]. Retrieved from http://www.cauled.com/wpcontent/uploads/2018/08/Probe_Card_Tutorial_WP.pdf. [34] X. L. Le, and S. H. Choa, “Design of New Au–NiCo MEMS Vertical Probe for Fine-Pitch Wafer-Level Probing,” Crystals, vol. 36, no. 8, 2021. [35] W. N. Mascarenhas, C. H. Ahrens, & A. Ogliari, “Design criteria and safety factors for plastic components design,” Materials & design, vol. 25, no. 3, pp.257-261, 2004. [36] C. Sun, Z. Lei, and Y. Hong, “Effects of stress ratio on crack growth rate and fatigue strength for high cycle and very-high-cycle fatigue of metallic materials,” Mechanics of materials, vol. 69, no. 1, pp.227-236, 2014. [37] K. Lee, C. Ryu, S. Heo , and H. Choi,“Predictions of Fatigue Life of Copper Alloy for Regenerative Cooling Channel of Thrust Chamber,” Journal of the Korean Society of Propulsion Engineers, vol. 21, no. 6, pp. 73-82, 2017. [38] W. D. Pilkey, and R. E. Peterson. Peterson's Stress Concentration Factors. New York: Wiley, 1997. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90587 | - |
| dc.description.abstract | 隨著科技快速發展和全球化的加速,現代社會資訊傳遞速度飛快,對於3C產品的需求也在不斷增長。因此,產品檢驗已經成為電子零件製程中不可或缺的關鍵流程,此趨勢下製造商面對檢測客製化的需求大幅提升。另外,隨著電子零件製程日趨細緻,晶片日益精密,相對應的檢測設備尺寸隨之縮小,產品面臨微型化與強度下降的挑戰。因此,滿足客製化需求與提升產品強度為金屬精微成形產品面臨的重要議題。
本論文旨在研究精微線材彎壓產品,利用有限元素分析方法建立分析模型,探討相異機械性質之精微線材對於成形性與作動接觸力影響,並參考實際之作動邊界條件完成模擬模型優化,比對實驗數據驗證模擬具高正確性,提高產品後續分析的準確性。 後續根據此作動模型,探討各種特徵尺寸變化對作動接觸力的影響,建立接觸力預測模型,可對欲生產產品進行評估,取代傳統試誤法之設計方式,縮短產品開發時程,並滿足客製化需求。另外,產線會對生產之產品進行抽樣,透過擬合符合實際之產品尺寸機率分布,結合接觸力預測模型,完成虛實整合,分析極端尺寸下對於線徑公差的考量,小線徑產品對於接觸力變化更為敏感,因此需對線徑精度的要求提高,以符合接觸力公差範圍。 本論文所探討之精微線材彎壓產品,被應用於高精密測試設備,後續維修困難,製造商主要以提升產品使用壽命作為提高產品價值的策略。隨著產品的微型化,對於產品使用壽命的挑戰加劇,特別是在疲勞壽命方面被視為設計的關鍵指標之一。本論文完成對所用之線材的疲勞曲線,結合成形至作動的模擬模型,建立疲勞壽命分析模型,並經由實際驗證,確認其準確度。透過疲勞模擬,了解各部位疲勞破壞之機制,分析特徵尺寸對疲勞壽命的趨勢,結果顯示因線徑的縮小導致產品疲勞強度下降,可透過產品特徵尺寸的調整提升疲勞強度。 本論文主要進行模擬模型的優化,作動模擬之接觸力歷程曲線具高準確度,並使疲勞模擬符合現實疲勞試驗結果,提高對後續分析的準確性。疲勞單因子分析後續可結合接觸力預測模型,使產品設計除符合接觸力目標外,可達更高之疲勞壽命,提高產品之可靠度與價值。 | zh_TW |
| dc.description.abstract | As technology rapidly advances and globalization accelerates, modern society finds itself in an era where information transmission is incredibly fast-paced. Demand for 3C products is growing incessantly, making product testing an indispensable part of electronic parts processing. Under this trend, manufacturers are facing a significant increase in demand for customized testing. Meanwhile, the manufacturing process of electronic components is becoming more intricate, with chips becoming more precise and corresponding testing equipment shrinking in size. This leads to challenges of miniaturization and decreasing strength for the products. Therefore, meeting the demands of customization and enhancing product strength have become important issues for fine wire product.
The aim of this thesis is to investigate fine wire bending products, using finite element analysis methods to establish an analytical model. It explores the influence of diverse mechanical properties of fine wires on formability and actuation contact force, and refers to actual boundary conditions to optimize the simulation model. It compares experimental data to validate the accuracy of the simulation, improving the accuracy of subsequent product analysis. Following this, the study explores the impact of various characteristic size changes on actuation contact force based on the actuation model, establishing a contact force prediction model. This allows evaluation of intended products, replacing traditional trial-and-error design methods, shortening product development time, and meeting customization needs. Moreover, the production line samples the products, fitting the probability distribution of actual product size, combining it with the contact force prediction model, accomplishing the integration of virtual and reality. It analyzes the consideration of wire diameter tolerance under extreme sizes, showing that small wire diameter products are more sensitive to changes in contact force. Hence, the requirement for wire diameter precision needs to be heightened to meet the tolerance range of contact force. The fine wire bending product discussed in this thesis is applied in high-precision testing equipment, which is difficult to maintain afterwards. Manufacturers mainly enhance the product lifespan as a strategy to increase product value. However, with product miniaturization, the challenge of lifespan increases, making fatigue life a key factor in design. This thesis establishes a fatigue life model for the wires used, combining it with the simulation model from forming to actuation, and validates it through actual tests, confirming its accuracy. Fatigue simulation helps understand the fatigue failure mechanisms of different parts, and analyses the trend of characteristic sizes on fatigue life. Results indicate that shrinking wire diameter leads to a decrease in product fatigue strength, which can be enhanced through adjusting product characteristic size. Subsequently, it can be combined with the contact force prediction model, so product design meets not only the contact force target but also achieves higher fatigue life, thereby enhancing the reliability and value of the product. This thesis mainly performed optimization of the simulation model. The contact force history curve of actuation simulation has high accuracy, and fatigue simulation conforms to real fatigue test results, enhancing the accuracy of subsequent analysis. Fatigue single factor analysis can be combined with a contact force prediction model, allowing product design to meet contact force targets while achieving higher fatigue life, thereby increasing product reliability and value. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-03T16:45:08Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-10-03T16:45:08Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 I
摘要 II 目錄 VII 圖目錄 XIII 表目錄 XXI 第1章 緒論 1 1.1 前言 1 1.2 研究動機與目的 3 1.3 研究方法與步驟 5 1.4 文獻回顧 7 1.5 論文總覽 15 第2章 產品模擬模型建立與優化 17 2.1 精微線材材料性質 18 2.2 產品特徵值介紹 20 2.3 成形模擬針型建立 21 2.3.1 成形製程參數介紹 21 2.3.2 模具設計公式 22 2.3.2.1 扁段回彈係數 23 2.3.2.2 模具R值部分設計 26 2.3.2.3 模具Angle夾角部分設計 28 2.3.2.4 模具膝蓋r值設計 30 2.3.2.5 模擬成形尺寸驗證 32 2.4 繪製針型建立 35 2.5 作動模型建立與優化 36 2.5.1 產品作動邊界條件建立 36 2.5.2 真實作動行為 39 2.5.2.1 實際作動邊界條件 39 2.5.2.2 小打扁段與固定板對產品作動接觸力影響 41 2.5.2.3 扁段與下導孔接觸 42 2.5.2.4 產品作動變形機制 49 2.5.2.5 材料對接觸力歷程的影響 51 2.5.2.6 下導孔摩擦係數對接觸力歷程的影響 52 2.5.3 還原真實作動行為 56 2.5.3.1 作動接觸力差距分析 56 2.5.3.2 還原真實接觸力歷程曲線-58μm線徑產品 57 2.5.3.3 還原真實接觸力歷程曲線-45μm線徑產品 59 第3章 產品尺寸之接觸力與預測模型 61 3.1 特徵尺寸單因子分析 62 3.1.1 單因子參數分析 62 3.1.1.1 線徑單因子分析 63 3.1.1.2 H值單因子分析 64 3.1.1.3 BL值單因子分析 66 3.1.1.4 Offset值單因子分析 67 3.1.1.5 Angle值單因子分析 68 3.1.2 單因子分析結果討論 71 3.2 交互因子分析 73 3.2.1 線徑/H值交互因子分析 73 3.2.2 BL值/Offset值交互因子分析 75 3.3 接觸力預測模型 78 3.3.1 接觸力預測模型架構 78 3.3.2 BL值與Offset值接觸力經驗公式建立 80 3.3.3 線徑與H值接觸力經驗公式建立 82 3.3.4 接觸力經驗公式整合 84 3.3.4.1 線徑經驗平面平移 84 3.3.4.2 扁寬經驗平面平移 86 3.3.4.3 接觸力預測模型 87 3.3.4.4 接觸力模型適用範圍 88 3.4 實際製程範圍考量 92 3.4.1 扁寬設計區間 92 3.4.2 扁段圓心角設計區間 94 3.5 接觸力隨機模型 97 3.5.1 隨機變數(Random Variable) 97 3.5.2 隨機模型建模 99 3.5.2.1 機率質量函數(Probability Mass Function,PMF) 99 3.5.2.2 累積分布函數(Cumulative Distribution Function,CDF) 100 3.5.2.3 隨機模型(Stochastic Model) 102 3.5.2.4 線徑公差 104 第4章 產品疲勞壽命模型與因子分析 106 4.1 疲勞分析目的 107 4.2 產品疲勞模型建立 109 4.2.1 疲勞分析軟體介紹 109 4.2.2 正交應力 110 4.2.2.1 疲勞斷裂特徵點 111 4.2.3 疲勞曲線S-N Curve擬合 113 4.2.3.1 循環應力 113 4.2.3.2 疲勞曲線S-N Curve 114 4.2.3.3 材料疲勞曲線S-N Curve擬合 115 4.2.4 平均應力修正式 117 4.2.4.1 平均應力效應 117 4.2.4.2 平均應力修正式 119 4.2.4.3 疲勞破壞特徵點分析 120 4.2.4.4 平均應力修正式選用 123 4.2.4.5 成形殘留應力對疲勞壽命影響 124 4.2.5 疲勞分析作動邊界條件 129 4.2.6 疲勞模型總結 130 4.3 疲勞試驗實際驗證 132 4.3.1 斷面觀察 132 4.3.2 不同OD之疲勞壽命 135 4.4 產品應力集中影響 138 4.4.1 集中應力對產品膝蓋影響 138 4.4.2 Tip端偏擺對疲勞壽命影響 139 4.5 特徵尺寸對疲勞壽命單因子分析 145 4.5.1 線徑單因子分析 146 4.5.2 H值單因子分析 148 4.5.3 BL單因子分析 150 4.5.4 Offset單因子分析 152 4.5.5 疲勞壽命單因子分析結果 154 4.5.6 疲勞壽命與特徵尺寸關係 155 4.5.6.1 接觸力與疲勞壽命單因子趨勢 155 4.5.6.2 疲勞壽命與特徵尺寸關係 155 4.5.6.3 簡化模型之特徵尺寸對疲勞壽命影響 157 第5章 結論 161 參考文獻 164 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 疲勞壽命分析 | zh_TW |
| dc.subject | 精微線材 | zh_TW |
| dc.subject | 彎壓成形 | zh_TW |
| dc.subject | 接觸力 | zh_TW |
| dc.subject | 產品設計 | zh_TW |
| dc.subject | 有限元素分析 | zh_TW |
| dc.subject | Finite element analysis | en |
| dc.subject | Fine wire rods | en |
| dc.subject | Fatigue life | en |
| dc.subject | Bending-compression forming | en |
| dc.subject | Contact force | en |
| dc.subject | Product design | en |
| dc.title | 精微線材彎壓成形產品應用與疲勞分析 | zh_TW |
| dc.title | Application and Fatigue Analysis of Fine-Wire Product Made by Bending-Compression Forming Process | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 莊嘉揚;洪景華;陳純鑑;陳明祈 | zh_TW |
| dc.contributor.oralexamcommittee | Jia-Yang Juang;Ching-Hua Hung;Jhun-Jian Chen;Ming-Ci Chen | en |
| dc.subject.keyword | 精微線材,彎壓成形,接觸力,產品設計,有限元素分析,疲勞壽命分析, | zh_TW |
| dc.subject.keyword | Fine wire rods,Bending-compression forming,Contact force,Product design,Finite element analysis,Fatigue life, | en |
| dc.relation.page | 168 | - |
| dc.identifier.doi | 10.6342/NTU202303397 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-08-11 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| dc.date.embargo-lift | 2028-08-31 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 7.12 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
