請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9024完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王淑珍(Shu-Jen Wang) | |
| dc.contributor.author | Huai-Ju Chen | en |
| dc.contributor.author | 陳懷如 | zh_TW |
| dc.date.accessioned | 2021-05-20T20:06:55Z | - |
| dc.date.available | 2010-08-14 | |
| dc.date.available | 2021-05-20T20:06:55Z | - |
| dc.date.copyright | 2009-08-14 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-08-11 | |
| dc.identifier.citation | 陳佳宜 (2007) 水稻種子發芽時期胚中蔗糖轉運蛋白基因之表現調控機制。國立臺灣大學生物資源暨農學院農藝系碩士論文。
Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Hosokawa D, Shinozaki K (1997) Role of arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. Plant Cell 9:1859–1868 Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi–Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15: 63–78 Akihiro T, Mizuno K, Fujimura T (2005) Gene expression of ADP–glucose pyrophosphorylase and starch contents in rice cultured cells are cooperatively regulated by sucrose and ABA. Plant Cell Physiol 46: 937–946 Aloni B, Daie J, Wyse RE (1986) Enhancement of ['^C]sucrose export from source leaves of Vicia faba by gibherelhc acid. Plant Physiol 82: 962-966 Aoki N, Hirose T, Scofield GN, Whitfeld PR, Furbank RT (2003) The sucrose transporter gene family in rice. Plant Cell Physiol 44: 223–232 Baba I, Kittaka A (1953) On the accumulation of starch grains at the shoot base of the rice plant. Proc Crop Sci Soc Jpn 22: 43–44 Barker L, Kuhn C, Weise A, Schulz A, Gebhardt C, Hirner B, Hellmann H, Schulze W, Ward JM, Frommer WB (2000) SUT2, a putative Suc sensor in sieve elements. Plant Cell 12: 1153–1164 Baroja-Fernandez E, Munoz FJ, Saikusa T, Rodriguez-Lopez M, Akazawa T, Pozueta-Romero J (2003) Sucrose synthase catalyzes the de novo production of ADPglucose linked to starch biosynthesis in heterotrophic tissues of plants. Plant Cell Physiol 44: 500–509 Blakeney AG, Matheson TH (1984) Some properties of the stem and pollen starches of rice. Starch 36: 265–269 Blum A, Sinmena B, Mayer J, Golan G, Shpiler L (1994) Stem reserve mobilization supports wheat–grain filling under heat stress. Aust J Plant Physiol 21: 771–781 Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72: 248–254 Braun DM, Slewinski TL (2009) Genetic control of carbon partitioning in grasses: roles of sucrose transporters and tie–dyed loci in phloem loading. Plant Physiol 149: 71–81 Burton RA, Bewley JD, Smith AM, Bhattacharyya MK, Tatge H, Ring S, Bull V, Hamilton WDO, Martin C (1995) Starch branching enzymes belonging to distinct enzyme families are differentially expressed during pea embryo development. Plant J 7: 3–15 Chen C, Chen Z (2002) Potentiation of developmentally regulated plant defense response by AtWRKY18, a pathogen-induced Arabidopsis transcription factor. Plant Physiol 129: 706-16 Chen HJ, Wang SJ (2008) Molecular regulation of sink-source transition in rice leaf sheaths during the heading period. Acta Physiol Plant 30: 639-649 Chen WS, Liu HY, Yang ZH, Chen WH (1994) Gibberellin and temperature influence carbohydrate content and flowering in Phalaenopsis. Physiol Plant 90: 391–395 Chincinska IA, Liesche J, Krügel U, Michalska J, Geigenberger P, Grimm B, Kühn C (2008) Su-crose transporter StSUT4 from potato affects flowering, tuberization, and shade avoidance response. Plant Physiol 146: 515–528 Chiou TJ, Bush DR (1998) Sucrose is a signal molecule in assimilate partitioning. Proc Natl Acad Sci USA 95: 4784–4788 Chu C and Lee TM (1989) The relationship between ethylene biosynthesis and chilling tolerance in seedlings of rice (Oryza sativa L.). Bot Bull Acad Sinica 30: 263–273 Cock JH, Yoshida S (1972) Accumulation of 14C–labelled carbohydrate before flowing and its subsequent redistribution and respiration in the rice plant. Proc Crop Sci Soc Jpn 41: 226–234 Denyer K, Dunlap F, Thorbjornsen T, Keeling P, Smith AM (1996) The major form of ADP-glucose pyrophosphorylase in maize (Zea mays L.) endosperm is extra-plastidial. Plant Physiol 112: 779–785 Dian WM, Jiang HW, Chen QS, Liu FY, Wu P (2003) Cloning and characterization of the gra-nule–bound starch synthase II gene in rice: gene expression is regulated by the nitrogen level, sugar and circadian rhythm. Planta 218: 261–268 Dian WM, Jiang HW, Wu P (2005) Evolution and expression analysis of starch synthase III and IV in rice. Journal of Experimental Botany 56: 623–632 Ding B, Parthasarathy MV, Niklas K, Turgeon R (1988) A morphometric analysis of the phloem-unloading pathway in developing tobacco leaves. Planta 176: 307–318 Edwards A, Borthakur A, Bornemann S, Venail J, Denyer K, Waite D, Fulton D, Smith A, Martin C (1999) Specificity of starch synthase isoforms from potato. Eur J Biochem 266: 724–736 Endler A, Meyer S, Schelbert S, Schneider T, Weschke W, Peters SW, Keller F, Baginsky S, Martinoia E, Schmidt UG (2006) Identification of a vacuolar sucrose transporter in Hordeum vulgare and Arabidopsis thaliana by a tonoplast proteomic approach. Plant Physiol 141: 196–207 Eulgem T, Rushton PJ, Elmon Schmelzer E, Hahlbrock K, Somssich IE (1999) Early nuclear event in plant defence: rapid gene activation by WRKY transcription factors. EMBO J 18: 4689–4699 Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5: 199-206 Fried MG (1989) Measurement of protein-DNA interaction parameters by electrophoresis mobility shift assay. Electrophoresis 10: 366-376 Furbank RT, Scofield G, Hirose T, Wang XD, Patrick J, Offler C (2001) Cellular localisation and function of a sucrose transporter OsSUT1 in developing rice grains. Aust J Plant Physiol 28: 1187–1196 Gao Z, Maurousset L, Lemoine R, Yoo SD, Nocker S, Loescher W (2003) Cloning, expression, and characterization of sorbitol transporters from developing sour cherry fruit and leaf sink tissues. Plant Physiol 131: 1–10 Ghosh HP, Preiss J (1966) Adenosine diphosphate glucose pyrophosphorylase. A regulatory enzyme in the biosynthesis of starch in spinach leaf chloroplasts. J Biol Chem 241: 4491–4504 Guan HP, Preiss J (1993) Differentiation of the properties of the starch branching isozymes from maize (Zea mays). Plant Physiol 102: 1269–1273 Hanggi E, Fleming AJ (2001) Sucrose synthase expression pattern in young maize leaves: implications for phloem transport. Planta 214: 326–329 Harms K, Wöhner RV, Schulz B, Frommer WB (1994) Isolation and characterization of P–type H(+)–ATPase genes from potato. Plant Mol Biol 26: 979–988 Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6: 271–282 Higo K, UgawaY, Iwamoto M, Korenaga T (1999) Plant cis–acting regulatory DNA elements (PLACE) database. Nucleic Acids Res 27: 297–300 Hirose T, Endler A, Ohsugi R (1999) Gene expression of enzymes for starch and sucrose metabolism and transport in leaf sheaths of rice (Oryza sativa L.) during the heading period in relation to the sink to source transition. Plant Prod Sci 2: 178–183 Hirose T, Imaizumi N, Scofield GN, Furbank RT, Ohsugi R (1997) cDNA cloning and tissue–specific expression of a gene for sucrose transporter from rice (Oryza sativa L.). Plant Cell Physiol 38: 1389–1396 Hirose T, Ohdan T, Nakamura Y, Terao T (2006) Expression profiling of genes related to starch synthesis in rice leaf sheaths during the heading period. Physiol Plant 128: 425–435 Hu CY, Chee PP, Chesney RH, Zhou JH, Miller PD, O'Brien WT (1990) Intrinsic GUS–like activi-ties in seed plants. Plant Cell Rep 9: 1–5 Hurng WP, Lur HS, Liao CK, Kao CH (1994) Role of abscisic acid, ethylene and polyamines in flooding-promoted senescence of tobacco leaves. J Plant Physiol 143:102–105 Imlau A, Truernit E, Sauer N (1999) Cell-to-cell and long-distance trafficking of the green fluorescent protein in the phloem and symplastic unloading of the protein into sink tissues. Plant Cell 11: 309–322 Ishikawa T, Akita S, Li Q (1993) Relationship between contents of non–structural carbohydrates before panicle initiation stage and grain yield in rice (Oryza sativa L.). Jpn J Crop Sci 62: 130–131 Ishimaru K, Hirose T, Aoki N, Takahashi S, Ono K, Yamamoto S, Wu J, Saji S, Baba T, Ugaki M, Matsumotoi T, Ohsugi R (2001) Antisense expression of a rice sucrose transporter OsSUT1 in rice (Oryza sativa L.). Plant Cell Physiol 42: 1181–1185 Ishimaru K, Kosone M, Sasaki H, Kashiwagi T (2004) Leaf contents differ depending on the posi-tion in a rice leaf sheath during sink–source transition. Plant Physiol Biochem 42: 855–860 Ishiwatari Y, Nemoto K, Fujiwara T, Chino M, Hayashi H (2000) In situ hybridization study of the rice phloem thioredoxin h mRNA accumulation– possible involvement in the differentiation of vascular tissues. Physiol Plant 109: 90–96 Itoh K, Yamaguchi J, Huang N, Rodriguez RL, Akazawa T, Shimamoto K (1995) Developmental and hormonal regulation of rice -amylase (RAmy1A)-gusA fusion genes in transgenic rice seeds. Plant Physiol 107: 25–31 Jefferson RA, Kavanagh T A, Bevan MW (1987) GUS fusions: β–glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6: 3901–3907 Jones H, Eagles JE (1962) Translocation of 4carbon within and between leaves. Ann Bot N S 26: 505–510 Keppler D, Decker K (1974) Glycogen: Determination with amyloglucosidase. In” Bergmeyer HU (ed) Methods of enzymatic analysis” vol 3. Academic Press, New York, pp 1127–1131 Koch KE (1996) Carbohydrate–modulated gene expression in plants. Annu Rev Plant Physiol Plant Mol Biol 47: 509–540 Kossmann J, Abel GJ, Springer F, Lloyd JR, Willmitzer L (1999) Cloning and functional analysis of a cDNA encoding a starch synthase from potato (Solanum tuberosum L.) that is predominantly expressed in leaf tissue. Planta 208: 503–11 Kumar A, Silim SN, Okamoto M, Siddiqi MY, Glass AD (2003) Differential expression of three members of the AMT1 gene family encoding putative high–affinity NH4+ transporters in roots of Oryza sativa subspecies indica. Plant Cell Environ 26: 907–914 Kühn C, Hajirezaei MR, Fernie AR, Roessner-Tunali U, Czechowski T, Hirner B, Frommer WB (2003 ) The sucrose transporter StSUT1 localizes to sieve elements in potato tuber phloem and influences tuber physiology and development. Plant Physiol 131: 102–13 Kühn C, Quick WP, Schulz A, Riesmeier JW, Sonnewald U, Frommer WB (1996) Companion cell-specific inhibition of the potato sucrose transporter SUT1. Plant Cell Environ 19: 1115–1123 Lam E, Chua NH (1989) ASF-2: A factor that binds to the cauliflower mosaic virus 35S promoter and a conserved GATA motif in cab promoters. Plant Cell 1:1147–1156 Lao NT, Schoneveld O, Mould RM, Hibberd JM, Gray JC, Kavanagh TA (1999) An Arabidopsis gene encoding a chloroplast–targeted beta–amylase. Plant J 20: 519–527 Lazan H, Ng SY, Goh LY, Ali ZM (2004) Papaya beta–galactosidase/ galactanase isoforms in differential cell wall hydrolysis and fruit softening during ripening. Plant Physiol Biochem 42: 847–853 Lee SK, Hwang SK, Han M, Eom JS, Kang HG, Han Y, Choi SB, Cho MH, Bhoo SH, An G, Hahn TR, Okita TW, Jeon JS (2007) Identification of the ADP-glucose pyrophosphorylase isoforms essential for starch synthesis in the leaf and seed endosperm of rice (Oryza sativa L.) Plant Mol Biol 65: 531–546 Lemoine R (2000) Sucrose transporters in plants: update on function and structure. Biochim Biophys Acta 1465: 246–262 Loescher WH, Marlow GG, Kennedy RA (1982) Sorbitol metabolism and sink-source interconversions in developing apple leaves. Plant Physiol 70: 335–339 Lu YK, Stemler AJ (2002) Extrinsic photosystem II carbonic anhydrase in maize mesophyll chloroplasts. Plant Physiol 266: 16746–16754 Mae T, Ohira K (1981) The remobilization of nitrogen related to leaf growth and senescence in rice plants (Oryza sativa L.). Plant Cell Physiol 22: 1067–1074 Matsukura C, Saitoh T, Hirose T, Ohsugi R, Perata P, Yamaguchi J (2000) Sugar uptake and transport in rice embryo: expression of companion cell–specific sucrose transporter (OsSUT1) induced by sugar and light. Plant Physiol 124: 85–93 Matsuzaki A, Rutger JN (1991) Characteristics relating young panicle development and heading of closely related calrose rice genotypes. Jpn J Crop Sci 60: 298–305 Meyer S, Truernit E, Hu¨mmer C, Besenbeck R, Stadler R, Sauer N (2000) AtSUC3, a gene encoding a new Arabidopsis sucrose transporter, is expressed in cells adjacent to the vascular tissue and in a carpel cell layer. Plant J 24: 869–882 Miyazawa Y, Sakai A, Miyagishima S, Takano H, Kawano S, Kuroiwa T (1999) Auxin and cytokinin have opposite effects on amyloplast development and the expression of starch synthesis genes in cultured bright yellow–2 tobacco cells. Plant Physiol 121: 461–469 Muñoz FJ, Baroja–Fernandez E, Moran–Zorzano MT, Viale AM, Etxeberria E, Alonso–Casajus N, Pozueta–Romero J (2005) Sucrose synthase controls both intracellular ADP glucose levels and transitory starch biosynthesis in source leaves. Plant Cell Physiol 46: 1366–1376 Nakamura M, Tsunoda T, Obokata J (2002) Photosynthesis nuclear genes generally lack TATA-boxes: a tobacco photosystem I gene responds to light through an initiator. Plant J 29:1–10 Nakamura Y (1996) Some properties of starch debranching enzymes and their possible roles in amylopectin biosynthesis. Plant Sci 121: 1–18 Nakamura Y (2002) Towards a better understanding of the metabolic system for amylopectin biosynthesis in plants: rice endosperm as a model tissue. Plant Cell Physiol 43: 718–725 Nakamura Y, Yuki K, Park S, Ohya T (1989) Carbohydrate metabolism in the developing endosperm of rice grains. Plant cell Physiol 30: 833–839 Nakata PA, Okita TW (1995) Diferential regulation of ADP-glucose pyrophosphorylase in the sink and source tissues of potato. Plant Physiol 108: 361–368 Ngampanya B, Takeda T, Sonoda Y, Narangajavana J, Yamaguchi J (2002) Characterization of OsSUT2 cDNA expressed before flowering stage. Rice Genet News 19: 49–51 Nishi A, Nakamura Y, Tanaka N, Satoh H (2001) Biochemical and genetic effects of amy-lose–extender mutation in rice endosperm. Plant Physiol 127: 459–472 Nishiuchi T, Shishi H, Suzuki K (2004) Rapid and transient activation of transcription of the ERF3 gene by wounding in tobacco leaves: possible involvement of NtWRKYs and autorepression. J Biol Chem 279: 55355–55361 Nittylä T, Messerli G, Trevisan M, Chen J, Smith AM, Zeeman SC (2004) A novel maltose transporter is essential for starch degradation in leaves. Science 303: 87–89 Ohdan T, Francisco PB, Sawada T, Hirose T, Terao T, Satoh H, Nakamura Y (2005) Expression profiling of genes involved in starch synthesis in sink and source organs of rice. J Exp Bot 56: 3229–3244 Perez CM, Palmiano EP, Baun LC, Juliano BO (1971) Starch metabolism in the leaf sheaths and culm of rice. Plant Physiol 47: 404–408 Rook F, Corke F, Card R, Munz G, Smith C, Bevan MW (2001) Impaired sucrose–induction mutants reveal the modulation of sugar–induced starch biosynthetic gene expression by abscisic acid signaling. Plant J 26: 421–433 Ross EJH, Stone JM, Elowsky CG, Arredondo-Peter R, Klucas RV, Sarath G (2004) Activation of the Oryza sativa non-symbiotic haemoglobin-2 promoter by the cytokinin-regulated transcription factor, ARR1. J Exp Bot 55:1721–1731 Salehuzzaman SNIM, Jacobsen E, Visser RGF (1994) Expression patterns of two starch biosynthetic genes in vitro cultured cassava plants and their induction by sugars. Plant Sci 98: 53–62 Samonte SOPB, Wilson LT, McClung AM, Tarpley L (2001) Seasonal dynamics of nonstructural carbohydrate partitioning in fifteen diverse rice (Oryza sativa L.) genotypes. Crop Sci 41: 902–909 Sanford JC, Smith FD, Russell JA (1993) Optimizing the biolistic process for different biological applications. Meth Enzymol 217: 483–509 Sauer N (2007) Molecular physiology of higher plant sucrose transporters. FEBS Lett 581: 2309–2317 Scheible WR, González-Fontes A, Morcuende R, Lauerer M, Geiger M, Glaab J, Gojon A, Schulze ED, Stitt M (1997) Tobacco mutants with a decreased number of functional nia genes compensates by modification the diurnal regulation of transcription, post-translational modification and turnover of nitrate reductase. Planta 203: 304–319 Schneidereit A, Imlau A, Sauer N (2008) Conserved cis-regulatory elements for DNA-binding-with-one-finger and homeo-domain-leucine-zipper transcription factors regulate companion cell-specific expression of the Arabidopsis thaliana SUCROSE TRANSPORTER 2 gene. Planta 228: 651–662 Scofield GN, Hirose T, Gaudron JA, Upadhyaya NM, Ohsugi R, Furbank RT (2002) Antisense suppression of the rice sucrose transporter gene, OsSUT1, leads to impaired grain filling and germination but does not affect photosynthesis. Funct Plant Biol 29: 815–826 Scofield GN, Aoki N, Hirose T, Takano M, Jenkins CL, Furbank RT (2007) The role of the sucrose transporter, OsSUT1, in germination and early seedling growth and development of rice plants. J Exp Bot 58: 483–495 Sheu JJ, Yu TS, Tong WF, Yu SM (1996) Carbohydrate starvation stimulates differential expression of rice a-amylase genes that is modulated through complicated transcriptional and post-transcriptional processes. J Biol Chem 271: 26998–27004 Sikka VK, Choi S, Kavakli IH, Sakulsingharoj C, Gupta S, Ito H, Okita TW (2001) Subcellular compartmentation and allosteric regulation of the rice endosperm ADP–glucose pyrophosphorylase. Plant Sci 161: 461–468 Sivitz, AB, Reinders, A and Ward, JM (2008) Arabidopsis sucrose transporter AtSUC1 is important for pollen germination and sucrose–induced anthocyanin accumulation. Plant Physiol 147: 92–100 Smith AM, Denyer K, Martin C (1997) The synthesis of the starch granule. Annu Rev Plant Physiol Plant Mol Biol 48: 67–87 Smith AM, Zeeman SC, Smith SM (2005) Starch degradation. Annu Rev Plant Biol 56: 73–98 Smith FW, Mudge SR, Rae AL, Glassop D (2003) Phosphate transport in plants. Plant Soil 248: 71–83 Soga Y, Nozaki M (1957) Studies on the relation between seasonal changes of carbohydrates accumulated and the ripening at the stage of generative growth in the rice plant and the grain ripening. Proc Crop Sci Soc Jpn 26: 105–108 Sokolov LN, Déjardin A, Kleczkowski LA (1998) Sugars and light/dark exposure trigger differential regulation of ADP–glucose pyrophosphorylase genes in Arabidopsis thaliana (thale cress). Biochem J 336: 681–687 Sokolova SV, Balakshina NO, Krasavina MS (2002) Activation of Soluble Acid Invertase Accompanies the Cytokinin-Induced Source–Sink Leaf Transition. Russ J Plant Physiol 49:86-91 Sonoda Y, Ikeda A, Saiki S, Yamaya T, Yamaguchi J (2003) Feedback regulation of the ammonium transporter gene family AMT1 by glutamine in rice. Plant Cell Physiol 44: 1396–1402 Stead JA, Keen JN, McDowall KJ (2006) The identification of nucleic acid-interacting proteins using a simple proteomics-based approach that directly incorporates the electrophoretic mobility shift assay. Mol Cell Proteomics 5: 1697–1702 Suenaga A, Moriya K, Sonoda Y, Ikeda A, Von Wiren N, Hayakawa T, Yamaguchi J, Yamaya T (2003) Constitutive expression of a novel–type ammonium transporter OsAMT2 in rice plants. Plant Cell Physiol 44: 206–211 Sun CX, Palmqvist S, Olsson H, Boren M, Ahlandsberg S, Jansson C (2003) A novel WRKY tran-scription factor, SUSIBA2, participates in sugar signaling in barley by binding to the sugarresponsive elements of the iso1 promoter. Plant Cell 15: 2076–2092 Takahashi S, Ishimaru K, Yazaki J, Fujii F, Shimbo K, Yamamoto K, Sakata K, Sasaki T, Kishimoto N, Kikuchi S (2005) Microarray analysis of sink–source transition in rice leaf sheaths. Breed Sci 55:153–162 Takashi A, Mizuno K, Fujimura T (2005) Gene expression of ADP-glucose pyrophosphorylase and starch contents in rice cultured cells are cooperatively regulated by sucrose and ABA. Plant Cell Physiol 46: 937–946 Takeda T, Toyofuku K, Matsukura C, Yamaguchi J (2001) Sugar transporters involved in flowering and grain development of rice. J Plant Physiol 158: 465–470 Tanaka A (1961) Studies on the nutrio–physiology of leaves of rice. plant. J Fac Agric Hokkaido Univ 51: 449–550 Thomas BR, Rodriguez RL (1994) Metabolite signals regulate gene expression and source/sink relations in cereal seedlings. Plant Physiol 106: 1235–1239 Thorsteinsson B, Tillberg E, Ericsson T (1990) Levels of IAA, ABA and carbohydrates in source and sink leaves of Betula pendula. Roth Scand J For Res 5:347–354 Toki S (1997) Rapid and efficient Agrobacterium-Mediated transformation in rice. Plant Mol Biol Rep 15: 16-21 Turgeon R (1989) The sink-source transition in leaves. Annu Rev Plant Physiol Plant Mol Biol 40: 119–38 Turgeon R, Webb JA (1975) Leaf development and phloem transport in Cucurbita pepo: carbon economy. Planta 123: 53–62 Urao T, Yamaguchi–Shinozaki K, Urao S, Shinozaki K (1993) An Arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence. Plant Cell 5: 1529–1539 Varghese JN, Hrmova M, Fincher GB (1999) Three–dimensional structure of a barley β–D–glucan exohydrolase, a family 3 glycosyl hydrolase. Structure 7: 179–190 Villain P, Mache R, Zhou DX (1996) The mechanism of GT element-mediated cell type-specific transcriptional control. J Biol Chem 271: 32593–32598 Visser RGF, Somhorst I, Kuipers GJ, Ruys NJ, Feenstra WJ, Jacobsen E (1991) Inhibition of the expression of the gene for granule-bound starch synthase in potato by antisense constructs. Mol Gen Genet 225: 289–296 Vrinten PL, Nakamura T (2000) Wheat granule–bound starch synthase I and II are encoded by separate genes that are expressed in different tissues. Plant Physiol 122: 255–263 Wang AY, Kao MH, Yang WH, Sayion Y, Liu LF, Lee PD, Su JC (1999) Differentially and developmentally regulated expression of three rice sucrose synthase genes. Plant Cell Physiol 40: 800–807 Wang MY, Siddiqi MY, Ruth TJ, Glass ADM (1993) Ammonium uptake by rice roots. II. Kinetics of 13NH4+ influx across the plasmalemma. Plant Physiol 103: 1259–1267 Wang SJ, Yeh KW, Tsai CY (2001) Regulation of starch granule-bound starch synthase I gene expression by circadian clock and sucrose in the source tissue of sweet potato. Plant Sci 161: 635–644 Wang SJ, Liu LF, Chen CK, Chen LW (2006) Regulations of granule–bound starch synthase I gene expression in rice leaves by temperature and drought stress. Biol Plant 50: 537–541 Washio K (2001) Identification of Dof proteins with implication in the gibberellin–regulated expression of a peptidase gene following the germination of rice grain. Biochim Biophys Acta 1520: 54–62 Washio K (2003) Functional dissections between GAMYB and Dof transcription factors suggest a role for protein-protein associations in the gibberellin-mediated expression of the RAmy1A gene in the rice aleurone. Plant Physiol 133: 850–863 Watanabe Y, Nakamura Y, Ishii R (1997) Relationship between starch accumulation and activities of the related enzymes in the leaf sheath as a temporary sink organ in rice (Oryza sativa). Aust J Plant Physiol 24: 563–569 Weber H, Borisjuk L, Wobus U (1997) Sugar import and metabolism during seed development. Trends Plant Sci 22: 169–174 Woo AJ, Dods JS, Susanto E, Ulgiati D, Abraham LJ (2002) A proteomics approach for the identification of DNA binding activities observed in the electrophoretic mobility shift assay. Mol Cell Proteomics 1: 472–478 Wright KM, Roberts AG, Martens HJ, Sauer N, Oparka KJ (2003) Structural and functional vein maturation in developing tobacco leaves in relation to AtSUC2 promoter activity. Plant Physiol 131: 1555–1565 Xie Z, Zhang ZL, Zou XL, Huang J, Ruas P, Thompson D, Shen QJ (2005) Annotations and func-tional analyses of the rice WRKY gene superfamily reveal positive and negative regulators of abscisic acid signaling in aleurone cells. Plant Physiol 137: 176–189 Yang J, Zhang J, Wang Z, Zhu Q (2001a) Activities of starch hydrolytic enzymes and su-crose–phosphate synthase in the stems of rice subjected to water stress during grain filling. J Exp Bot 52: 2169–2179 Yang J, Zhang J, Wang Z, Zhu Q, Wang W (2001b) Remobilization of carbon reserves in response to water deficit during grain filling of rice. Field Crops Res 71: 47–55 Yang J, Zhang J, Wang Z, Zhu Q (2003) Hormones in the grains in relation to sink strength and postanthesis development of spikelets in rice. Plant Growth Regul 41: 185–195 Yang J, Zhang J, Wang Z, Xu G, Zhu Q (2004) Activities of key enzymes in sucrose–to–starch conversion in wheat grains subjected to water deficit during grain filling. Plant Physiol 135: 1621–1629 Yao LC, Shi JX, Goldschmidt EE (2003) Sugars regulate sucrose transporter gene expression in citrus. Biochem Biophys Res Commun 306: 402–407 Yoshida S (1972) Physiological aspects of grain yield. Annu Rev Plant Physiol 3: 437–464 Zhang ZL, Xie Z, Zou X, Casaretto J, Ho TH, Shen QJ (2004) A rice WRKY gene encodes a tran-scriptional repressor of the gibberellin signaling pathway in aleurone cells. Plant Physiol 134: 1500–1513 Zhang LE, Zhang P (2005) Adjustment of plant growth regulators in source–sink relationship during grain filling of winter wheat. Acta Agri Nucl Sinica 19: 228–231 Zeeman SC, Umemoto T, Lue WL, Au–Yeung P, Martin C, Smith AM, Chen J (1998) A mutant of Arabidopsis lacking a chloroplastic isoamylase accumulates both starch and phytoglycogen. Plant Cell 10: 1699–1712 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9024 | - |
| dc.description.abstract | 水稻上位葉葉鞘為醣類之暫存組織,其在抽穗前會大量累積澱粉,而在抽穗後其儲存之澱粉會快速分解,並合成蔗糖運送到充實中的穀粒,故在抽穗前後期,葉鞘將由儲存組織轉變成供源組織,此現象稱之葉鞘儲存-供源轉換。為了瞭解葉鞘儲存-供源轉換之分子調控機制,本論文以real-time RT-PCR分析在水稻抽穗期間,葉鞘中澱粉合成、澱粉分解與蔗糖轉運蛋白 (sucrose transporter ; OsSUT)等相關基因之表現變化,結果發現ADP-glucose pyrophosphorylase large subunit 2、granule-bound starch synthase II、soluble starch synthase I、starch branching enzyme (SBE) I、SBEIII及SBEIV等六個澱粉合成相關基因為影響葉鞘澱粉於抽穗前大量累積之主要基因,且其啟動子共同具有受荷爾蒙調控之序列。另一方面,澱粉分解基因α-amylase2A、β-amylase與蔗糖轉運蛋白基因OsSUT1、4在抽穗後表現量會增高,其很有可能分別參與葉鞘在抽穗後時期,澱粉分解及將蔗糖裝載到韌皮部之過程。進一步利用各種荷爾蒙處理水稻切離葉鞘以探討這些基因受荷爾蒙調控之情形,結果發現ABA會抑制AGPase及GBSS之酵素活性,但是會大量促進α-amylase與β-amylase的活性及OsSUT1及 4的基因表現量,顯示ABA可能為影響葉鞘中醣類代謝反應之因子之一。為了篩選參與水稻葉鞘儲存-供源轉換的調控因子,還藉由基因槍暫時性表現系統,分析OsSUT4基因之不同長度啟動子於抽穗前後的表現,鑑定出一段67 bp之啟動子片段,其可能包含控制OsSUT4基因於抽穗後大量表現之重要cis-acting elements。此外,以microarray技術分析抽穗前後之水稻基因組表現變化,發現sucrose synthase、β-D-glucan exohydrolase、sorbitol transporter、ammonium transporter及phosphate transporter等基因也於抽穗前後具有差異性表現,暗示不僅澱粉代謝與蔗糖轉運蛋白基因,還有其他醣類代謝途徑與胺基酸、無機磷之運送亦參與葉鞘儲存-供源之轉變過程。 | zh_TW |
| dc.description.abstract | Upper leaf sheath of rice (Oryza sativa L.) serves as a temporary carbohydrate sink tissue before panicle heading. Starch pre-stored in upper leaf sheaths prior to heading would be remobilized to filling grains at post-heading stage. Thus, upper leaf sheaths could be converted to source tissues from sink tissue during heading period. The process of starch changes in leaf sheath is defined as the sink-source transition. The purpose of this project is to reveal the molecular mechanism of the sink-source transition in rice leaf sheaths during heading period. First, the expression profiles of genes involved in starch synthesis pathway were analyzed and compared to starch content in the second leaf sheath below the flag leaf. The results indicated the changes of ADP-glucose pyrophosphorylase large subunit 2 (AGP-L2), granule-bound starch synthase II (GBSSII), soluble starch synthase I (SSSI), starch branching enzyme (SBE) I, SBEIII, and SBEIV mRNA levels were highly correlated with starch content changes during the heading period in the leaf sheath, and these starch synthesis-related gene promoters shared several common hormone-responsive elements. In addition, the α-amylase2A and β-amylase were considered as major genes that regulated the starch degradation at the post-heading period. Of the five sucrose transporter (OsSUT) genes, OsSUT1 and OsSUT4 appeared to play an important role in sucrose loading into the phloem of source leaf sheaths. Besides, to reveal whether phytohormones were the fac-tors to control the starch metabolism-related enzyme activities and OsSUTs gene ex-pressions, the effects of GA、ABA and BAP on expressions of these enzymes and genes in detached leaf sheaths were examined. The results indicated that not only the expres-sions of OsSUT1 and 4 but the activities of α-amylase and β-amylase can be enhanced by ABA, suggested that ABA is one of the factors to regulate the carbohydrate metabolism in leaf sheaths. Since OsSUT4 gene was significantly up-regulated at post-heading stage, it was used as an indicator gene to identify the molecular mechanism of sink-source transition in leaf sheaths. In order to find the cis-acting elements on OsSUT4 promoter involved in controlling rice leaf sheaths sink-source transition during the heading period, we constructed nine various 5’-deletion OsSUT4 promoter fragments containing GUS reporter gene and analyzed the avtivities by particle bombardment assay. A 67-bp promoter fragment was identified, which might contain important regulatory elements involved in regulation of OsSUT4 gene up-expression in leaf sheath at post-heading stage. Moreover, microarray analysis was also applied to study the mechanism of sink-source transition in leaf sheaths during heading period. The data implied that the dominant processes associated with functional leaf sheath transition from sink to source were not only carbohydrate metabolism but also the translocation of the nitrogen sources and inorganic phosphate. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-20T20:06:55Z (GMT). No. of bitstreams: 1 ntu-98-D92621103-1.pdf: 5045252 bytes, checksum: 918c18bd76c3591767a6c05cc9dd3666 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 目錄………………………………………………………………………….…………..1
圖表與附錄目錄………………………………………………………………….……..3 縮寫字對照表…………………………………………………………………….……..5 中文摘要…………………………………………………………………………….…..7 英文摘要…………………………………………………………………………….…..8 前言 1. 水稻葉鞘於抽穗前後期所扮演之角色……………………………..……..…..10 2. 葉片儲存-供源轉換之相關研究…………………………………………….….11 3. 水稻澱粉合成之相關基因……………………………………………………...12 4. 水稻澱粉分解之相關基因………………………………………………......….14 5. 澱粉代謝相關基因之影響因子…………………………………………..........15 6. 水稻蔗糖轉運蛋白基因之相關研究……………………………..………...…..16 7. 本論文之試驗架構及意義………………………………….………...….…..….18 材料與方法 1. 植物材料、種植與處理方法…………………………………………………….20 2. 醣類定性與定量分析………………………………………………………..….21 3. 基因表現分析………………………………………………………………..….23 4. Microarray分析……………………………………………………………...….24 5. 蛋白質萃取、定量與酵素活性分析…………………………………………….25 6. ABA萃取與含量分析………………………………………..…………………30 7. 啟動子釣取及序列分析…………………………………………………..….…32 8. 以暫時性表現系統進行啟動子活性分析…………...…………………………33 9. Electrophoresis Mobility Shift Assay (EM-SA) ……………..……..……………37 10. 以穩定性表現系統進行啟動子活性分析.……….……..……………………..41 11. 統計分析……………………………………………………………...……...…44 結果 1. 葉鞘中澱粉合成、澱粉分解與蔗糖轉運蛋白基因於抽穗期間之表現….……45 1.1. 水稻上位葉葉鞘在抽穗期間其澱粉與可溶性醣類含量變化……………45 1.2. 移除幼穗之水稻其葉鞘澱粉含量於抽穗期間之變化……………………45 1.3. 澱粉合成相關基因在葉鞘儲存-供源轉變期間之表現…………………...46 1.4. α-amylase, β-amylase及OsSUTs基因於葉鞘儲存-供源轉變期間之表現..47 2. 以Microarray分析儲存期及供源期葉鞘中之基因表現……………………....47 3. 探討荷爾蒙是否為調控葉鞘儲存-供源轉換之內在因子……………….….....49 3.1. 澱粉合成基因啟動子分析…………………………………………….…...49 3.2. 荷爾蒙傳導相關轉錄因子-OsDOF3與OsWRKY71在葉鞘中於抽穗期間之表現分析………………………………………………………..……..….50 3.3. 植物荷爾蒙對切離葉鞘中澱粉含量的影響…............................................50 3.4. 植物荷爾蒙ABA對切離葉鞘中澱粉代謝相關酵素活性及OsSUTs基因表現的影響……………………………………….............................................51 3.5. 抽穗期間水稻葉鞘中內生ABA含量與澱粉分解酵素活性變化………..52 4. 探討水稻葉鞘於儲存-供源轉換時,調控OsSUT基因表現之訊息因子……...52 4.1. 台農67水稻之OsSUT1、2、4基因之啟動子分子分析………………….52 4.2. OsSUT1、2及4基因啟動子於葉鞘中的暫時性表現分析………….....….53 4.3. OsSUT4基因不同長度啟動子片段之暫時性表現分析………………..….55 4.4. OsSUT4基因之DF(-550/-484)與DF(-643/-603)啟動子片段進行EMSA分析.....................................................................................................................56 4.5. OsSUT4基因不同長度啟動子之穩定性表現分析………………………...57 討論 1. 水稻TNG67之-2葉葉鞘為抽穗期間主要澱粉儲存組織…………….……...59 2. 稻穗的抽出及其碳源需求調控抽穗後時期葉鞘的供源能力…….………....59 3. 水稻葉鞘儲存-供源轉變之標識基因……………………………………..…..60 4. 影響葉鞘中澱粉代謝的內在因子…………………………………………….63 5. 影響葉鞘中蔗糖轉運蛋白表現的內在因子……………………………….....66 6. 調控葉鞘中OsSUT4在抽穗後大量表現的啟動子區域.……………………..68 7. 葉鞘組織暫時性表現系統之建立………………………………….…………70 8. 結語與未來展望……………………………………………………………….70 參考資料…………………………………………………..………………...……..…..72 圖表與附錄目錄 表一、針對澱粉合成、澱粉分解相關基因及蔗糖轉運蛋白設計進行real-time RT-PCR之專一性引子………………………………………………………………...81 表二、水稻-2葉葉鞘於抽穗期間澱粉合成相關基因表現與澱粉含量變化之相關分析…………………………………………………………………………...…83 表三、針對Microarray所篩選出之基因設計進行Real-time RT-PCR或半定量RT-PCR之專一性引子……………………………………………………….84 表四、以real-time RT-PCR分析由Microarray所篩選出基因在抽穗期間之表現……………………………….………...........................................……...…86 表五、葉鞘澱粉合成主要基因之啟動子序列比對……….…….…………………….88 表六、設計合成OsSUTs與TRXh基因啟動子之專一性引子…………………...……89 表七、設計專一性引子,合成5’端deletion OsSUT4啟動子之片段與EMSA之DNA 探針………………………………………………………………………….…90 表八、OsSUT4基因不同長度啟動子於TNG67水稻之轉殖效率….……………...…91 表九、OsSUT4基因啟動子DF(-550/-484)片段上已知cis-acting ele-ments…………..92 圖一、水稻葉片及葉環相對位置……………………………….……………………..93 圖二、水稻上位葉葉鞘在抽穗期間的澱粉含量變化……….….…………………….94 圖三、水稻抽穗期間-2葉葉鞘醣類含量變化……….…….……………………….…95 圖四、正常抽穗與除去幼穗之水稻植株-2葉葉鞘澱粉變化趨勢…………….…..…96 圖五、澱粉代謝相關基因於抽穗前之表現趨勢……………………………………...97 圖六、葉鞘中澱粉分解相關基因於抽穗期間之表現…………………….………..…98 圖七、葉鞘中OsSUTs基因於葉鞘於抽穗期間之表現…………………..……..…….99 圖八、葉鞘於儲存及供源時期呈現差異性表現基因之分群與歸類….……………100 圖九、葉鞘醣類代謝及分子轉運蛋白相關基因之表現………..…….……………..102 圖十、葉鞘中荷爾蒙訊息傳導相關轉錄因子於抽穗期間之表現.............................103 圖十一、植物荷爾蒙對水稻葉鞘生長及其澱粉含量之影響.....................................104 圖十二、植物荷爾蒙ABA對水稻葉鞘澱粉合成與分解相關酵素活性之影響….105 圖十三、植物荷爾蒙ABA對水稻葉鞘中OsSUTs基因表現之影響…..……………107 圖十四、葉鞘中ABA含量與澱粉分解酵素活性在抽穗期間的變化………………108 圖十五、OsSUT1 基因啟動子序列…………………….……….…...…….…………109 圖十六、OsSUT2 基因啟動子序列……………………….....................………….…111 圖十七、OsSUT4 基因啟動子序列……….....................………………………….…112 圖十八、TRXh與Ubi啟動子之暫時性表現分析……………….……………………113 圖十九、OsSUT promoter::GUS暫時性表現質體建構圖I…………………………..114 圖二十、OsSUT promoter::GUS暫時性表現質體建構圖II……..………………….115 圖二十一、OsSUT1、2及4啟動子於葉鞘中的暫時性表現分析…………….……...116 圖二十二、OsSUT4 promoter::GUS表現質體建構圖……………...………………..117 圖二十三、OsSUT4 啟動子5’-deletion片段活性分析………….………….…….…118 圖二十四、EMSA所用DNA探針位置………………………………………………120 圖二十五、OsSUT4啟動子片段與葉鞘核蛋白之結合分析……………………...…121 圖二十六、OsSUT4啟動子片段與葉鞘核蛋白之競爭型結合分析………………...122 圖二十七、OsSUT promoter::GUS穩定性表現質體建構圖………………...………123 圖二十八、OsSUT promoter::GUS質體於轉殖水稻植株之表現………….…....…..124 圖二十九、OsSUT promoter::GUS質體於轉殖水稻穎花之表現….…….……...…..125 圖三十、OsSUT promoter::GUS質體於轉殖水稻之啟動子活性分析………….…..126 附錄一、木村氏水耕液配方……………………………………………………….…127 附錄二、水稻肥料施加表………………………………………………………….…128 附錄三、pAHC18 map……………………………………………………………..…129 附錄四、水稻基因轉殖各培養機配方………………………………………...….…130 | |
| dc.language.iso | zh-TW | |
| dc.title | 水稻葉鞘在抽穗期間由儲存組織轉換成供源組織之
分子調控機制 | zh_TW |
| dc.title | Molecular regulation of sink-source transition in rice leaf sheaths during the heading period | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 張孟基(Men-Chi Chang),王愛玉,吳素幸,葉開溫,謝旭亮,黃鵬林 | |
| dc.subject.keyword | 儲存-供源轉換, | zh_TW |
| dc.subject.keyword | sink-source transition, | en |
| dc.relation.page | 133 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2009-08-11 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農藝學研究所 | zh_TW |
| 顯示於系所單位: | 農藝學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf | 4.93 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
