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Abstract

Upper leaf sheath of rice (Oryza sativa L.) serves as a temporary carbohydrate
sink tissue before panicle heading. Starch pre-stored in upper leaf sheaths prior to head-
ing would be remobilized to filling grains at post-heading stage. Thus, upper leaf
sheaths could be converted to source tissues from sink tissue during heading period. The
process of starch changes in leaf sheath is defined as the sink-source transition. The
purpose of this project is to reveal the molecular mechanism of the sink-source transi-
tion in rice leaf sheaths during heading period: Kirst, the expression profiles of genes
involved in starch synthesis pathway were anaI};zed and egmpared to starch content in
the second leaf ‘'sheath below the flag leaf. The results indicated the changes of
ADP-glucose pyrophesphorylase largessubunit 2" (AGP-L2), granule-bound starch syn-
thase Il (GBSSI), soluble starch syntﬁcé‘z 1.(SSSI), starch branching enzyme (SBE) 1,
SBEIII, and SBEIV mRNA. levels were ﬁléﬁy correlated with starch content changes
during the heading period in the leaf shez;'.fth, and [these starch:Synthesis-related gene
promoters shared several comr_no;1 hormone-responsive eclements. In addition, the
a-amylase2A and f-amylase were considered as major' genes that regulated the starch
degradation at the post-heading petiod. Of the five'sucrese transporter (OsSUT) genes,
OsSUTI and OsSUT4 appeared to play an important role in sucrose loading into the
phloem of source leaf sheaths. Besides, to reveal whether phytohormones were the fac-
tors to control the starch metabolism-related enzyme activities and OsSUTs gene ex-
pressions, the effects of GA ~ ABA and BAP on expressions of these enzymes and genes
in detached leaf sheaths were examined. The results indicated that not only the expres-

sions of OsSUTI and 4 but the activities of a-amylase and f-amylase can be enhanced

by ABA, suggested that ABA is one of the factors to regulate the carbohydrate metabol-
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ism in leaf sheaths. Since OsSUT4 gene was significantly up-regulated at post-heading
stage, it was used as an indicator gene to identify the molecular mechanism of
sink-source transition in leaf sheaths. In order to find the cis-acting elements on Os-
SUT4 promoter involved in controlling rice leaf sheaths sink-source transition during
the heading period, we constructed nine various 5’-deletion OsSUT4 promoter frag-
ments containing GUS reporter gene and analyzed the avtivities by particle bombard-

ment assay. A 67-bp promoter fragment was identified, which might contain important

regulatory elements involved n-q:_g'l‘iéﬁog‘ f@sﬁf@qﬁe up-expression in leaf sheath
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TP g s R YT o s R (Berez et al., 1971; Samonte
p 7~
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#1
etal., 2001) o ~RF&E o B R 30/15 ﬂF’i:!"'f"’é,s%‘ﬁ i s (sink tissue) & %
B PE A i e (sourcellfs%e) ﬁﬁ%&j@-m 43— iR % (sink-source tran-
QMM°§”CF&%%iAﬁFH’%FjMwV*:ﬁéiﬁﬁ%ﬁﬁ$6wﬁ
R RS EE D R o BHERT E N2 s V*ﬁ’“i‘ﬁ FELBGIRAETRG
1 4p B (Cock and Yosh1da,71972; Ishikawa et al., 1993; Samonte et al., 2001) -
o FHER AT E R AL L I%\fﬁtfﬁ R G B (sink stage) #T R Af S00E
BRILHE LR - bldog B LT HEIRRGHPF > ¢ EREFELETY R
AR B KRB AY T R 2R P E 2P o-amylase ~ B-amylase %
sucrose phosphate synthase 2 fi¥ % /& 1 ¢ #&8 2 > GE 5 J0FF L R el s "% 2 2 R
WA T PR E R E T R R SRR AT NG AR
g o gk (Yang etal., 2001a; Yang et al., 2001b) » F]pt > FFLE 5 542

g ¢ PP AR ey (buffer) 2 £ & £ ¢ (Soga and Nozaki, 1957;
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Yoshida, 1972; Blum et al., 1994) » > B3 3 B {04
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ARG A ok BRI Rk G il o B RN E T LR
FREFHE GRS BLEE R (VRIS SHNEYZ2ERRE > AP
k& 1F* s A 4 (TurgeonandWebb 1975) 2 B FlF b A 24 £ S 0F o § K
AP B HIEE R P E YA e iy g PR ¢ A e
pERg en L 7o gt EE s W 5 S R ﬁl ] (t“F'?é’fé%iEtEF) o & 4% st AR
THRBFTAE ST S A G FREE T A% z'u_éﬁrs* # 530~60%
P TR B G TR OE BOR DR o A mé‘”‘ "5’*%‘3”“’?%] rER O ETERTS T
o A0 RenRPE > 7 A RE " ri'—m RS R e F 4 (Jones
and Eagles,1962; Turgeon and Wgeb 19751% 5 8 ;’fti%? TE T s ERE T f
PR mE A ASRE LE éii#f ¢ “f%\::_)f I“’#B‘r]% Pkt A R Glde s #
kR E PP En‘iPﬁ v i i@qﬁ S R -2 AR R £ > E 3
(Turgeon, 1989) ‘& 41 mﬁj?{’"}ﬁu”b”ﬁf [EN-p= ] ii{fr‘?‘_* 3R R E %
74 4% (unloading) FE#E i1 feo @ ERdp 3 B IR E_# * g chE KR (TRERE
%1 (loading) (Ding et al., 1988) - ¥ ¢} > Imlau® % (1999):8 % I fm %2 AF i % 5%
(plasmodesmata) §*EF 5 - HhEHE A d GEHEXE 5 AL i H ohle

R R GT ?ﬂh«z} Tege oA G A A e Bl SR AR )

._

B Tl AR AnES Y AN FEAN e RGNS EA > 7
Posg it L dmre 4 £ 9T T e £ F o Wright® 4 (2003) f1* & F iR & -
AP P OR REAEEE 3d ASUC2H Flexd- 3 » WHAF T P FHE P53 -
EREROAIIR O BT R ERERTDEIHESERDEY > TRk
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MEEABRTAAFP VR e R FETRG-Fh2 B - P AR FY ¢RTES
G- R enig e > Sokolova® 4 (2002) 41 * MCanitsAE 2 E gEchii e BLEBA
HeE G E P oL A ¢ e B E S » Nobenzyladnine (BA) AJ ihE
BN MR AR RE i 4 o @ F A_-Gibberellic acid (GA) iR b BIRPEFY &
8o p) ¢ ase"C-sucrosed iR E B #i 1 (Aloni etal., 1986) I — 3 ¥ } 4
FHIMs BRI p 2 TR R £+ % 4pF > Thorsteinsson® 4 (1990) 1
BT P o0 ERFE $ 1 ehAbiscisic acid (ABA) £2 Indoleacetic acid (IAA) 3z & » %
ek T P o AR ERDE RINL B G B PABAZ £ 2 ik

IAAG £ > % 7 ABAZIAA S AR5 7 ot o

3. kfEEAs &2 4R M AT

RpEEE G aRE R 13’—//51‘__%‘« AT T ORPEATOS ER S A 2 B
%$=6)ﬁ%€$w’ﬁﬁ“#%w%ﬁﬁﬂﬁ&%,()&%@pm,ﬁﬁ
1§@*%?*ﬁﬁﬂ*ﬁﬁ@ﬁﬁfq”%*?ﬁﬁ%ﬁ;e)ﬁ%ﬁﬁw

FATL X2 E #%%“Lbfl_#ﬁ}aﬁ@-kpkyf I g o

Y

ﬁ%ﬁ’*i%ﬁﬁ%;ﬁﬁ’—&%ﬁr{;ﬁﬁﬁ%%ﬁﬁ%@émﬁ
e & = i 42: ADP-glucose pyrophosphorylase (AGPase) ~ starch synthase (SS) %
starch-branching enzyme (SBE) * AGPase #Li Jikifs & = i K k- h 3> A & f §
glucose-1-phosphate (G1P) £2 adenosine 5° -triphosphate (ATP) 2. * J& » 3) =
ADP-glucose (ADPG) * m ADPG % & = Jik#s 2 A B (substrate) o £ 4= <17 AGPase #_
d % i~ =xH =~ (large subunit) 2 % -] =t H =~ (small subunit) #7i = 7} 3w
F 4 (heterotetramers) - AGPase & 7 3F % A fr it > + WA {47 «h AGPase § % 7
3-phosphoglyceric acid (3-PGA) 7% it » @ % 31| phosphate (Pi) #r#] (Ghosh and
Preiss, 1966 ; Sikka et al., 2001) > fe # [ ‘e % fF 9 AGPase $F 3-PGA/Pi 2 &t & ¥
%I bldeoR 455 T ¢ fAF 2 AGPase B ARt E B P 9 AGPase’ # # 3-PGA
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3 % B g B (Sikkaetal, 2001) o B # ERKAEY 3 B E A
AGPase £ 7): AGP-S1 3 AGP-S2 22w B ~ =x H = AGPase 3 ¥]: AGP-L1~AGP-L2~
AGP-L3 3 AGP-L4> @ 4 cDNA database :74% % % & 71 AGP-S2 A %13 » B # 4
Ad o 2B e L5 AGP-S2a 82 AGP-S2b - Lee % %+ (2007) 11* AGP::GFP 2 & 3~
v HpHE i P is e AGPase v e ¢ ok i ¥ 0 2 L AGP-S2b ¥2 AGP-L1
(AGP-L2 ; Lee etal., 2007) > % 5 ¢ 1 AGPase > # H s = & AGPase P i
NESHAREEY o KFEE L A & X B2 AGPase £ F1 i AGP-S2a ¥2 AGP-L3 »
F iRl AGP-S1 2 AGP-L2. % & > @ "AGP-LI~ AGP-L2 ~ AGP-S1 2 AGP-S2b %
A& FIR Akt ¢ A 8% IR (Higose et al., 2006 ; Lec'etal., 2007) -

Starch synthase ¥ i H & E& 8 & cps 1 ¥ iiEd R Ao R fE 0 - fAA T &
Bk A k% & 2o granule-bound starch synthase (GBSS) > 5= %ﬁﬂ'] {T—? ERAS Wl
(stroma) ¥ fi1soluble starch synthase (SS_.S_) ° GBSS i 7 E 480 (Amylose) fhut
£ ok fe® < Mm% B GBSS 1soforms,-(ﬂSSI % GBSSII #GBSSI 4 & & ik
(storage tissue) P & {7 R e £ fv\* (Smlfﬂet al., 1997) » B4 fedt> IGBSSI 7 waxy
kfed o gt R e WAk £ ﬁ iéﬁn‘fv e L‘Lﬁ < B Ar e s e e T 2
77 EAEk (Blakeney and Matheson 1984).> . jkfﬁ,,m;t’}\ T ern GBSSII Y & 2h i
# e g (nonstorage tissue) ¢ f Flk s 2 & &% (Vrinten and Nakamura, 2000) © B
3+ SSS > H o ok A4l (Amylopectin) 0 B w0 -k 4P 3w B SSS isoforms:
SSSI ~ SSSII ~ SSSIIT % SSSIV » % 7 SSSI ¢k » B is isoforms 32E 3 & Bt
isogenes > 7} = — 1 2 F] 7% (gene family) # = SSSisoform f§ # A2 7 b & &
& 48> 4o SSSI k45 L 48 ® £ 42 &  (degree of polymerization, DP) % DP8-12
(Nakamura, 2002)> » Edwards & % (1999) 4% 5 &% & 3 F & SSSII> P SSSIII
dF & = DP25-35 et 4 o

SBE f §2 it & i 4as R 4ksts t 2 & o(l-0) i ati fehsl 48 KA
# o g4 SBEI NI & IV = 48 isoforms o #54% # ¢ SBE 7 ik %4k ik & 7| 74
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B % A = 73E A (family A) 2 B (family B) (Burton et al., 1995) » #2% A 7 SBE
Ve AR B e N it 722 B %7 60-100 B e - e 8 4 Czplak b 50 Bz
Afe> B¢ ¢ 77 kfH SBEI f- SBEIV ~ 1 f 9 SBEII % g & 9 SBEL> @ -k %
7 SBEI ~ % 3 7 SBEI % & & 7 SBEII B 3 725 B = & 3287 0 SBE $ A
(substrate) im4F A28 % #E# nd 4k )?.‘1‘5’3’)3 1 3 Je o bl4e X f 9 SBEL 48k
Fo Ao g B > @ X of 0 SBEIL Bl iy 473 L 4dJik ks + 4e + 4 48 (Guan and

Preiss, 1993) -

KAERAS A 2 A 7]
e e e 1 R A 1R L B AR - A Y

RE T PR RUIERT b RS T RIS I - (- ) R S B AR

5

1.9 FpE (soluble glucans) » f ¥ iz .}—-B o amylase 3 debranching enzyme
(DBE) - a-amylase™_{#% 7 glucosyl bgﬁﬂ" Sap b B R R TR B 5 ek
A% o-amylsae & fE2 & 5 A% (ioranched 11? e 48 (linear) & - 1Eq R pE- P w e
ook fs? 3 - B a-amylase isog?nes @ ;;ﬁ # IFLI’&_.# TR hY ocamylaselA, 24,
3D and 3E = i isogen;:s tTho;r;as'et al411994) - DBE Lo T T RS S 2
O(1-6) i i ki 5 304 i 2 4B R PE I % M B4 T RPEE - £ R A 2
fitr2 %4 i+ -DBE v &2 SBE- &gl ad gk as L /2R > tx DBE~ # 11 %
B ks &k Y oo ¢ S RiEd 48 Y 3 v #4 DBE f% % : pullulanase (PUL) -
isoamylase 1 (ISA1) ~ ISA2 2 ISA3 (Nakamura, 1996) o A -k f&fd+ = R erfF L > 7
W T) % & LR h PUL 82 ISAT %] > & Aok ASE &Rl ISA3 4 714 E 5 3

(Ohdan et al., 2005)° "2 Fe = 19} R IR F ZEF ISAL 22 [SA2 ¥ % 22§ P ik en

AfE R E € RS DS XA T K (Zeeman et al., 1998) Rihg e
ALY E SR T ERE C(C) KRR S S HEIL ) - BN

phosphorolytic pathway - {%%‘ d F %48 ¥ 0 a-glucan phosphorylase (AtPHS1; Phol)
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it B gay R pE 2@ R s 0 f2c ) glucose-1-phosphate (GIP) ¥ — i [ i fd
hydrolytic pathway - i & # i VSR pEaE kR > 459 Bramylase 2 #7§ §
BREAFDo(loDBFHE > 2 Fr 23 d Rp 2B R A B e 7 F ko
#-v ba R R PEA f3 S maltose (Lao etal., 1999) » ‘G d =3t E %48 ) % F 5 maltose
transporter (MEX1) &% 3| w% & ¢ (Nittyld et al., 2004) - &+ ¢ B-amylase {fi
T WG e o SR fRiTt B CHaRiARAR TS WERT R
it % f& (inactive form) #& % = £ 5 /2 ¥ % (active form)ei&— # | * fr i iay
R F T 0 e ¢ Sd B-amylase » £ E 48§ K pE 2 hydrolytic pathway
# phosphorolytic pathway & & ; (= )@ o-amylase £ B-amylase T * 5 2. & $»:

maltose ~ “&4& glucans ~ maltosaceharides = limit dextrinS & - ¥33¥ d a-glucosidase

e R T

g
5. dk PR M A PR F S ;“Fm'
o ek Aﬁﬁﬁ"ﬁfé‘j I_ R R - W AT B (—)

Scheible & + (1997) % J5 i & o 3 Iﬁﬁd ﬁ& (mtrate) r %}*—T d "3 3-PGA ek B
Z Frd) ) s H = AGPase 2 ;gl_gfﬂ I AR i s B (o) fRdE it % AGPase
(Sokolov et al., 1998) ~ 4 3 GBSSI(Wang et al.;2001) ~ 54 % AGPase ~ GBSSI
SSSII ~ SSSIII (Visser et al., 1991; Nakata and Okita, 1995; Kossmann et al., 1999) ~ 4t
% SBE (Salehuzzaman et al., 1994) ~ -k f&>admy3/a-amylase3D ~ admy7/a-amylaselA
admy8/a-amylase3E (Sheu etal., 1996) 3% ¢ = FIPEIF Ay 5 (2) & 7R 5
ABA~GA £ cytokinin~ # 2§ ¥ 128 5kok  304p B A& Flend 3L (Miyazawa et al.
1999; Itoh et al., 1995; Rook et al. 2001, Akihiro et al. 2005; Wang et al. 2006) > @ B =
AR ATBE N L AT R N EN Y BB A S M A T2 AR A 3

E - R -
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6. KACKWIE 9 AT MY
v s A RS ZEAEXTES P A EBLEFMY A P

F’“ﬁ%a\ﬁ@ﬂﬁlﬁjiﬁéq};‘ ’ f’—%ﬁ“d RAIGEFTLIEROREE o RAEAER e &

& *ﬂ)—

2880 FEd A ERITE AN g T e L (—) ;ﬁ“c} B E 30
(H"/sucrose transporter; SUT) (. apoplastic pathway i& » sieve element-companion cell
(SE-CC) ; (=) %’ﬁf d fwPe fF i & 5% (plasmodesmata) s symplastic pathway i& » T
SE-CC ¥ o Ei# gy ¥ i B S WRUR A f ] £ R ehd § > FUF &
AL F] (antisense gene) # RNA F3F (RNAI) &7 = ;¢ Frd|imbe b B pEEE 3-v
ik Ik R g AF RS T 0 AR A e b 4 TR E R (Kiihn et al., 1996;
Scofield et al., 2002; Kiihn et al.42003; Chincinska etal., 2008)° 53 Aoki ¥ £ (2003)
i PR VR Ak S0 P AR R e AR 8 3ev 2 = Typel] TALAM: H o F -
WA T Ao 7 #73 I (Lemoine; 2000: Kﬁhn 2003) - Type I SUTs %
high-affinity/low-capacity. & i& 3=v LKELSQ UM-1.5 mM)’ @ “Typelll #:& F-v P
£ low-affinity/high-capacity (Km=5-6 m]\’ls g3 1 o Type Il e - i i= 2L s B 71+
fra A3 AL i —fl l Rk ;ﬂ-N o (Ntermmal) 3 v &7k B (central
loop) © &€ ¥ A% IﬁLmSUT = r];g » Sauer (2007) & Ar/ndt © mSUT 2 Fle - i
o B-H e aw gt s TR A Aok & (2003) #4120 Type I subfamily 4t i&
- & &S F o Braun £ 4 (2009) Ller IR E LA 2 - AEHE E AL AfHE
FenSUT AR k7L ¥ RREI|FRIES =T 3> kL g Type I subfamily 4
* Group2' F @ 7+ E4a 4 ch SUT A F]5 @ Type Il subfamily B 4 %] 4 = Group
15 3=%¥>ma3¥n L3 3 Flt2 SUTATF > @ Group3 & Group 4 (%
HenType ) R35¢ 2 HF 2 3 FnSUT AT -

Hirose % % (1997) & & 41k f5% — B SUT A %> 2 5 OsSUTI > 7~ 5 H =+
P - BARGE D SUT A F] o Aoki & £ (2003) I * -k f% OsSUTI % =+
§ HvSUT2 chk F1 B 500 $H45 30K 467 b w i SUT A %) A 6 & % 5 OsSUT2 ~3

16



4% 50 OsSUTI %> Group | #38 3-v > » .0 © 457 7 5 53 vk i@ &
B0 T P R OsSUTI A & 2 g 5 eh? (8 o lwie =t hiz i + o
OsSUTI = S#4FF £ B 3k R I (maternal nucellur projection) ~ 3R < %
A tm? (nucellur epidermis) % i 4> & 2% (aleurone tissue) » H ¥ it &%k tw¥e
SRR D R R R e e MRS OB AZ o OsSUTI » § tiriesh s £ 2 ¥ Rer
A R entd fmPe 4 3B (Hirose et al., 1997; Matsukura et al., 2000; Furbank et al., 2001;
Aokietal., 2003) » R ¥ it il i PR o 436 ;‘ﬂbi\ (phloem loader)
(Furbank et al., 2001) °

OsSUT2 &> Group 4 #%:8 Frv ¢h— BB A Flz #ig 2 4 BB p 5 5
5283 F4e © B W b Gloup 4 2 HvSUTZSASUT4 (Endler et al., 2006)
LjSUT4 $#:F F=v udddw i@ iR %2 B b o JEip| & LR 3% ‘o' ’}?‘rkﬁ’/{?z B R OMEF AL o

e 1 22975 1 Group 4 #1E F-v fj;*'%’:'e,-,i_ﬁe IR ol G4 B AR 2 SISUTY 7 8_4 IR

~

B B e s P FlEOp b (endqgﬁﬁbrénes) (Chincinska ét al., 2008) o

OsSUT3  OsSUTL IR Group 1 "E.«' FARATE T B il d T

l
BAEERS I S hag s CI' (Takeda et al. 2001 Ngampanya et al., 2002) -

\\\?{r
I%
F_*

OsSUT3 » #% I ’? Ca o mvf;él_-? MR AR zéq‘/}_ﬁl% R nE B
s &R (Aoki et al, 2003; Scofield et al., 2007): -

OsSUT4 2 OsSUTS5 %~ B3 Group 3 2 Group 5 7% % » )b & 3 B MR F -
B2 AR R A AT A kel 8354 2 (Aoki etal, 2003)« %
ik Group 3 ¢ IR K FIR 7|42 Bk L @i angF g 4R H AR B R
M2 7 it (Barker etal., 2000) » fe 35877 3 Rldp &) 7§ 3F 5 Group 3 SUT A 17 #

FO L BES L RBEREE 9 (Meyeretal., 2000) -

FHEFRAREGY A AR RN e S AR R IE L BT R
POTE R E R TR R ] o R < 30 hpEa S EEE A S
AFIREEFI ke b - BAFIREY 2 AR ATV R LG F TR 2L AR
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,E'_—k;%— ML B ook T h e E - BEEe AT m‘ﬁi)l% A '
AR AR o g 1 KR E AN R B RS S S E
BE A e

7. R LEHRFERE LA

SRR KT AR T - SR A 3 AL A% AR
MTEABBRGEEFE (-) FAJI* real-time RT-PCR #jie» 4 4 3 © s
& A Rp A2 Jr%ﬁk__@ﬁﬁﬂﬁ—!@ 3t g,;fgﬂpr"*m;& g g
oS so ke E Y xpﬂ}E\sgi«)ﬁﬁf B 2 @%ﬂ ( ﬁsd» X 2

'-

‘E?P’%?%%‘r' mi ay HLe

s s i PRt 4 2 20
w“%hﬁﬁgﬁﬁ’”“' o TEEL] *ﬁﬁ%ﬁﬁ%ﬁ@

E e m%gwbﬂaﬁﬁ

.:%
& |
0.
af
<l
&
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Rt R
L R e R 2
L1 g4 ##
d B i gtz te 25 -9k - 5oREEAF (Oryza sativa L.

cv Tainung 67; TNG67)

12. 34289

| ’?L'E*sﬁ'f:l

0- (-!'\I{_-/V) Na%éh /

(1) # TNG67 - chfg% m‘g

.'

@’&w#&.ﬂ K7 ghi

(’%{E

;% (Chu and
Lee, P B & H o
i = i
(4) #= 3 7 /rs —6;556/24 )
s @Q@ R,
4 ;#\-E:li. - r'
e N\ T 4

(5) kg T

B2
o,

o) o

i A

v,

-3 “Tﬁ s b 48 (o

A

o

% .%t%ﬁi@%ﬁ{ﬂf E-ﬂ::j: L

1.3, 3t fa s - M ARPF R 2 2 2

I MEERfRIEAT 5 - F (LE) PERER (F-) K24
a0 1% fic (Matsuzaki and Rutger, 1991) » TNG67 "k §&* % £ 2 £ pF > & £ £k
BEAE S -4%1~0~4%1 2 9] 24> s u| (N A2 EFFE S AT 2015
105 % o3t 2 F4 Lofath @ EERFEYP L 4]0 2 4] 20 2 FF > 4 5

AR S 15210405 % (Bl-) -
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14, R EHFRILIFE F 222
(1) » = e %@ 100 mM ABA [Sigma, Canada] - GA [Sigma, USA] %
NC-benzylaminopurine (BAP) [Sigma, UK]2_ /7 fi % 2% » 18 * P+ 4 2
- BTk o el RER S 100 UM 2 JF R IR o
Q) Bokfe2 EEF U I IMAKEBTHYS 2L T o RBEHYE-1IEE S
PIF RN s WHT2EE R L BENFEF AR o
(3) * i & 25°C/20C(P iR/ RiE)2 p RERE > 8% 24 [P RIREE L2
EERR ’fz@rt“ﬁi’éffﬂ@g R F

_:I..r.

o, .%_- ) e
80°C vk i ¢ f}a'ff gt 3 ,-%: ‘f‘ X

LR SN e

(= T
1.5. %ﬂﬁ%ﬂ%# N\
I|
Bk B R W e
et
e =
6 A ER .
e T

ik el i
21 REHFRE "it;:_«_. "';"f f" 1{?{* . n’ﬁ.:ﬂ
BT R EIRY @lﬂﬁﬁﬁiﬁﬁlg R TR S e R

B gy R £ L/KI0.6g/6g) %4 304 s K dif % o nis

B kBRI -

P F?% 2R TR
% Keppler 2 Decker (1974) = #2270k 7 £ R T

(1) * Fakfrtr ik TRE YRS A 0 2 80°CdE 12 ] PEis > BIR

Higt o
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2.3.

(2) r4 5mL 2 80% (v/v) ethanol ** 80°C ki * 7P~ 5 & 46> 5 3 7 73 1L pEAR -

(3) 12 4°C ~ 3,000 x g 4 10 2 4815 » ] oo 45 % ethanol (€474 % 2-3 = =) =

(4) *F F ¢ Ragt ik o

(5) * 3mL @ F kR BisAck > & A& 100°C-kig (5% 2] BF o

(6) ek & & Smg/mL 2 Jds ik — Az g it » X HITREY R (2w 7
50 ~ 100 ~ 150 ~ 200 2 250 pg 2 ##3) °

(7) B~ 50 puL # S22 ik ofs 58 5 4~ 150 uL f%% & ik (1.2 U amylogluco-

sidase [Sigma, USAiI Q.j'S-rU' ;Eullulandﬁe [§1gma Israel]) » 3 55CiE* 1.5

] B i E *'
8) £ 1000"%% 5”-"/5 LT

V] 2
(9) 4c_1_...7,§_;3.):__2<
(10) 4~ 1 mL TR

MgSO., pH7.5
g _h-:‘_l’ p

nucle&idet_gil_o

(11) #e 5u R ‘gu' s (-HK)'[Slglma USA] > 7 & 5
s LT - QE'}'F A
365 5 30 A H © ODss 5 31B | 41

il
(12) 41 * E2-El 2 #ig }fﬁ&#_ﬁ.ﬁ.ﬁﬁ%& abg R SR e

MERERIETRERBETERE
<% Nakamura (1989) % A * 28 FRBEEH 2 £ R <
(1) * e d #oRfEEYFESH A W 80C i 12 FRRELCE -
(2) 4t > 4mL 80% (v/v) ethanol> »* 80°C-kig iT* 5 483 f&2 ¥ 3 1LPESE -
(3) ™ 4C ~3,000x g ds 10 & 48 > Jo i b it EAFH 23 = & 0 By
AR T 10 mL -
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(4) 0.01mL  Fim (> 3 E 28 F Bic o

(5) — ¢ 4> 0.4 mL 0.1 M acetate buffer (pH4.6) » ¥ — ¢ 4r » 0.3 mL acetate
buffer 2 0.1 mL invertase solution (20 mg/mL in acetate buffer, pH4.6) » **
55Cie* 1] pro

(6) £ 100°Cie* 5048 > R 43 ElLo

(7) 1 4C~7840x g 4 10 A 48 > BB~ 0.1 mL F FR 2R § @ o

) pe@lAlfA 5 0.1mL 2 § 5 BEEd R (2% 775 0~10~20~30-40 2 50

e 3 icy] LG T
ng E M) - _I:;_-_lqz;.n_i-. f&h -r-'IEL.' Ze,
(9) # i 2 ﬁ—izgk o T mL,TRAJ@fér’ R 570,65 mg ATP - 0.952 mg
e -\l‘-{\-\. --:-;-J H
NADP % é‘*sU R L hi@Dm’Egﬁré El -
N I
(10) 4e » S.;uL:I“-EA F 30 A48 1] L ODaes
.:’__!FI I.I:'-.
H i "'EZ ° \ ?-l
~ ~
* T b
(1) 1 E2 E1 =
(12) %\hqnv rtase il g 1 L ¥ :-j;'i-c ﬂ;;ertase % 4 4¢
| f | . [y
1nvertas'¢lrﬂfé_ AR 5] e d g j wedl % ?ﬁ [ ;i N
Bz E e .:Z:-.,'ﬁ

3. i ﬂ %‘ mﬂlw\ *L’r e :,:. .-_ j ..\_ ; -.:i-:.-_."jl:i.::: r-' o =
3.1. £33 RNA §5
12 Trizol Reagent (Invitrogen, Carlsbad, CA)#¢ B~-k f& 3 i 4% RNA 15 » 41 *

TURBO DNA-fiee™ kit (Ambion, USA)2 "7 7 ik ¥l DNA

32. *EF EERLEFFRYF & (Real-time RT-PCR)
i¢ * Brilliant® SYBR™ Green QRT-PCR Master Mix Kit (Stratagene, USA) >
& 14 Stratagene MX3000P™ 4 i (7 T o £ 4 F A Fe il 4 F o 718 5% % )

23



* MxPro QPCR Version 3.00 #r48:8 {7 4 47 o 44 Tk @R S e 40 F &
HEIFRARRT B - il F (2-) TR B ATES Y KDH
# o Real-time RT-PCR » &4 3884 25 pL i& {7 (200 ng RNA template, 1X
master mix ~ 0.1-0.5 uM forward primer ~ 0.1-0.5 pM reverse primer ~ 30 nM ref-
erence dye ~ 1 uL StrataScript RT/RNase Block Enzyme Mixture) » 4% 5 i% i 4e 7 :
S50CHF #4530 48> #2¥F ™ 95CF s 10 &~ 48 > 2R3 » 40 B §7k 1 PCR
Fll > =+ —- Biapkauf & 5 95C/1 # 48  § 53L& R R/ ~4> 72C/1 &
48 o 17 AL F1 & ILPF 0 14 Actin 2% Ubiqutin' 22 F & % internal control > ] * Ct
B3t 4 Ap 4 B E (Relative quantitation) » 3+ & = ;N4eT #77:

Target gene/Actin L9 (Ct Actin — Ct Target genc) = 2—AACt

4. Microarray 4 17

i

(1) $ P40 105 2 4o 4018 S 2038 i 'L RNA o2l gk is prgp 2 i

e AR B el 3 d B 1 2 h O Micioarray 2 4 - % e

| -

T o i ! y [ ]

(2) % RNA & ( 1 Qg) Z':L@ DNase I fix# /i (4 1, ™ MessageAmp aRNA kit
(Ambion, Austin, TX)" & =*.cDNA -

(3) #-iE 77 Prdy RNA 1% 2 ¥ £ 4 7 Cy3» @ il P RNA 2§ £ 4 Cy5e

(4) & P Oligonucleotide Microarray Hybridization protocol > 3% » 12 # 7 20,000
i % 1% 4 f& eRice Oligo Microarray s * (Agilent Technologies, USA) £
T F kP FercDNAZ TR & F i o

(5) #7t8 3| #icdg 4 GenePix4000B scanner 2 GenePix Pro 5.1 software & {7 5 %
fFda oo 47 o

(6) AFIZRABZRERAFH RSO TEIER T2 F £ E (Cy5/Cy3)
k&g CyS/Cy3 W A 1 A7 L AF AR RFD TH/E L0
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MRV E T AT AT AR EE AT

(7) #+iE ) Microarray & % + Actin 2 G6PDHase # Fliai s R e L5 » H ¢
7 16 1 Actin 75 ]2 source ** sink FFdp v & % 0.6 3] 1.95F 5 B G6PDHase
A FDE 0.7 3] 1.3

(8) PHiEH kv BAZB= B e T (Cy5/Cy3 + 3 % -] » 1/3) 4 (Fd iy
FARPBARDAT T iRBESNEFTLA o

(9) F2 30 BAFIL KB - H3IF (L2) PR BHF-2 EEHHHE

i# {7 real-time RT-PCR & 47 » Fratdrdt B~ L F]2 £ B35

5. 39 FEB L RR apA AEA K
51. 3¥H v P EFT ALY
%+ Nakamura % 4 (1989) 2k i T dv FEPRLEE TR
(1) ~1g EFitid iz it % T)_'@‘-jf-ﬁﬁ”ﬁﬁ%“ ¥ A0 de o~ SX A F PR
A (100 mM Tricine-NaQH, pHé|1.8 mM MgClys 2 mM ethylenediamine te-
tra-acetic agid (EDTA) ~[50 mM 2=mercaptoethanol > 12.5%: (v/v) glycerol ~ 5%
(W/V) polyvinylpyrrolidcine.—40 (PVP-40)) R & 23 %
(2) wME T Miracloth,me.mbrane (Calbiochem,‘ USA) ERFEP% 0 ik
e
(3) ™2 4°C ~ 10,000 x g "5 A kd s qe ik 2 L F i AR oo
(4) P~ 10 pL ¥ iR i (7 39 FIk AR 2ts (Bradford, 1976) » P~ 30 pg #v F
B LS Bi A AT ) 100 uL > S (750 5h 38
(a) #r » ¥ %84 2 phenol/chloroform/isoamylalcohol (25:24:1) & & 323 » 1
4C ~ 13250 x g e 1S 4B ie 305 ik > £ E4f - = o
(b) 4r » 4X R8# 7k4 100% acetone 8 & 3523 > 3t-20°C itk e 7 2 -80°C it
B 4] P e
(c) £ # %z A * 200 uL 2. 100% methanol ~ 80% acetone % 100% acetone
Fk TS o & R IE 4°C 2 13250 x g #e 15 A 4BEF F
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()

5.2. ft %

5.2.1. .ssﬁ’sqt-i)}’-irn T i

ER *'ﬁ%i
_WH?“‘ !

bR (R AGRRC - S
25 gl'll-u? jr___,:!rﬁ? & j -i

(1)

it -

(d) ™ 47C ~13,250x g & 15 A\ﬁ_jﬁ»ﬁ%‘f_ iR PEZHWF IS4

(e) 4 20 pL 1X Sample Buffer (125 mM Tris-HCL, pH6.8 ~ 2% SDS ~ 2 mM
EDTA ~ 5% B-mercaptoethanol) # 2 pL Tracking dye (1mg bromophenol
blue ~ 5 mL H,O ~ 5 mL glycerol) /% %39 & o

(f) > 100°C & 5~ 4mfs3E kb 10 ~ 48 > (F/44rie {7 SDS R A o

AIRp VA (¢ 7 OB RS E )

(a) 25 mL 3 BjR iRk s B =t o #5001 4°C 2 10,000 x g B 54 4
r.--\-1-\_:| L _-"[ll—""ii""-r ""_d'
T' 'i f /F II’? 1|'-.- _*. —L- -{_‘
(b) %/‘Lﬁx'f" ;;i 1 mL, #1X Samﬁa Buffer{:-’ q:.,ﬂv SR IRIE Y

...,-r

,_-.’r LT
(c) 1 "h."!'C <15 'yi"':%_;iéc‘:i- 2 uL Tracking

B Ll

d.yl ’ Ly

- =~

EE:-! o L ] ";':

% Mﬁr B S

y

o+ b
1y ~ -J-

wﬁu’ 2

SSS }_%?BE "a-aﬁy‘\hse % B-amylase 2. fit

(a) ¥ iFiRr 4C 10000)<gs;g~ 54\%& PBB L RIS E R o

(b) 4 » 4X BE#E 7k 100% acetone & & 353 5 *1-20°C #UHk I & 2 -80°C ik
4] pE o

(¢) "1 4C 3,500 x g 4 15 & 4w 4355 1 it -

(d) *x» 1 mL 7ki4 80% acetone & iFimks T Pk T s g @ > LU
4C - 10,000 x g s 15 4 88 0 555 ¢ i -

(¢) ™ 1 mL % 2% B (100 mM Tricine-NaOH, pH8 ~ 8 mM MgCl, ~ 2 mM
EDTA ~ 12.5% (v/v) glycerol ~ 5% (w/v) PVP-40)% ;3 itk 4~ » H 5 87
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BlERe BB 10uL RS 2EF TR

(2) kg 2va (* kBl % GBSS f % &%)

‘1"\.
.mt
I
F_L
OO
O
e}
i)

3

o

(a) ™ 5 mL ¥ B ikiuiki 3 = » & %3502 4°C ~ 10,000 x g 4 5
AEBE LR

(b) £ v 1 mL 55 B w73 joaR g iR & 397 153 SO UL 7p it B e 2 A
BicE - B80T H * o

5.2.2. ADP-glucose pyrophosphoylase (AGPase) & {£iB] Z_

%+ Nakamura & * (1989) 2= ;= - Pl = F i ¥ AGPase fi¥ 2z =1+

(1) B 200 pL fE& FP~% > Ar A 850 uL: & J&i% 1 (100 mM Hepes-NaOH,
pH7.4~5 mM MgCl,~1 mM adenosine 5°-diphosphate glucose (ADPG)~3 mM
sodium pyrophosphate »4 mM dithiothreitol (DTT)) -

(2) FPrRmERARA 5200 uli2 GIWP #8&R (A% 2310 S0.130.2~ 0304
0.5 pmole G1P) » 4c » 850 uL,j?‘_;fzjzfﬂ 3

(3) ** 30°CF &30 s p 3 106-;:%% 30 ) Bab F R -

(4) 11 4°C~ 7840 x g B io:mfﬁ 'L I mL F#RE 1LS5mL s g g @ o
s » 15 WL10 mM NADP & -

(5) ¢ 340nm,}i£’f‘z§3’~uﬁo}ipE1°

(6) £ 4~ SuL F Bix2 > pMa04U phosphglucomutase (PGM) [Sigma, USA]
£2 0.35 U G6PDH [Roche, Germany] > & & 10 A 45{s > % 340 nm & & T 3f
B k@i sd E2o

(7) #E2-El 2. $ici&+ » GIP L8 d & - fo 8 Ik % 54 o

5.2.3. Granule-bound starch synthase (GBSS) & {+ip] 2_
% Nishi & 4 (2001) 2. > ;2 > B|EFi ¥ GBSS 4 =1L
(1) B~ 200 pL &4 s (5% 5 mg) > 4 r 200 uL £ &z 1 (50 mM
Hepes-NaOH, pH7.4 ~ 1.6 mM ADPG ~ 16.7 mM DTT) -
(2) >+ 30Cie* 30 ~48 > £ 2 100°C ki i®* 30 f5 % 0k F Jig o
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(3) pel 24844 5 400 pL 2 adenosine 5°-diphosphate (ADP) %% (4 %] 7 7
0~0.04~0.08~0.12 ~ 0.16 pmole ADP) -

(4) £ 4c» 100 uL » &% 2 (50 mM Hepes-NaOH, pH7.4 ~ 10 mM phosphocrea-
tine (PCr) ~ 200 mM KCI ~ 2 U creatine phosphokinase (CPK)[Sigma, USA]) °

(5) **30°Cie* 30~ 48 > £ 11 100C-kip4e# 304542k & s o

(6) ™1 4°C ~7840x g #w 10 ~ 45 o

(7) =P~ 400 puL b 5% 2 370 1.5 mL pc & dgw g 0 4o r 700 uL & iR 3 (50
mM Hepes-NaOH, pH7.4~20 mM MgCl,~10 mM glucose~2 U G6PDH[Roche,
Germany] ~ 2 mM NADP) »1i £353 (&> 5.5~ I mL IR § ¢ o

(8) ** 340 nm A £ T B kB El o

(9) #v > 5 pL HK(2 W) [Sigma, USAT»=k& f@; 5 A 4848 0 F 340 nm L K T 3 B
kB 4 B2 o

(10) #- E2-E1 208 @ » APPGFIE o o B 9 FE i S P g £ vp
A ks £ o A A o

L

5.2.4. Soluble starch synthase (SSS) P 'fz‘jb kil

%+ Nishi & 4 (2001) & § W L@i—iﬁ PESSS ARG S o

(1) B~ 200 pL B2 % 53~ (,J, b g fad-v 100 ug) » A 200 uL F R 1 (50
mM Hepes-NaOH, pH7.4 - 1.6 mM ADPG: - 0.23% (w/v) glycogen ~ 16.7 mM
DTT) » ** 30°C €% 30 ~ 4o

(2) >+ 100°C-kip % 30 fy I F b fERE JE o

(3) FrpEaMMm s 400l 22 ADP ¥ % (%73 0~0.04-0.08~0.12 ~
0.16 pmole ADP) -

(4) & frfe i 324 » 100 uL & &% 2 (50 mM Hepes-NaOH, pH7.4 ~ 10 mM
PCr ~ 200 mM KCI ~ 2 U CPK[Sigma, USA]) -

(5) > 30Cie* 30 »48 > £ 2 100°C-Kip4c# 30450 % 0 F i o

(6) ™ 4C ~7,840x g Hw 10 & 45 o

(7) B~ 400 pL * iR 2 ATpcE e g ¢ 0 4o r 700 uL F R 3 (50 mM
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Hepes-NaOH, pH7.4 ~ 20 mM MgCl, ~ 10 mM glucose ~ 2 U G6PDH[Roche,
Germany] ~ 2 mM NADP) -
8) mEHIL BB ImLIRIEE Y >3 340nm AL & TPk R L ELo
(9) £ 4c » 2 U HK[Sigma, USA] > R £353 ¥ & Ji 5 ~ 4518 > »Y 340 nm & &
THEB LR 5 E2e

(10) #E2-E1 2 #c®F » ADP L% w & > 3o 8 NipE & 51 o

5.2.5. Starch branching-enzyme (SBE) f% % &+ 4 7
%% Guan % Preiss (1993) 2. 2 i Bl g H # SBEfx % =1+
(1) 200 uL f¥ 2 FE B~k & 55 (X 74039 100 pg)» — > 548 100°C4e#t 5
A N 0 TF G 24T PR dane
(2) 4c > 650 uL100 mM Hepes-NaOH (pH7.4) % 150 pLpotato starch (& & % 1
mg/ mL) o 44"
(3) B &g x0 30°C 1T 30 A i o 12 100°C -kig 4e #4 30 gHos B0k F g o
(4) 4c ~ 50 pL % (0.1% Ih » l%ﬁdgﬂ"&/” £B93 > RS kK -
(5) iR 600 .nm L& F 2 Fxpk B '!&ﬁ ks R - S S N RO Y e
(% A 4% 4~ #OD 21- ipu o3 £
5.2.6. o-amylase % & &} A ﬁ
%+ Megazyme = P erffit £+ # (ALPHA-AMYLASE ASSAY PROCE-
DURE-CERALPHA METHOD) > i& {7 a-amylasefi¥ % #& 48] % : 1 — (B g2t
B R A2 F ()40 B-amylase ~amyloglucosidase 22 a-glucosidase) ¥ #*
5 &4 (non-reducing-end blocked p-nitrophenyl maltoheptaoside ; BPNPG7) &
#i7F & 0 HAka-amylasefit % T * & 4 2 Blocked maltosaccharide 2
p-nitrophenyl maltosaccharide » @ p-nitrophenyl maltosaccharidef 5 ¢
o-glucosidase (T * {5 ¥ 4 = p d j&p-nitrophenyl > i ;B|p-nitrophenyl 0Dy 7%

kR &R a-amylasefit # B o
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5.2.7. p-amylase fi% % &£ 4 45

% 4 Megazyme 2> #
DURE-BETAMYL METHOD)

p-nitrophenyl-a-D-maltopentaoside (PNPGS) § ik i » B #

ik i+ p (BETA-AMYLASE ASSAY PROCE-
i# 7 B-amylase f¥ % & M P = 1 Y

2 4% B-amylase -

i# K f% = maltose 2 p-nitrophenyl-a-D-maltotrioside » @ o-amylase ¥ PNPG5 1%

LY

= pd A

p-nitrophenyl 1:019401);{1& x B %_J‘% P o

(M »rz%k‘gs#ﬁ'

2) i

(b)
(©

(d)

22§ B > p-nitrophenyl-o-D-maltotrioside £ 5 ¢ o-glucosidase T * 18 ¥ 4

it p-nitrophenyl > .ué*ft‘[épﬂ-!é“ 4 ii‘r-izﬁqa_,&base solutioni® o+ & & {é » P
" N T
% mB amyﬁ'seﬁ.-r% Pt A

__;!.!7. II -_J .!|_.-:=
_IH;:
6. ABA;:B*»#"
"1. ;
T Hurr%ii A (1994) 2

i‘—'éﬁ“‘? i‘j’-ﬁ ?.io{frﬁj%xﬁ ACREY &7 o
b Pfﬂ% %ﬂir-yvyﬁolgmr

7R g Ry /ﬁr?mww,%d FEELR  ET AT LR F AR
oSN EE B T .

R

v1 37k 8 W BF]1A) 3M Filter Paper » ¥ &% Wi § ¢ % 7 & Filter

¥ & PVP s %733 dH0 ¥ & ¥ 8=t - # f«%—*“ IS ES
Paper {8 » M- S F B R K bd § kB2 e

~EMAF - B L 4 PVP A HME A9 S 253 mL
T¥ o FPVP AR Y hdHO x> & PVP column °
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Ve

LR B X e K

0
25
A ]
1.3
1
Ly F ok B fawaters
#vacuum manlifold-y &

.
1@|L-J.£'E'='F‘:'E@&

.. .:u-_.
(6) 3% 14 ek "Eﬁﬂkt 0.5 ml:j"’iﬁﬂ,/o mezt%l 3 ﬁ’%g  mL 0.2 M NH,H,PO,
G e
(pH6.8) » 'jff H x MRR [ ‘2-{% 10 A~ b -
[y 1 .F ;;E..:r:lj -ﬁ|
(8) Fimik = 24 igh o v WRERS VbR
= ™=
9) ’:L;/a-;ﬁ*v‘ SRS %% 7mL
‘?
(10) £ ?&r@?_] 'mlfitﬂzo #ig Cis
columnr ';"r".l
1 a ’?f:'a A
'l_; | I::"-.g"i-'r .'-I:f
(11) #'Z"'H}'QF 9' _,JEL“ O R 2 g’#b qu'.'g: PRk o

L

(12) 4c» 4 mL ,7;}"'7%-} &%@ﬁml 5 Z@acml %F:;‘it:}amd) AR A
Foam's
W A4 1.5mL o & ﬁ’%{{ﬁg_ﬁ%ﬁ,ﬁﬁk’% it o
(13) ™ 4mL %% (55% ethanol 2 2% glacial acetic acid) #-#& &% 1 > L g
B AAREE A4 1SmL BRI IR R RR -
(14) #RZE 2 50% 1 50 4CH20C ~ 2~ -
(15) %% Agdia= @ # (¥ < p  (Phytodetek® ABA Test Kit) » 41 * Fufll &5 % i&

TABAZ BT
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7. Bt 3 B2 B3
7.1, Frh+ £

12 plant DNAzor ® Reagent (Invitrogen, USA) : {4 25 5 0.3 mL: 0.1 g 2
W E Bk fe A Fl e DNA (8 0 R TR AEFR R B o

EHPIRA TR F RAR R -5 (AR ) IRy IR RART
mE 3 3’—>5 exonuclease 7%+ Phusion DNA Polymerase [FINNZYMES,
Finland]:& {7 gz d + 5 Eoendf3 o A F] 22 PCR F J& 7 5088 4% 20 uL :£ 5 (500 ng
Genomic DNA template ~ 1X Phusion HF Buffer ~0.2 mM dNTPs ~ 0.5 uM forward
primer ~ 0.5 pM reverse primer, 0:4U Phusion DNA Polymerase [FINNZYMES,
Finland])> #2 & i 3 T 4o #5550 98°C & Jig 3049474 4 i& » 40 B 3 «HPCR
F e =+ =B adk @R 5 98°C/10 ) > i % 3k 532{30 %) > 72°C/30-45
#5 (30 #j/1 kb) » & {1 72°Ci@f?f‘_l)@_lq Lk B

OsSUT] A7) iz chromosorﬂ;f.:."fll # IPSUTI1-F1 ~ R5; F4 ~ R6; F5 ~ R4
Z il A s R L 903 1076";1 191 bp = i e 32 (2 =) > £ 47
= = PCR #4 * 1959bp 2 | G =g WA ATG 5 A 5 +1 0“4
O enfds ff'_fé.fi é.AfG + 25-10~-1968 2 ':& B (Rl 2 ) OsSUT2 2 7l i
= chromosome 12> f* PSUT2-F1-R2 31 #3§F3# £ A& 830 bp kxd+ & £ (%
=) (B =) 3 # B 2-1~-830 eh% &8 o OsSUT4 A ] i # chromosome 2 >
4% PSUT4-F1 ~R4 313453 £ & 5 833 bp et 3 # £ (=) (B~ =) &
¥ i ATG F#5-11~-843 % 3 o F3 2. OsSUT2 % 4 A Flixd + &3
pGEM-T easy vector {$ > 3% L4 F 5o 272 @ 2 /@ OsSUTI #] % i * blund end

2_ Taq DNA polymerase #7& = » & #1 PCR & # ¥ @& o

7.2. Exd 3 B AL+
1% NCBIL# = (http://www.ncbi.nlm.nih.gov/) #F KF&E & ¢ 3 FpEag &
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2 i’ﬁﬁi%] Bl Fl2 fxd + B 7)o o 44048 (start codon) ¢ 5 1500 %
HH R 9T 5 fad 5 %2 0 1% Plant Cis-Acting Regulatory DNA Elements
(PLACE) (Higo et al., 1999) =zt (http://www.dna.affrc.go.jp/PLACE/) 1% & kx

# 3 } cis-acting elements °

8. MRTRFM A IR K LU TR S BRI
8.1. it R
"G OsSUT2 4 3 Flfcds + 2. pGEM-T easy vector # % #9% > @ OsSUTI

72 PCR A4 % (58 > K F 52 UHfERm o =2 &= §451 3 : PSUTI1-F1-Sacl/
PSUT1-R4-Smal ~ PSUT2-Fl- Sacl/ PSUT2-R2-Smak¥: PSUT4-F1-Sacl/
PSUT4-R4:Smal.(# +) " & <. PCR £ fis » &.5] & %% A% 1959 bp ~ 830 bp
833 bp z_ fxd + » L Mgl frge :*lrﬁ * Sacl 2 Smal *7 > ¥ %A 7 intron Z
S-glucuronidasé (GUS) 7 F12 & (EJT:!EL) » B L G
PSUTI1-DE(-1968/-10)::GUS ~ .PSUT2iDF(-830/-1)::GUS 5,
PSUT4-DF(-843/-11).:GUS i ' A :i%—:‘—_ Tﬂ‘}éﬁt.fﬁ:" &tz 3 intron 2 GUS A %]

# (i )b & 5/ PSULL-DEE1968/-10):Ubint:: GUS »

(\x.

PSUT2-DF(-830/-1)::Ubint::GUS 22 PSUT4:DF(-843/-11)::Ubint::GUS (] =
+) > F4F 2 548 DNA £ ™ Sacl & Smal & 'UFIFE % (T* 285 AL 47 0 &

RN B R R R RA R A 7

8.2. 2 OsSUT4 A 71 I & R fade 3 #psid 4 MV 8Y
# 3 PSUT4 + % - {4513 : PSUT4-DF2-Sacl ~ PSUT4-DF2a-Sacl -
PSUT4-DF3-Sacl ~ PSUT4-DF3a-Sacl ~ PSUT4-DF4-Sacl ~ PSUT4-DF5-Sacl ~
PSUT4-DF6-Sacl ~ PSUT4-DF7-Sacl £ PSUT4-R4-smal ( % = ) - 1
PSUT4-DF(-843/-11)::Ubint::GUS 74 DNA § fF#4 > {7 PCR ¥ Jiz (PCR
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8.3.

84.

EiEgr bk & & OsSUTs £ Flkads + 2 i5 2 4p ke ) & B & & ) 633592540 ~
473 ~424~318~238 2 129 bp 2. 5’4 deletion kxd 3+ £ > & = d1 3 B4 Sacl
2 Smal "R4|FE% (% {5 > %30 7 F intron 2 GUS A Flz # (Bl- +2) T

CRER N

$ 518 % ¥ 2 FIHE S 0 1 DNA

%% QIAGEN Plasmid Purification Handbook » 44 B~ & 5 % DNA i& {7

(3) #4 1
@) P e éﬁs : :
(5) A 4 b ifie 14 %i- ﬁ‘-ﬁ‘yﬁ PoE e '?_.i.?:ﬂ""

(6) #v » 1 mL= & E]\SO"/‘o'gly‘jr_qu -Fe"jﬁs? %bi %60 mg/mL > & 50 pLA %3

LSmLig @ g g @ > @ % 3?3+ 2 S3mg> %33-200H * o

(7) #6 pgkeds 5 phit 4 LT WMDNAZ 6 pg pAHCIS T4 DNA (itér=) &
1.S5mLags g ¢ RE] o

B) B F2 kT3 RT - REERLFIHIRF LBRY -

(9) — ¥ 12 Scientific Industries vortex-genie 2 #%73] 2_level 653 & & 7 3= F » — &
B RE A~ +§.’5‘?l/w £ 353 F REDNA ~ 50 pL IM CaCly % 20 uL 0.1M
spermidine (F #7## e fl) & > FFHEFT 1448 -
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(10) »*FE#FESA 4 -
(11) Mpcs 3o #3024 @ 48+ Uik 1 » M pipetman-] < #% “$ FiFik e
(12) 4 » 100 puL 70% ethanol{s ¥ * 9r 14 pipetman-| « #3 ‘ﬁ% Fipik e

(13) 4t » 140 uL 100% ethanol » 11 M3 J& F 2-3F) & 454+ Fif > TR F 2 & o

8.5.  FIHE M
(1) #E #+ + (macrocarriers) ~ F 3%+ + £ #4 (macrocarrier holder) ~ # 7

Fl4 (rupture dlSk) .@d:ﬁk]ﬁi.:br&??é* @grel.dlsk retaining cap) ~ etk ¥

ml |'-.- —L- l.-_

(mlcr%c‘% Tier launﬁhﬁssemblgz}’l_éfm% - B ‘:(’Sgpmg screen) 2 70%
{z

=

ethanol ,%\-%’19 di:] B (T 5 R -"r:@'arrlerfgﬁg i+ macrocarrier

A
holder b o .4/ 2
& QP ﬁ; |
(2) #-% "‘:IDNA £71 iers/macrocarrier hqlder F oo
bt
G) +REF ¥ fmm-f.s R
200 psiz 7 r-:;
'_e o)
(4) 4R PDS- 100?\ 7) % 7okethanol ¥4

A e - ! '-
qj}ﬁ}l };ék 'r":l"-. i,f:'_ ':"-%:}J.i' .-"

(5) #if & 2 rup':a.lr.b di-gll; A rupture dlsE-a_?tammg qb‘p-t' B F M B
i
2o R *p L &(FEUPji@W‘?ﬁ aﬂ -i 1‘
(6) #-macrocarriers¥ stoping screen ¥ » microcarrier launch assembly ¥ o
(7) #-microcarrier launch assembly® p & 'm?2 ¥ » S48 Ipig § =¥ > 4= P BE
(6 M-t B ydh B 7 0 F B 7 R 1£26-27 inch-Hgp¥ » #-i# B i Hold4= 1 & 4
(8) - ERGFire 4% FIBLAR G AP B BEF A %H -
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8.6. ¥ Bk fLEH v F
%4 Shen (1996) % 4 2= j# » FBokfef#f 36 F 112 &7 GUS 2
Luciferase /& {4+ 4 7
(1) # * KURABO SH-100 ¥2 %42 5 mm 4k » 2 1,400 rpm ~ 30 % = 2.
RSB

(2) #4c > I mL % 2% (100 mM NaPOy, pH7 ~ 5 mM DTT -~ 3 mg leupeptin ~ 50%

(v/v) glycerol) iR £323 -
(3) 11 47T ~ 13,250 x g et ;@Eﬁé@%’!“f ﬂ,{
o L § —L- -5.1
(4) #-F ikl Lﬁ"%&ﬁm *g E r—,- A 4@ 100 pL ‘f'g'ﬁ Luciferase 2 GUS p%
|'-.
4 p . IS
%5 i«?‘l;él"’ Hos i 33 0C#? - ™ "‘v\" "-
? ' e ,xF-
& T
B X WE- SR
8.7. Luc1feras~§"7"é- 14 7R ?:T
i =
(1) 2@l 2X Lugiferase ("'60411,1\4 Tris-SO4
pH7.75 20.mM L3k D0CH 7 -
& 7 Wiy
(2) ##% 1XLAB £0. 3 gl 3ml). b
,:_ "':Ei\‘: :_,-
IJ\J‘ j ﬁ-ﬁ? ".-?'I_l -l:ﬁ‘;

(3) Epeil2X LAB+ __.2 m‘K;[ Aﬁf{'ioo HL/S@%) e _fg}j"»% P

(4) #1XLAB+0.5 mM Luéfeﬁ)?-j\-u_jﬂ L'j!m;it-LB 9507 4 sk % 2. injectl ? 3
¢ B 100 pL2 X LAB+2 mM ATP % Bl & 358 § A0 £ 4 » 100 pL

gk o REIBF SR RILKBR

8.8. GUS iE iRl =
(1) =B~ 100 puL F B~ P e & 3w g ¢ > 4 » 200 uL GUS Assay Buffer (2.5
mM 4-methylumbelliferyl B-D-glucuronide (MUG) ~ 50 mM NaPO,, pH7 ~ 10
mM EDTA ~ 10 mM DTT ~ 20 pg/mL leupeptin ~ 20% (v/v) methanol ~ 0.02%
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sodium azide) » R £ 353 o

(2) 37T % 20 ] pF o

(3) #v » 800 pL Carbonate Stop Buffer (0.2M Na,COs, pH11.2) ¥ ik F & o

(4) & %P~ 200 pL &8 52 $ 50k 3 fc® pliR4  (Labsystem CLINIPLATE)
[ (well) ¢ i * Labsystems Fluoroskan Ascent FL (Type374) ¥ £ Bl &
%Pl 7% %3 & (Filter : Excitation 355 nm » Emission 460) » #-1% % 718 #ic

BEE ﬁ‘ﬁ ™ Luciferase #& i » ¥ 3] GUS Ap ¥ & L& o

9. Electrophoresis Mobility Shift Assay (EMSA)

%+ Panomics$ 1T+ EA(EMSA “Gel Shift?Kits)> & {7 % 1% v ¥ PSUT4

o+ P R E L 45
| p—
e
9.1. %% DNA & & -

A oul ] e PSUT4-DF3-Biotin'=;; PSUT4.DR3 # PSUT4-DF2-Biotin
PSUT4-DR2 & #313 (% £ ) 1/ fSET4—DF(-843/-11)::Ubint::GUS 18 DNA
§ B 0 @ FLPCR Fobd & 24 Biotin 5 %t DNA #£4- > 4 5] & & %
DF(-550/-484) (67 bp)¥z. DF(-643/2603) (41 bp) (- += ) - §|* PSUT4-DF3 -
PSUT4-DR3 £ PSUT4-DF2-PSUT4:DR2 % #3515 & &2+ Biotin £ %7 DNA

B 4w § E DF(-550/-484) 2 DF(-643/-603) it

9.2. 41* polyacrylamide gel i i* DNA ¥ $+
(1) W& 1.5 mm % B 5% Non-denaturing polyacrylamide gel (2 mL 5X
tris-borate/ethylenediamine tetra-acetic acid (TBE) ~ 2.5 mL 40% Acryla-
mide/Bis ~ 0.625 mL 80% glycerol ~ 0.02 mL tetramethylethylenediamine
(TEMED) ~ 14.58 mL dH,O ~ 0.3 mL 10% ammonium persulfate) °
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Q) #FREFS o %> 0.5 X TBE Transfer Buffer ¥ -

(3) #-DNA probe *r » 1/10 % £ 72 10X DNA loading dye > & & 323 (¢ loading
Il well ¥ o

4) 100V &7 F A& 45 &4 o

O) TARZRERYMHINZF 05ug mLEBrz 05X TBE ¢ » *» 2 T i
% 20~30 » 45 °

(6) &£ (312nm) pUVET ¥ DNA marker » #-7 3 DNA 5 #-<07%%

oy ()

A IR IS 445(.- . ﬁ,@,ﬁ_iﬂ-‘-’{ _.-:T e .y

(7) 17 o mﬂg?.‘ § TR S AL s

(8) 4e» 2X ?ﬁ}% mAqryl H‘%M a-.ﬁ-};:rllonlum acetate ~ 10

mMm,':é:nes_l __.éli:”g {8 0 A
3TCREH %1 i
9) 1 4€|§.‘j 1323 4 ‘ : 0 _gggi-_? ?oo
(10) £ 4‘;%0__5)(4; z.}_ﬁ,ﬁ@,u? v, e
I ]
YRIEF o A
s N
11) 12 4°C ~ 1 o E IO M) ik e -
(11) 1.3:; g4 v %&ﬁﬂﬁr it e b
. RiE A AT N
.,%ﬁ_:u ? =4 -'::..l .:'l:ru-l & :Ft_"a-__ e

A
(12) #- 1 ik i i 0.45 ﬁn?-gs@ L ;%}ag%o

(13) Je & imik » > 4°C 7 4o » 2X 4% 59 100% ethanol 154 ¥ 7k b 30 4 4%

(14) ™ 4°C ~ 13,230 x g &rs 10 ~ 48 0 # “’T‘i TR

(15) 12 200 pL TE buffer (pHS.0) % f# DNA » £ 4r » 25 ul 3M sodium acetate
(pH5.2) -

(16) r 2X %84 100% ethanol £ ik DNA — =% o

(17) 12 70% ethanol JE &k » 3o §2%k {6 11 50 pL Tris-EDTA (TE) buffer
(pH8.0) w3 DNA -
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(18) B~2uL & {7 =& » ¥ DNAERA AL 10ng/ uL (S5 53-20C # * o
9.3. Eif ¥ Fv Z B
%< Panomics#k ¥+ # (Nuclear Extraction Kit) » & {7 -k f&5 #f 12 Jov X P~
(1) #-05g Fifosk > TR F 64 (B 13,000rpm) 83 kb o &
7k ¥ 4v ~ 1 mL Buffer A working Reagent (0.96 mL 1X buffer A ~ 10 pL 100
mM DTT ~ 10 pL protease inhibitor ~ 10 pL phosphatase inhibitor I ~ 10 puL
phosphatase inhibitor II) ©
(2) £ M FF 6 (i 13000Tpm) {85 2% kP15 2 4d o
(3) ™ 4C ~850x g~ 10 & 48 F Ak
(4) k¥ 4ux 1 mL #7#% Buffer A working Reagent > ™ 328 3L 6 )15 » 3
Bk A5 ads o 04C ~ 1,400 x g BEs 3 A 4w 0dS K’%‘P: iR T R i e 2
Bk b,
BkE ..:: ‘i
(5) *c» 150 AL < Buffer B working Reagent (145.5 gl 1X buffer B ~ 1.5 pL
protease inhibitor> 1.5 uL phosphe'liase inhibitor I3 1.5 pLiphosphatase inhibitor
IT) > % & Pchfda@ }Egi'7107f/°- .
(6) #-dfr. %%’xﬁzw 60/;\4%_, & 20 44 Mlcqggi =
(7) ™ 4C ~ LAO X gdt & 5 Akinis o - Bifin # Sl chds § 7 o

(8) B~ 2 uL &7 3-v ﬁF"ﬁ‘KE ) ‘F’%"IFE] 3 -80C#H# * o

9.4. 252 DNA —Transcription factor (DNA-TF)4f & 4~
(1) R#fz: 4 02 mL fc@ 4~ g @ &K 4~ 1 pL Nuclear Extract (5~10
pug/ul) ~ 1 pL poly d(I-C) (1 pg/uL) ~ 2 puL 5X binding Buffer ~ 5 uL nuc-
lease-free water’ i £ 393 {5 w2 2%} 5 & 4804 » | puL labeled TF probe
(10ng/uL) » R £353 43 15C % 30 » 45 -
(2) #& A AR: & 0.2 mL i 3§ ¢ & A 4 » 1 pL Nuclear Extract (5~10
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pug/ul) ~ 1 pg poly d(I-C) ~ 2 uL 5X binding Buffer ~ if £ nuclease-free water »
MLEDF ST EE 544 B4~ 0-0.5% 1 uL cold (unlabeled) TF
probe (E& % 10ng/pl) > S8 f 5 Ol R 323 B A E % 5S4 48 -
4 ~ 1 pL labeled TF probe (10 ng/uL) iR £353 » R £353 {43 15CH %

30 & 45 o

9.5. Non-denaturing polyacrylamide gel & #*

(1) # & 5% Non- denaulf;),ﬁq;gbfyacgfl"l’ég H%“?E/ 2. 05XTBE ¥ -

(2) L3 4CH I ],_F)!G)"V BT }ﬁ 10 A}é; ) *E."'-_,

-;“,
‘-:“

(3) .‘:;: ‘/‘71" ~ g &J.’!/fﬂgtlf}* 55 7" [d -"-g{' 'h.i:._]l
A S
@) #4522 1o e
() & 4¢WLzumV1aﬁ 5o N duEd s o -
| =~
[ ™ ™ .-!.:
P =
9.6. DNA-TF 4 &.4 oo B
.-_I. .-I"‘-g‘l -Er
(1) Rz > # BEinen R E g&ﬁ#ﬁ*3MM&ﬁ
b EE e
l rl o "
5’:- '\-\._'- fi:f ) ) _-_ 'H.I ¥ 4
(2) #gel 2%t 0‘5.2‘?? E 2™ 3 R 405 ~ BhS
i b |': r

3)

“)
)

(6)

B - B gel & ";g Wgﬁm-lbc qhsréed !Nylon Membrane (0.45 um)
Z & 8 3MM g A A w]ix e 3 0.5X TBE @ o

# B Bio-Rad Trans-Blot SD L iz & & 2 % 2 2 7 454k f &=F -

&R Bl feiE kB R LR R R A~ Nylon Membrane ~ gel 22 5 — &g
Ko Bl - RPF3G At IR

FHEBF R F2FIRARTANTRERES 0 L 24 Vel

30 & 48 -

(7) # e = & 2 (¢ > % Nylon Membrane *c ¥ & 3MM jg A F > BEiT gel ehm §F
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+ 5 12 XL-1000 UV crosslinker & {7 crosslinking 3 4" 4& °

9.7. Immobilization ¥ Detection

(1) #-Nylon Membrane # 3| 7 7 15 mL 1X Blocking Buffer 7 g + ¢ > &%
LE 28 O VAR

(2) & * B~ 1 mL 1X Blocking Buffer #% ¥|3z7% e E 4w g @ >4 » 15 uL
Streptavidin- horseradish peroxidase (HRP) I vortex 10 #;4& -

(3) #7184+ 2 Streptavidin-HRP #e 3| £ +"¢ > Jn % = Blocking Buffer i® £
230 BRETHRL IS A

(4) #-7 7 Streptavidin-HRP 2 Blocking Buffersiz ! > 74 15 mL 1X Wash Buffer
%% B #5475 £ Nylon Membrane = =5 » # =¢8 “’\ﬁ’—, °

(5) " 15mL 1X Detection Buffer_j%’_j@ quh Buffer» &3z B# k8% 54,4 -

(6) # Nylon Membrane 3<% ’x‘if‘i;‘:ﬁ}g Ol S  ER )  <T0 L R IPN
0.5 mL Substrate Solution _(50 },LLII.Eolution I> 50 pL Solution H ~ 400 pL So-
lution TI) 3] Nylon Me}nb:rane _F .’- % i % # Nylon Membrane °

(7) =R WS F1iE 5 ml Substrate Solution'%éi: S L *® 544

(8) f1* X-ray film B4 2 /] PRz B2 if FaR -

10, T AR ) SR 3 R A
10.1. 224 PSUT4 7 F & B fchs + T 4 m;\i&
B &0 OsSUTY A F12 7 I & R fcd & B pFit £ L 811 Sacl &
Hindlll & *I4|pg%+> 7 > B¢ & 3 pedF % £ ~ubi 1% intron ~ GUS # 7] %
3'HVA22 284 » f P T4 R4 pCambial302 ¢ » 2 fdF 2 L4 1 1

Sacl & HindIll 7% » e ifp A==+ (= - )
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10.2. EHA105 J 4% 525 i w22 2_ % % 22 9 1)

(1) #%_YEP &% % X (1% bactopeptone ~ 1% yeast extract ~ 0.5% sodium

chloride ~ 1.5% agar) ' $*if EHA105 ¥ - i3 > 3 £ 3mL YEP /& %833
% & ¢ (1% bactopeptone ~ 1% yeast extract ~ 0.5% sodium chloride) °
(2) *28CRFEA2X -

(3) P 1 mL ik 4 ¥ 50 mL YEP ;2 432 % A p > % 28°CEF# % B 7] ODgoo

=0.5~1 -
@) #85 ,.’%u,l)\:iét?;'/ &“ﬂuﬁﬁfm 829 x g s 7 A 4 -
A i :i *:e.'FE' 7
(5) 4 i fﬁ:ﬁ"r 200 mTI.?l‘ 2 5_@ ’ ﬁg_.u 4C~3,829x g fpu
H . B h"{h‘ I'-._..
7 A\ﬁ ° :I' . .-:JI

N o]

i, T ey o
6) %4 ____:?;;{gﬁéc &-"H C- 1378 x g

g_,ggr_j;ﬂ g3 -80C ¢ o "'-‘:'ni
(8) # EHAIOS % iz

|.-".H' -Ep. 3
(9) B2 uL ;@_ A e B S o .."
S &

4 SN 2 A
(10) #- cuvette *% __:E}l::t-;(-;pﬁraﬁon Appiﬁ.‘ﬁ (BIO‘%B
L
_\ s - » o = '."'1
#7T pulse” -F-—-'F"E__. Jé& Y L
(11) #Fir €478 5> | mLYEP i 4832 % 5 > »* 28 C 232 % 30-60 4 48
(12) #-Fr 458> 7 F 50 ng/mL Kanamycin 2= YEP #4832 & & + >+ 28°C 33

%484]{1&0

10.3. 3% $4 § =
(1) JeBTNGOT ki RP I B RYFhA L HEF (D5 NME10~15%) >
RN RACIS REENAC kG Y o
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(2) B-10-154F 48+ 4 P *hg > 1723 4 -k (2% NaOCLiA — i Tween-20) if 4
304 4 -

(3) *F & AT L R FR T k45 ;{A’E‘}%“‘,ﬁiiﬁ'—% k3

(4) #fh+ T it Rk G e p OCIMFMS £ & (e ) o 3ME § %
F 4 wE2TCr B A TR A4-65 Y o

(5) #ePed g d 2 g e BT ATAOCIMAME £ b o SB35
F PP f52-5 mm2 g i e E T

B M L T
B b 1?*'-'[ L ’5‘-4‘-'

-y . 'q. :I.:lI ‘._l':.' £

10.4. R f5 Flig 7 (LH-iéretal 19J9£,T0k1 ]&ﬁjj

g
(1) B3] 552 p R fs A A (750 pg/mL
¥ =
Kanamlgeme),:.w '. "-_
(2) 0. 5"1!'1'1L E]/’ir $/50 mL AB ) (7 5(}' uE/mL K.a;namycme) ) AT
i ™
28"0@‘5%% 0.8%1. 0~J Ak o

‘!{"\fl(l":mL MSi i 5
.-"g‘ LI

b.,,g.@‘trl d;gh“ °

(3) 4 Oa;B;&%_QlX
% 2 (”fﬁfﬁ )ez:h

@) ke e 2 :
(it ) > liz?‘p,; o Ef:iﬁ'%z 3 %1«} ) '__-_.._.-'ﬁ"

(5) ek gt ik fd"l@s:s?: o o jMih‘“ %é,}; %3-55 0 B E B
250 pg/mL Cefotaximes"MS Mediumi& {7 7%jif > & | PFie—=x » & D|E & o

(6) #7254 2] 2 F 50 pg/mL hygromycin f= 250 pg/mL cefotaxime =&
FRARN S A2TCRERBEAEZTY BA - 43-63F157 1Y ﬁ’i‘]f&}f"; R

(7) #- % w8 SIPMAMR £ A4+ (igr) > b4 37 g27-10= -

(8) - i =4 FIRM3: % L1 (i) 227C 2P B34 5 ¢ #5435
¥ TV @ EAKfES Y o

(9) #okfe® v H I MSHHE £ & (Ffére) ¥ BEEFE -
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(10) 33F {6 ke 5 TP disig > FREEFH TP HEREIZP o

10.5. GUS i# 14 ¢ 4 45
%+ Jefferson (1987) ¥ Hu (1990) 1= = » i&{7 GUS % ¢ & 47
(1) 8 »%4 4 % (0.1 M NaPO4 buffer, pH7.0 ~ 10 mM EDTA, pH7.0 ~ 0.5 mM
potassiumferricyanide -~ 0.5 mM potassiumferrocyanide ~ 1 mM
X-glucuronide ~ 0.1% Triton X-100) ® - % 25inch-Hg & 3 % 10 ~ 45 -
5 3TC 5 4 4 16248 @meﬁ’qﬁz Ze,

- 3
(2) & B 2 25% > ﬂ).%:l 75%'1 .;%% etha.ﬂ LI ;i:-‘_:f%gg BERR
= : /

.r—
10.6. Mfrﬁfékit e
%P6t :"" v k& 105 100
bt =
uL i) GUth e }h
(1) =3 100 ssay Buffer ' if 4
X, '-:_'_-:I'

4) @7 hydroxyi-}_hne{ylcdymarm (MU}:%;.E
600 ~ 800 2 1000 nM imﬁ?ﬁ T Ic]

__f‘-. z 73 0~200~400 ~
(5) # =B~ 200 pL R ¥ %2 SR IS RIEE 2 ¢ o i@ * Labsystems
Fluoroskan Ascent FL (Type374) ¥ X Bl RP| 2 ¥ Lp R > £33 = H

=30 F GUS F -

11. 33447
Fl* g4 N ttest i P ERBF ZERCERLESABATIZ ML
BHFITRREEFHEHLE -
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2 %
L EFPRE LA -RPABAFBEER ATVWPRITLEIR
Ll kfet CEEW LB RIFPERPHVILBHEIERC
feBdo fhm 20 X IS 20 X 20 TNG6T K4Sl ET $- (1)~ %= (-2)
BEHZFE (3) Ey (B- A FRS Ao Ko upEEA

ST R TR 7 B R

Lo BB RF > 2EEY? Sk AR AT S X Bl R fE o T2

M

Z

=

Ik
G

|

-

BE O RBEA BETE (Bl a)e ¥ D BRSO E T K

fode b i < 2R B R R R Y Bl Emie e o 5 5 RIS AR P B
*(@:M°ﬁ*418ﬁﬁﬁﬂ#ﬁ$'ww2ﬁﬁﬂ7&% 2R ARS
Wﬁﬂﬁ&ﬁﬁﬁw"?ﬁ“&ﬁﬁﬂﬁ’3ﬁﬁﬂﬁﬁﬂ%§h@*454
EEY (Bl a)d Ep ¢ £ #0857 wkfe! R EEN I 2 EEY 2

nHp Y B Bk w ko Julm
R B R s g T

%‘Qﬁﬁﬂﬂm%Ag*éfi paRh b A pd R Rp T EY Y T

»M%ﬁm%ﬂtﬁ’kﬁﬁﬁ79 ﬂﬁﬁw9% KA EEY - Az X

&

fie B - f’”m%éﬁﬁﬂaﬁﬂ&%~mﬁiwﬁﬁ FEBL B

\

ﬁﬂ%%ﬁ&«gmﬁﬁpﬁﬁw6* CEPREE = = s o SR S ey

$

BEF > OB ERFDF AR FR WAL 6 L7 EERF 00 F §
Pl- EEFF LI 9% (B2) Mot srnlz Smpbr sy

W R R AEY bre g X

12. B # R KA EHERE FENRRIFL 1
TR RAE2 EEG AR L T R > A FH AL LT 2

BEa

,dm

SRR A B R F R (sink demand) F OB 0 At R AT 5 R Rk fE2 R

HAIEEYY B L BBE2EEY LA T A I RRE 20 2 2k 7 R R



it de@lE ArT o SR (R G HAR) 2 EEY Y bt AY 2 E R 2
0 SLF AR DA Bl B R Ao AR 0 2 EEY O RE AN ¢
HE o G B EEHRE FETEOPR B EARIS AL 2FEFY P
B g REN BB E R R A FE LR RSP RY PSP T E (R

)

A

CREEM2EEY Y SRELERE R E L AR RET LG R AAPM

13.RKFEFAMAFIAEY R - LAERITL AR

sEHAD kR A B F E R IR IR AT 20 2 2R
620 % 2 EEHHALL FHE G A A BB 0 - BRI Y BRI R
FERBIE ¥ - RS TR A P B A T2 R e i ADP-glucose pyrophos-
phorylase (AGPase)~ granule-bound starch synthase (GBSS) = spl_uble starch synthase
(SSS) ~ starch branching enzyme (SBE)/ Jd_glargqching enzyme (DBE) w #p%% > f|*
B - M3lF (& - Y £ 12 real-time RT:-E’?_.‘E.JE BT 17 Bk & ARk A T2 A TR
g e AT R GBSS[&_‘ $SSII—3'B%?V?£E;!‘¥’ RS NS I
GECEI EES RN 1) 8 ;mRN;X:-% Iﬁu{éilk?ﬁwﬂ AR IVE T AP B EA 5
o kTHEY AR % G] AGI;’-LZ - GBSSIL~ SSST ~ SBEI ~ SBEIIl % SBEIV £:-2
EEHY ik  ERCIMFRPMY (F2) B4pM 8 (r B) » 5 5
0.88 ~0.88 ~0.69 ~ 0.84 ~0.86 % 0.81 »4&iplst = BAFHRT 7 v » 1 & R4S
PRT o EHFP R AFRELABAT s TR & S p AT R
ZHRACERFASZF I(-) SHEARATF] R 20 T LR 218
EEPEF A AT o & 5 GBSSII~SSSI % SSSII-1; (=) ° # # A F] >
WA 20X L3P RARE > EFHEAN 10 X ARELIFE  RITHRAF
FEAREX L 7% HY ¢35 AGP-L2 ~ AGP-SI ~ SSSIII ~ SSSIV-1 22 SSSIV-2 5 (=)
B AT AR 20 X TR AT 10 X EERMARE TR ARE
B ® > SSII-2 ~ SBEI ~ SBEIIl ¥t SBEIV >t 453 % A 7] (F1) -
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1.4. a-amylase, f-amylase 3 OsSUTs £ F1* EH - B hERH T 2L 2R

KAEEH ) e S SR T PR A BB AEA 2 R
R

FAREELEY Y AR LS AM RFPRUREEEL 2T ESER B
BT T g d TR A Y

Fxr g AW B R AFAS ko BIE R A R AT (¢ 7 a-amylases &

onﬁ-]}i\,]ﬂﬂ%”) BTk & S AP A

p-amylase) % FHEREE F-v K F] (OsSUTS) 2. % %1 o & a-amylase £ F| 7%
® > 12 real-time RT-PCR #4177 a-amylasel4A ~ 24 %2 3E = B = R &-2 £ Fi
¢t AR B ehd R B % B on amylase]A 2 3E2. mRNA 7 B &t iy
ERAEY Y AP ELE (B avc) @ a—amylaseZA B fhs 14 X chiRE
LR 143 T 20 5 T Y famylaSenii e 4 Tt 015 14 3 3 4
14 % 0 16 B (B b~ d) o

AA M KARE N T B EREE }r_t_gk 5] (OsSUTI~5) fotb ARIP R e52 4 5 1+
ﬁ,%%ﬁﬁowwma5ﬁgﬂ%£§§ﬁ%%fﬁﬂzw’*aﬁw7a4a

mRNA 3 ¥ At imalE e aﬁa %@(@»a &) ¢ OSSUTI B itk 7 & 9 1

s g R L0 18+ B3 %Iﬂu G T £ 5]+ mRNA
SR AR 145 mz\m; g At a2 271 2 (K= /@) - OsSUTY # 714

T AR AT R R AR s R RS 14 X Pl % 0 AR

514 %2 mRNA 7 £ 5489 14 X168 (K= c)-&m OsSUT2 R+ % tedd

“’\

Y

BRI PR B mRNASEH Y hg £ %53 OsSUTI 2 4 &

~é\-\

H 5 (F- b)-

2. )2 Microarray ~ 758 2 RRP EH? 2 AFL R

AOBREY G- ERE R T 0 A E A RE A R EREER

gt > B e FURE 4 BN EE B H P &% Microarray R £ A
PRk Fe-2 EEH AR TFD 2 RRPFH2ZAFEIR - T B~Fh g 25 % Pl
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SIS ATz kfe2 FFH > I T 2 5- BRERTURLZERN 5
B PR ERDRT 1022 PR ST LEY 0 Al SHTRHES R ®
BB EN P AFILLEL R 2 Ko

**Microarray A~ $7 % % B o M E F223B AT AR AT SH G P EOL R P A
oo hERPFEHAEYFISBAFZ LR EHREF (up-regulated) > @ F 1081 A4
FlA'E KT & T (down-regulated) 0 gt FL FliR PR H #4oa0 4 H P PEiE T pENE
* :84/pE 4L 12 4% (carbohydrate metabolism / glycosylated modification) ~ 4 & #& i&
(molecule transport) ~ 7 fi % & = (hormone synthesis) ~ 24 & 3 7 3 #7 (develop-

mental regulation) 14 % 205, % /38451 #5 (signaling / transcriptional regulation) %

g

HEFE-H AT (B Y) ol 1ET mlcroarray‘;%%LJ_ Fft o e B fA w14
IS4 APk AR E Y > S 2 L - BRSO TRRS A (22) £
%?m%mmRmﬂmﬁﬁﬁﬂﬁ*ﬂﬂﬁgﬁ(%m)*ﬁ%ﬁM»T%iﬁ%@
0~7%2 14=x 2 LRl > » KT @}E;-ﬁ;,c} Bl s 1 BEHL LB TRE
(stagel~5)  #real-time RT—PCR!A\ I’}‘r 2 %'E istage4 ¥ stage2 2 fLFl4 ILE AP ",% A7 iE
B N A& gt AL TR R ﬁ}i‘ﬁ v l IFE] ];;'F.:I;“xf}iﬁ v %\ 2L GE o B = 9 ¥ Microarray
AR RS S f#iﬁrﬁﬂk’i’féﬁ%ﬂ %IFLF“ 1238 {7 4P B F}A\ﬁ ATE ARk 5 0.6788 (p <
0.01) °

it )2 real-time RT-PCR A 4755 % o et ¥ -2 B pEsp S 3% 3 B A + #iF 3
v A Fl2 iy kR B4 o H ¢ sucrose synthase (AK100334) 2 3K F] 4 L i AR %
BEYYRLZER - ROENRAF AEIEAE (B4 ) ¥ - BpEge
P8 F f-D-glucan exohydrolase (AK065044) R & 4w £ 3 * 4 f15 2 £ R »
Fhapfha 7T XF mRNA 2 £ 55 F% (B4 a)e bt Eifd 3 = BAF &
i F-v L ¥ ! putative sorbitol transporter (AK073216) ~ ammonium transporter
(AK107601) 2 phosphate transporter (AK063990) #ib f8fs ¢ ~ € 23| > £ H
ammonium transporter X FI* A1 14 2 2 2R fAw 14 2 0155 (B4 b)e
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3. FHFEFAZSHHLEYH3-FREHLP 575
30 A S A TR T A

d FH P RGESHUAFITRBDIT2Z LA RLLLAFEEE T 52 BA
%] (AGP-L2 ~ GBSSII ~ SSSI ~ SBEI ~ SBEIIl 2 SBEIV) &2 £y k> 7 £ % - 0B 1=
o HRELSARRTRAREL LR ARAT] B FEEY
B eSERg S R EREY > AR B E S ATFIARZ P FFF
NCBI % #: 4% Nipponbare -k %578 & Fli2 DNA » #75~>  b 4 A FE A= 4078
(ATG)  # 1.5-kb % 31| (5 _.-flanking sequence) ° 41 # Plant Cis-Acting Regulatory
DNA Elements (PLACE) # k0% % iz JKF] + 25 B 5|2 eis-acting elements > %
WWHF MG T B R A Ep b 2 R ERAE R A A F 2 R R
Poodrd T AT o Y AR 2 H 5 (- ) ARRIAT element W R A
(cytokinin) 3% &5 B (Ross et als 200&); (: YDOFCOREZM element » % DOF #
B75 2 BER #p Mo ookhids -DOFIg  GAMYB 5 73 4t 5 - § o
GAMYB £ GARE clement 2 %% él ) x’Ls,_E GA-response &7 *#54k FJ2& 3. (Washio,
2003) ; (= ) MYBCORE g¢lement: {Pk’ GA % ABA E e Mo iz w2 (Abeetal,
1997, Washio, 2003) 3 (\1 ) MYCCONSENSUSAT element v o aed g b ABA i
L AR (Abe etal.;2003) ; (Z-)WRKY710S clement » = WRKY71 &4 %]+
2.8 R o R E %8 ABA/GA 2t i F B ® (Zhang et al., 2004; Xie et al.,
2005) o ¥ ¢b > B RG = Bk 4 @ HE4p B o cis-acting elements > 4 B fR 230
* BakK &2 AF R AP (%7) (- ) GTICONSENSUS element » #&3 IR i
BF Sk T M2 AFEHF+ & (Villain et al., 1996) ; (= ) INRNTPSADB
element > 5 — ¥k F R A FEHF T AL TH 0 i ¥ LB TATA box

(Nakamura et al., 2002); (= ) GATABOX element> P 7 @ v k3 475 B (Lam and

Chua, 1989) -
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3.2. B F 549 M 4553 -OsDOF3 2 OsWRKY7I . EH ¢ *+ 3 0 7 2 2 A5

d v ¥ AGP-L2 ~ GBSSII ~ SSSI ~ SBEI ~ SBEIIl %2 SBEIV - B ¥kt & = £ 7]
IEREEE o BPEREG T BERFE G F BAPM 2 cis-acting elements >
& database ! kA&¢ ¢ dreni & frans-acting elements > 3|3 B d# & F]

OsDOF3 #7 OsWRKY71) > 4 #F4ien BEsF3 L3 v 28 A 0t -2k
g

»

R TAFEARY B PAT 4 X 2P0 14 X 2 RfE2EEY RV E
- 313 (£ -) #12real-time RT-PCR $#isa 47 H L F1L I L o 4oB] L B % 97
7 0 OsDOF3*t i Fif P ehAFI 2B N RAP E I ? 2> v 14 2
iR L AR 14X 5024 e d OsWRKYZI 2. mRNA &8 B2 44 fh2 (5

S RARTE 14 22 2B/ R (034 1 (B 8 B EARE S A AR T 1

sk AP RO AR ORI T S - B R L i

»

33 RFFEFHYREY Y RE -E.rﬂ“’-?‘
S0 RS AP TR P Lﬂ&#ﬂ&%“ﬂ%“mﬂ+’%ﬁ%wi

WA 7-10 X222 EER J\fpfa ww.w 1 » B gt 100 pM z
GA ~ ABA % BAP ’Ji‘,op'\;.z L r;@ 247 P e o ’E;,%ﬁ}fﬁ’ﬁvi ok m A p % A
Pkt 7 o RIZRETH R (BERJER) BE 2 E Gt L) T B P
P2 EEFYfrEL R LR @A FELWE 02~025 24 A FH LY
R K005 2a e Fh o GA HRRY o EHAfrE L S REP B e

£l > FL L 9WE 04~045 24 > @ FHRIE L 0.1~02 24 > p B EET
GA B2 5 F »ofid2 (B-- a)e m 5P EFH & ABA g2 @ = 2 ikt ,
PR Lt L VR e T4 £ 0.05~0.1 24 (Bl+ - a) iE- I & * real-time
RT-PCR 4 45 OsRab16A4 (ABA # % % LA F]) A F]3% ABA AL E i) ¢ chi 1 3
RHEARE X LR EFTEH 560 2 (data not shown) » HF ABA > E i @ 7 4
FRAESE oA BAPRIHE G Y EY L EFL 24 L3 BE (BL- a)e ¥ 3
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RST-N0 2 PEHF A2 BRFEFAILY L UL At FR2EEY S O
> &k 4 £ (data not shown) °

B EY 2 GAZ ABAGRJLT R Rikd 7 BT o4 5] 5 R 2510.64
£20.65% @ BAPHBEFHEY Y dulkh 7 2 RIAN TEFEB R L H
PREF125S B (Bl - b %R EHFRIL= B TGS foig 3 A EH4p 00
ABA i ER bRt SR E029 % 04 BAP @ £if ¢ dukp 2 B R e

M2 F -5 > GA il ERAEYELZE B+ - o

4
>
"N-
ﬂm

%
%F 0 ABA € % SCOKASE B AR ERR L § R WBAP Rl ¢ @ H 5 B hacE A

A GAHER KDY 2R 2 L

34. HHFE R ABAS R EH A & BHAB iF R IHE OsSUTs & 714 Roih
g’_g‘ _I.;_-_ o
d 7 PED UL AR T2 % WFABA grEREY Y K g R i

- e ABARZ AR ot # e I R 5

S

feBegb i 7-10 % -k 42 ﬁ*rlﬁ,{g!ﬁ}iﬁ' ) g2 100 1M ABA24 I B 1 5 15 2] TR A5
& AP R (AGPa;e . GBS!S N SSS''Z 'SBE) 7 Bofs k%% (o-amylase %
B-amylase) 2 F1: o deBl = AR ST S AR oRFABA 4 g B8 F R0 SBE 2 SSS 2
FEEE (B+= b d)- @ §” AGPase 2 GBSS &% % & 14 i > 8 pvalue &~
B 5 0.0176 22 0.0007 - fiik s & 24P B % % PR > %I ABA ¢ 84 o-amylase
% B-amylase ¥ % =14 % £ A B0 (p-value » 5] % 0.0007 & 0.0131) 0 & 2%
k5 » ABA ¢ #ri] AGPase 2 GBSS itz i#tt (Bl-=- a~c) @+ 2H#~
a-amylase ¥ B-amylase (% =1 (Bl = e~f)eo
R &R A RN R § T ABAMF R A mak

FORE BT Fv & ABA AJRP A FARE N o LB 7-10 % & 100 uM
ABA T 24 | pFzokfe-2 FEH 0 4 OsSUTy A FE - 1313 (A-) &f
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real-time RT-PCR » 2 45 OsSUTI ~2~3~4 % 5 X FL L L o S % 4B L = #77 »
f OsSUT3 % 5 Fl4 & = Mm @p| 72 3|2 % > OsSUTI ~2 2 43252 ABA &t »
B (H p-value » %) % 0.0256~0.0010 22 0.0025)° >+ ABA k2T » & B & OsSUTI~

22 42 AFERERAD SHRBEMN24228221 5 o

35. PR T -RfeEH P p 2 ABA F E B A RSB

27 2 ABA 27 AEH Y kR A E AR AFEAL R G- ERE
Feind d o AP R BT IR DRHME S TIPS EEY 0 F T - B
i SRl EH PR ZE N2 ABA 7 B2 s Afddp Mps 3 2 s %
oyt E g B e o d FERES R fﬁ'ﬂﬁxrg‘lé Agh A 3 X o
AR AT PR fEL(R AT 2) o5 ABA 7RSI R 3R AR 11 %
3 A AR 11 & e i eng 0 4815 18 % digsc A & 2 9 X
5 (Bl m b)e ¥ o fdk fc ot B #-J'ﬁuﬁﬁ‘ﬂ o-amylase /% f TR A 11
Tt b A, b H PR EE T Jﬂ Fl” 'ft (B2 c) o AP SR o-amylase & |4 ik
% 0 B-amylase Z j& [ .0V 5 &Ef—g ’ ﬁl;“-:}é: ﬁ,w 3 X W P A RIS 4 %

B 25 % SR b :g,rwmsp (Bl L d)e

4. FIRFBEG R G- RREEEF > A O0sSUT & 714 B2 4L F+
4.1. & B 67 k2 OsSUTI ~ 2~ 4 L F2 a3+ o3 4 4%

d 2T EH RACE T o R R T2 2P 5 F IR OsSUTI & 4 it
RAHE R P € 3 4 mRNA 2 #€46-8 e{%ﬁ“d &+ OsSUT £ 517 b & B Exds F 2.
A M EER B FEREEH R G- E R TS o p L d TNGOT -k fs
P~ OsSUTI ~ 2 ~ 4 A F12 fc#»+ 1 (- ) OsSUTI 3 Flicd+ (f§ # PSUTIL) » 1
AL (ATG) 2 A Z+1 #3325 -10~-1968 > 4, & % 1959 bp- £ Nippobare
ke B 7] (Ac. No. AP008209, + #ti# Fld 3,785,731 1 3,787,693) it {7+t
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o BB RS 99% e 8- #  PLACE Tl BTy 2 f5fcd+ > B i
J7 [ % 2 PERE S f04p B £5 cis-acting elements 0 ¥ IR PSUTL * & 5 7 B2 3%
B 71 3 ARRIAT - ABRERATCAL - ABRELATERDI1 - ABREZMRAB28 -
ABREATCONSENSUS -~ ACGTABREMOTIFA20SEM ~ ASFIMOTIFCAMV -
BRELATERDI1 ~CATATGGMSAUR ~ DPBFCOREDCDC3 ~ DRE2COREZMRAB17 ~
EMBPITAEM ~ GAREAT ~ GTICONSENSUS » LTRECOREATCOR15 ~ MYBIAT -~
MYBGAHV . MYB2CONSENSUSAT . MYCCONSENSUSAT .
RYREPEATVFLEB4 - WBOXATNPR1'~ WRKY710S % 22 #& > & pEsg F s 4p b e
7 ACGTABOX - WBOXHVISOI, v SREATMSD" % 3 #& @ TATCCAOSAMY /|
A S B RS Ao B e R (RIE )< (=) OsSUT2 2 Flicd +
(PSUT2) > #%i‘g%ﬁ wr1~2830 > ® £ % 830 bp. £ Nippobare 7’}<#€5r‘%%§_ (Ac. No.
AP008218, - ¥ & [ d 27,554,168:4, 27 554.997) (2 FiRiL 5 100% o PSUT2 * &
% B 4p B 3 cis-acting ele.mars, 7| ABRELATERD1 + ARRIAT -
DPBFCOREDCDC3 -~ ERELEE4 - GTlC&NSENSUS » MYBI1AT~ MYCATFD22 -
MYCCONSENSUSAT » WBOXATNPRI ~-WRKY7IOS + 1048 @ FEPERED Y
2 B A3 WBOXHVISO! (g}i 2).0i(2 ) OsSUT4 Sk Flpcts 5 (PSUT4) - #3 #
Bl 5-11~-843 » % & 5 833 bp » £ ‘Nippobare -kF&5-78 5 7l (Ac. No. AP008208,
$tHdeFd 35,566,742 3 35,567,574) & fFr &t o Ar R R S 100% o PSUT4 £ 5
ABRERATCAL -~ ARRIAT ~ ASFIMOTIFCAMYV ~ DPBFCOREDCDC3 ~ GAREAT -
GT1CONSENSUS ~ LTRECOREATCORI15 -~ MYBGAHV -~ MYCATFD22 -~
MYCCONSENSUSAT » WBOXATNPR1 » WRKY710S % 12 & = f 5 7 B 2 3

¥R 7| 0 @ WwpEREAR B e0 cis-acting element ¥ > 5 PYRIMIDINEBOXOSRAMY 1A

¥ WBOXHVISO1 & &3 #r3ni= (B-+ =)
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4.2.OsSUTI ~ 2 3 4 3 Flgad 3 S EH ¢ chtfp b 2 A

Scofield % % (2007) % 541 * OsSUTI fx# = ¥+ B-glucuronidase (GUS) ¥
# A7 (PSUT1:GUS) ™ %2 4% 2 =% (immunolocalization) BL% 3-v F £ R i>
% 0 # 7 % PSUTIEGUS #1% OsSUTI 3v Ji5§ hir A 30 id 270 %
Lt AFEE 0 ATk fetr A 3V E - £ AT (Thioredoxin h ; TRXh) 2 fx#s+
(Ishiwatari et al., 2000) ¥ GUS #F # A F]3t i ¢ 542 (PTRXh::GUS) » s
KASE W g A A T A RA Y o {17 PTRXh & - #3513 (&
+ ) 12 genomic-PCR & = TRXh fk Flfcde + 5 £ (-1025/-16) > 4% & GUS R F A
¥12_ % (PTRXh:GUS) » ** % 4 KB i) ¥ S&F P 2 e 4ol - ~ a 77
PTRXh::GUS 2. GUS/LUQ * @i #1 8 0 3 2 2308 2 > SR @m 7 20 kfed $h
ﬁﬁﬂigﬁﬁﬂﬁgﬂwﬁﬁ%m%#w?w%&?ﬁﬂ“r?ﬁ?ﬂ€uy$’ﬁ?ﬁ
A FNEE I N B A LY GUS e £ 65 OsSUTL Flicds 5 & 4758 - § I B i
%%ﬂﬁﬁﬁ%%ﬂﬁﬁﬁ%ﬁ’#ﬂ?fﬁﬁﬂﬁﬁii%%mimS%ﬁ{@
L3 £ B4 ¥ty Ublquiin fadi+ &2 dijs 37 % A& 7] (PUDi:GUS) 15 # - & %

1 T
m%%%yﬁ%%mﬁw,auﬁﬂu¢éﬂ’A%%ﬁA\lawf’aﬁ#q
1
2. GUS/LUC & iz W%iﬂnm&]ﬁﬁiGU&@ﬁawﬁﬂgﬁnﬂzg’
BT 2RPFEDEH AL TEA 63 2 GUS FHART £ 20 S PREVAFSTE

7 OsSUT # Flfxds+ ~ 47 o

4.¢

BER 7 5 intron Z BT s M AR FAF2Z AR R T B

énh)

s

£ g s T % PSUTI (-1968/-10) ~ 2 (-830/-1) % 4 (-843/-11) g 5 A ud
1 % 7 ubi-intron 2. GUS 3% % A #] (PSUT::ubint::GUS) £ % % ubi-intron 2. GUS
E AT (PSUTEGUS) > PR A FIH YR ARE L R 2% o 51
PSUT1::GUS ~ PSUT2::GUS %2 PSUT4::GUS = fafcd =+ #7 & 30 GUS # a2t
¥ oMo e Fl R IRARS Z 4G intron en% % AP0 0 F)4 F F ubi-intron (7 GUS 3R
TR E TR R LA 4T 2 {'48 (data not shown) e
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proeig OsSUT A Flfcds+ 3t a g iy ¢ g > .7 22 mRNA £ mA4E
ARG L I AFIREREP AR A AWEGD RBRE ) SRR (B
Mis 30 ) -2 FEH Y - =46 PSUT sadeF 2 2 MiEH o %% B n & PSUTI
(-1968/-10) fa#s+ ¢ » ERAIEH HGUS B 55N EH 258 (B= -+ -
a)om PSUT4 (-843/-11) 7 e i=/RA|EH? LRI F 2 GUS F > #FalE
HenB LR 5398 (Bl=L- a)e ¥ PSUT2(-830/-1) & @ ih3| oo ik
FAEY P AR IPELE (B- - a)e ¥- 25 > #%PSUTI~2 2% 4)&

AWE Y E AR 2 A mRNA ST R end R 40t BT = F 2 GUS

A p 4 OsSUT mRNA £ R E I oot v & (Bl - - b) -

4.3. OsSUT4 3 F) 2o £ RECEH + 5 B2 8pFld £ A 45

& PSUTL (-1968/-10) ~ 2 (:830/1) 2 4/(:843/-11) feds+ 2 47pds & 4 49
¥ > PSUT4 2 GUS & & & 4 il s .aeifs R ML R OB R LARLR 2
#4275 - f5d PSUT4 2 §° =4 deletion R R A P %
Ao Bl EY (A S %) 3 uL/%rﬁﬂiﬁ:fi‘ﬁ (F A5, 15 %) & B
PSUTA4-DF (-843/-11):~ .PSUT4-]!)F(-643/—11) - PSUT;l-DF(-434/-11) %

PSUT4-DF(-248/-11) % & /& 5’4 deletion 71zt 7 Hipefd 2 3o 47 o 4o@] = +

Ji

a #7705 % B PSUT4-DE(-843/=11) *t ik H ¥ 5 5 GUS/LUC % & 5 %
FHEH 3.7 % > @ PSUT4-DF(-643/-11) > Epp i ens 2 A
B e 33 8 o g #h o B2 R DF(-843/-11) £ DF(-643/-11) 35 fdb 483 15 T AR 02 %
#hz £ B AR o v E R KRE S DF(-843/-11) # GUS & {47 i3 DF(-643/-11) -
¥ ¢ » PSUT4-DF(-434/-11) 2 PSUT4-DF(-248/-11) todb 45 52 2 i1 B ¥ £
ootk T - HRGFRLAEYAFDPLEMLARSALRE 0 B
PSUT4-DF(-643/-11) ~ PSUT4-DF(-602/-11) ~ PSUT4-DF(-550/-11) ~
PSUT4-DF(-483/-11) ~ PSUT4-DF(-434/-11) % PSUT4-DF(-248/-11) % % | £ & %
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A AP A LA 45 o B % B 7 PSUT4-DF(-643/-11) ~ PSUT4-DF(-602/-11) £
PSUT4-DE(-550/-11) todd f 5 535 % L B AR + A 64 5.7 41 8 44 0018 #ic
£ B (p-value ~ %) 5 0.01113 ~ 0.00778 2 0.00798) (Bl= ~ = b) - @
PSUT4-DF(-483/-11) ~ PSUT4-DF(-434/-11)#2 PSUT4-DF(-248/-11) 2 #% 3.2 % 4p
o B 2 EH R R e L8] (R= - 2 b) - 7 E PSUT4 7
AR PR RS W BT G R R s B LR

-484~-550 £2-603~-643 2 fF » & 7+ F2 B OsSUT4 A FI>rfh fhts € ~ £ 2 AR

L7 BB 7 2.4F 7K cis-acting €lementsiig S 4o B] = 2 #7510 DF(-643/-603)
I3 BENRALTEZABLERT] > A 4 L (- ) ACGTTBOX element (-640) »
% bZIP #4x )+ 2055 2 &+ (= ) INTRONLOWER element £623) = T E A~ F
# I+ %L & % (3 intron-exon splice L;j‘lglCFi(?nS) ofm DF(-550/-484) ¥} 7~ 3 =
BB RBEAER ] A "L»'J’r;;;-_—Ff';)'CURECORECR elément (-506) » ¢ v
H 5 hdpapt R g L F ;gd ; (:'i WBBOXPCWRK Y element (-514) > %

WRKY1 #4F]F % & % o

4.4. OsSUT4 4 %12 DE(550/-484)2r DF(-643/-603) £ $ 5 % £ i {7 EMSA A 4%
MEF DI OsSUTY @ 8t & & & e cis-acting elements ¥ i = &
DF(-550/-484) 22 DF(-643/-603)% f f#*+ % 4 » §|* £ 4 Biotin & %.2. DNA % £
7 EMSA 7% (Bl- te) mEd PREFERRY BE2Znt o Btz
DF(-550/-484)£7 DF(-643/-603) #F &+ 4 W] g2 ik 35 A i) &0 kA L i chpr by 2 (7
EMSA 5 Ji » % % B 7 DF(-550/-484) 22 & 5 A £ H 2 39 ¢ 2, = 2 B
DNA-Transcription factor (DNA-TF) 4f & 4 (S2 & S3) > & & &R EH i v ¥
¢ ;% 1  DNA-TF 4F & 4 (S3) (Bl= -+ 7 a)> @ DF(-643/-603)22 & i p #p e iy
b3 #9324 2,4 DNA-TF 45 & 4 (B1= -3 b)> Bl? SI 7 i 5 m% o &Y
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rig 2 A R

L
B ©

120X ~ 05X 22 1X ik & 22 A 152 DF(-550/-484) #F &1 b3 (7 564 419 % >
BEMT RS NIRH2 B DNA-TF4F &4 (S22 S3) & 1X 7DNA KA
AT EP AR A AR IR ] B DNA-TF 4 & # (S3) & 0.5X 7 DNA
ERL T g2 4 o o4 02 B DNA-TF4f & 4 (S2 &2 S3) 2 ffhis

91 % DNA-TF4F &4 (S3) 395 & - B2 s (B- L)

4.5.0sSUT4 £ 717 k£ B a3 Z BT P L RL 5

B2 A TR oK AR R AR AT Y 2R 0 g - BT
AT T E Y R0 N P e O5SUTY 7 e £ B R BTk AR o R E
B GUS & 1 R et AT LA R 5 e RAelE o MR e 5.7 48 7k DNA
2k 46t FL g 7 i) pCamPSUR4-DF(-843/-11) ~ pCamPSUT4-DF(-643/-11) ~
pCamPSUT4-DF(-550/-11) ~ pCamPSUkaHF&%M-l 1) » pCamPSUT4-DF(-328/-11) ~
me%UMDH2%HD1p&m%Uﬂle”HD H Aol & e e p & v
% 145123 ~71 ~ 81 ».96 60rh 92 %f ’ﬁ'1§ 50 nqu 2_hygromycin & 15 0 &

LRy Bt ot R 67,"1 genomic-PER F & ¥ 7 thfd » 3+ B 3 7 v
A 3.1~14.8% (% ~) e

AL J1* GUS 47 2472 L% PSUT4 2 F £ & fods 3+ g7 K f¢ on
E8E - BE A4 pCamPSUT4-DF(-843/-11) ~ pCamPSUT4-DF(-643/-11)£2
pCamPSUT4-DF(-434/-11)= f8 £ R e+ » % B L RfadF 2475 Bib > 7w &
(independent lines) » 4- Bl = + ~ #7757 > pCamPSUT4-DF(-843/-11):7 GUS & 14% #
EERBF(ETEEY)L2AET(F F 00 L) HARFAFH > Ty Al
fte ez g b ORI M3 e GUS B4 (Bl= + ~ p)e @ pCamPSUT4-DF(-643/-11)
¢ pCamPSUT4-DF(-434/-11)% fa £ B crpade F $ B AE ¥ ~ Eif &t 357 01§

B3] GUS 7# 0 #= pCamPSUT4-DF(-434/-11) sz # + & & T

14
N
i}
3
d
Q
G
175}
fa
4
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£ (Bl= L ~)o ¥ #b o % PSUT4-DF(-434/-11)-49 $ 78 % 72 Bénd & & % pF
PG ARY PIEH Y T2 GUS B A B TS T AR 12 A R 103 60 GUS

Eit 0 38R PSUTA A end EF 2 L8 7T oy (Bl -4 bro)o - #
BB P OEY AR T F R RIEAS M GUS F s (R L
4 €)@ bHBTE P e IR GUS B TR B R GUS A3 (Bl= L
1 frg)edm X B RO R ERAENGUS F - PPN Dtk ST is
S fd (Bl- L4 hei)o

BTO R ke o v R ML ¢ AU o

[ 8 N VA = ) ;ﬁ%ﬁ%’% lpkqu-u}.iﬂ%fﬁ ’H’.&t_!_';\ ) ;; Iﬁ'.?é} ei7 GUS i 2 iF e
45 o g A4 4% pCamPS] % \'ﬂ%
-_@_43’4.1_,11) oz g

L e
amPSUT4-DF(-643/-11)

= =
LRl L HaloEy
P2 i 2 ﬁ%”ﬁ
?-’ '.ﬁ"l.'

pCamPSUT4- DF( 843/-
# pCamPSUT4- D'Ezﬂﬁ/- %ﬁzﬁv ’Hﬁﬁ;ﬂi B P e
R PELE (F= —L"‘“—-}Z&v“iﬁfﬁfﬂﬂl mlLi.-; T RER LR R

Tiév’ﬂpCamPSUT4-DF(-843/-11) AR svtrmsr Raf T isF LB A
DG i

Mo LA AR E s E RS CHARBREEN (Bl=1)-
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o

1. kA5 TNG67 22 EEH 5 #4050 F 1 RRE 55 25
ke CEEFH 2 GEMEE TN 2 ERBREIATE ADE R FF 2 -
(Cock and Yoshida, 1972; Samonte et al., 2001) > 3= ¢ > NP EZ 1] TNG6T -k
fo2 -1~2 23 EFHHEHRMAD I HKRE > IR BER L EE 02 FE
B e-mhEgnmjotd e P 2 EEH L SPE (B- a) &% %2 Hirose
F 4 (1999) *t Nipponbare K f& &8¢ BRI HFA4 & o ¥ - 2 5 > 30 TH
HYF > G EFH 0 RBALE S TR G-H MBI F L > BEEEHA
1N&ﬁ$ﬁaﬁﬁﬂéﬁﬁﬁiﬂQﬁ%%%@%oiﬂaﬂ@&ﬂﬁﬁ%ﬁm
IR 20 AT ¢ R 5 0 2R -2 FH R 20
%R 2RO FEBFY Y ENA L ORGSR AD EEH L - B

i+ A Pk K @8 (Storage sink) o f’*\rﬁ ﬂf ii)i BERPFARELE > A1 E

I 1 -;.

Fif2 &9 i 2 2R3 hiEig e ’%‘gr:)wmg sink) °
l | |
Fof e m e 2

A G fF 0 ARR ISR B Bk 2
€ 4% 7 (Ishimaru et al.,2004) ’:ﬂk BE e I AR LG ORI EETIAER G o
@ Ishimaru % 4 (2004) ¥Rl T2 L EHF b 5 =305 418 5 % cho-amylase fi%

%ié'ﬁ’%fﬁiﬁﬁﬁ'if"ﬂﬁ?%« ER R R R R E R -

M

et

FA R EjEF A RLE (RATEY) S Rz LG B A RLE
ERHRGFT ACH N ATE T AN EH - R RE R ALER TAFE A

Ef P EFp@E i BREIF oo G Ls o

2. fefhend 12 ARG KB R R EY BRI 4
EATRAEL B (12823 F) EH P ORETRAYF O R

PEFT LA R P EEY2REB TR X B EE for F EEY
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Pk RSB I frfefhendd v 3 A F X AN o 50 BER e BEw > AP
ERART S KRR R R Y By RE2 EEY YRR ERT 0 &
Reep o 2 “$ fefiz e E -2 EEH Y Sk RERAREE (Be) BT
fefhendd N H ks 7 K (sinkdemand) ¥ A A F BRI EY BRa 4 hk d o ¥
-G o AR AR oRE e R R RS AR ARLE

B E R E e 4 KA N E YR A FRPEIRI R -

3. kfEEW R - ERE R RBAT

Watanabe % 4 (1997) £= 5 KABE 3 b A0 19 ¥ 5 (S 504p B 72 3 o 12 %
5 %87 SBE -~ GBSS 2888 525 F3) /MRS & S A R o £ B 1
SBE /& 14+ % i &k kg i%ﬂfﬁﬁﬁﬁ$(MMMMdM{QWFéﬁé—ﬁﬁ
Sk EN s e s ke sbm g B Y 3 B SBE

| # [ 1
2_ isogenes (SBEI Il %.1V) i’—:!é?-;‘fi;%sm st BRI E R EAPMT ¥ o AGP-L2 -

GBSSII $2 SSSL 2 % ’JﬁﬁﬁﬂﬂJ&%— B 0 it
g%ﬁﬁﬁﬁﬂ&@«i,%*‘ﬁéﬂ° |

j@%ﬁﬁﬁﬁéﬂ?w %ﬁﬁﬁﬁﬁ%ﬂﬁﬁﬁﬁgﬁ:

d
J
d

=1

\\“'

—HA TR 20 % ViE PEE A ENE - aéﬂ;%ﬁﬁwzo%#ﬁ
PREAZRE 2R E BN AT 10X E T E S 2 FA T AT 20
A3 10 MERMAR  upAE R §FAM (W) 2 ELEY > 27
PRELZ R ARk s Bk & AP M AT B A ¥ A MenB 5% & (Ohdan et al.,
2005; Dian, 2005) » &7 S H A FT i d 3 b hF]F AN B ANERAG L E
FAGE R TVER o

EARWw< Y o Ae {1 % microarray B3 fF 3 E B P F B K4S genome B
PRPFZ IR PEAHEY RS- BREHZAEBIEZ L BRI
PR REEA O F AT RSP EFE CRAEY? ERA R LR (B
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Zw)> B & 57 pEYE X P (carbohydrate metabolism) ~ & & @ﬁi%] (molecule
transport) ~ 3 4, 1 /#4733 47 (signal transduction/transcriptional regulation) ~ 7 f
% & = (hormone biosynthesis) £2 4 £ 3 ¥ 3 7 (developmental regulation) % 4p B
FF o BPESE S BHAP M A TP o sucrose synthase ek F £ E R AP K (B
1 a)’ IR BT IH § o sucrose synthase ¥ 1 {74 ADP-glucose % #73 M ks
PR R F - @EAEES Y X § IR sucrose synthase (SUS)FF] > £ 7 ¢
ADP-glucose % 475 {4k#s 2. 7 £ g4+ L # = (Mufioz et al., 2005) > & 7+ SUS
AT FFEOEDY ¢ LA RE FRET 0 T B Rk e & o SUS B2
% & fRR M P72 = e UDP-glucose 5 ¥ £ 428« UDPG pyrophosphorlase 2 ADPG
pyrophosphorlase i # 4 = |ADP=glucose (Denyer etial’; 1996) 2 H 7 4Ef|* ADP
= F A F & & ADP-glugose (Baroja-Fernandez.et al., 2003) ﬁ_ Wang % 4 (1999)
FIr do it B (immunohistoc_hﬂe_rgicgl} Aok feZ B SUS 28 F12. & i
% % I Microarrdy (8 g) 3 ¢ SUS2 él%ﬁmfﬁﬁﬂif R INEH g d 5w on H o
ﬂvnm@'ﬁ%”ﬁ¢k%£#&W§*WW%# R T e i 7 e sk
E% ~ BB T 7.2 W (I—fanggl ;m(-i Flemmg, 2001) »

¥ - B pEs R 331;7}5 A mf& #]_- B-D-glucan exoh)_/drolase 2 mRNA & fw 3
EEFNRBE(FL @ & BREFOTEE ARSI T IREA  HEFELZ TS
WP dm e BEeNRLe 22 vk f2 2 3 4% (Varghese et al., 1999; Lazan et al., 2004) > @
HEefgge a2 M R2#a v E LR S

p-amylase P E {4 fBiS A P B2 L 3 B R AR P EART T PR
FoRfGhd RS 0 REEYRE2LZIE LS (B~ d)o ¥ ¢ 5 Perez (1971) &
Ishimaru % 4 (2004) 3 R EfLfcE & ¢ h a-amylase 5% & ot I F ¢ 3
fvo gm0 AR 3 g ) a-amylase3D £ F AEHRBLEIRT P ERFLLARE
(Takahashi et al., 2005) » w2V i i B| 7 & ¥ a-amylase 14 ~24 &2 3E L Fl 4 4
B2 2R %5 F R aamylase # g 35H> famylase » ¥ &3 a-amylase 24
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HRBETHRBEAR (B ac)e - HKE > F TP R fEREF § § a-amylase
AR FAREAF RSP REDRE > A AR O DE R > AR &
p-amylase -k f% = maltose > ¥ ¥ F F %4 ¢ Bk "% fE2 1 £ £/ (Smith et al,
2005) » For F e S B ARAREBHIT R EAR R o
fO AR E R prap AT (loading) T ar A 38T HE I H & e 8 L ke
Hen¥ - BPER PN RO ORBEE 0 - ASUC2 setsn i LE 2 5
B RA B e g2 3 BRI F] (Wright et al., 2003) o @ vk FSE B % -
Sk pEY o OsSUTI 22 mRNA 3 & € " ¥ m 3 3 (Hirose et al., 1999, B~
a) % 1 OsSUTI 2 "k 3Vip 2 4% Sk fe T4 B SUT B 30 A0 7 i s
BRWET OsSUT A 71" % TLadh b2 15 ¢ & B RS BB 5 (Bl o) feilics
B oKk AGR AR u 7 &i—“ﬁ’f’,é’»\ifﬁ%%ﬁ%%?@ﬁfﬁL;‘rS_6 2F2 44 @
OsSUTI & Saza g & :i\ .'E-i%7 #t | (Ishimaru et al., 2001; Scofield et

al., 2002) « ,_,.i-: .

",f 7 OsSUT #. 7]t d mic#oa;rray Eif'teal-time RT-PCR % 15 I - B putative
sorbitol transporter >+ 3 7}% Tt é 7 AR LR '(@’L b) »~f— K 5% ¢ - sorbitol

FE &gk LTS é_q‘?’ . )i HEREIE 873k ﬁiﬂ 43¢ (Gao et al., 2003) > @
Loescher % % (1982) % Eﬁ.#iﬁ% Fhh o n B & i ¢ £ % sorbitol
dehydrogenase 7% 14 "% <2 sorbitol 512 £ 4% 2 1 = ZF I sorbitol R FHFA; A% E

BARES T LR G T 48R sorbitol hRF AL LE VG- BIRER AT

%2

(Loescher etal., 1982) « k@ f-KASFT 3 P » Fr > B 3% sorbitol eHF 3 # ik 24 i

\\\?{r

<+ #-%_sorbitol transporter L E X ¢ friFnF AL B A d o

AT iR § AR AR - & 5 195 Mae? Ohira (1981)
%13 1% PN % 2. ammonium sulfate s 4 ¥ £ 2 F 3 v fc2 (4 o g ndEs £
ez @D E st OB F Y o NP RRAE2EEY P hammonium trans-

porter>* 4 {5 14% € ~ £/ 2 2R (K4 b) > o # i ¢ (Chen and Wang,
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2008) > ammonium transporters ¢ 2 ,E’_%‘« % > b|4r-E % (Suenaga et al., 2003)
224330 (Wang et al., 1993; Kumar et al., 2003; Sonoda et al., 2003) » 8278 % & { 7

% 2 B ffammonium transporter - F i ¢ AT F 2 F A 0 B A pE BSR4 a T
NP AN § FOES T R EY R - SR M-

& 4= 41 * phosphate transporterf_* 3 ¥ v jz & ¥ (inorganic Pi) (Smith et al.,
2003) > @ phosphate transporter: 3 8 2_ {5 crpF P £ JE H 4e (B4 b)> B AP ik
RPE B nE R S F RSP GIEE  5 B % % foTanaka (1961) 9§ 40 o2& » # i
FHRAKFEEY Y Piz & A BIE g e

%%%i’%#ﬁﬁﬂaﬁﬁﬁéﬁé.%ﬁ#$wﬁ e % AL e )
- BE &g i FF o m AGP-L2 ~ GBSSII ~ SSSI» SBEI ~ SBEIIL ~ SBEIV ~ sucrose
synthase 2 f-amylase; & 2" 3 f 5 73 - e R ik 1 B *’k’ﬁk‘fv FR AR B 2 O & Ron
A TF) o BAEEE -0 OsSUTI ~ OSSUT 4 ﬁ’ pu.tative sorbitol transporter ¥ it >t &R
PEdp Y o f FE Eﬁﬂjﬁ%w ;ﬁlﬁﬂﬁiﬁ«"}‘_ﬁ‘«“ P51 PEEREE J-v > ammonium
transporter £2 phosphate transpor_{er. 2 ’;&_ﬁ‘i‘i’ M o ® EIEE ¢ > R
Ty a8z § % .g b flélfi &ﬂ%ﬁ? ."1; %J: T B MR R

g & kAT

4, WEEY P RE S PN LTS
d A# < real-time RT-PCR A 45 & % 857 » AGP-L2 ~ GBSSII ~ SSSI ~ SBEI ~
SBEIII * SBEIV %+ Bl# £ SApM AT 2 REEH " RAD L SRPH B 2

ARAF ZTHFHEEAFZFET LG AR R FS 0 d database } 3F

2 B RF2 3 B 7 0 & X e cis-acting elements (% 7 ) o d i % (7

oo dp A F 2 gk R e LG - BB E R 2 PEEE AR B <0 elements > @5 o
TR KEEY Y R SR RN

hF S A R aE Y > S FF ABA §RELRP ESAAMATFIZ AR
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(Rook et al., 2001; Akihiro et al., 2005; Wang et al., 2006) o & *} » 3t FF ¥ oz ¢ >
cytokinin » ¢ #2458 amyloplast <773 5 % 838 AGPS &2 GBSS 2 A F]# . (Miyazawa
etal., 1999) - Akihiro % * (2005)~ % 3R ABA ¢ 3 *c AGP-L3 ~ AGP-SI £ AGP-S2
ERFZEEE - PTG LSS R P b SR RS
# > Zhang % 4 (2005)91* CY i gic) & AP PP e > FIRE AR 5
ABA e o NSAF TR A > FAFIE GARI §MBiE T 4 o A
BokfE R BAATT A IR Yang # 4 (2003)4n O Aok ASE TS 1115 244
e E ABA g RS Bp AR E R A AR ARY o ET ¢ ABA § £ Ao
FRAEE G P M.

A Eapd 2 Bk Sl Fafeiis YO WFS]E GA  ABA 2
cytokinin 3 $7-4p B =10 cis-acting elements » +* %+ AGP-L2~ GBSSI] > SSSI~ SBEI~ SBEIII
& SBEIV K Fjcd 3 b X b des _z‘:__c_*is_-aicting elements > 35 | = B 40 B 2
trans-acting element 7k ¥]: OsDof protéi;tf-{'j 4# 25 %% DOFCOREZM element i# 4%
Fl+ o A R EKAEAS 7["91“7: )é] o P ﬂ » S 2324 IGA-responsive # ) 2 i 4k
(Washio, 2001) = 2 @ OsDof3 &iﬂ }»7}2:;,?-:@ v L‘Iﬂ%: WL > i H A FW P oAt
P i k4 L_#\ l % Q&M $-MYB .bEfMYC A L E % ABA A 18
Hehig &3 - %]+ (Uraocet al., 199351Abe et al.;:2003) - & if* 4p ¥4 & ¢ cis-elements
s NI A BMAELAFEE T F (%I )9 ARRIAT ¥ 4% % & 5 22 cytokinin 2 4 1%
H AP BE e cis-element >+ e R 0 IR AR A A FlELH S AR 2 ¢ o WRKYT710S &%
*h— AR B4 FlELH F K e HF o0 cis-element © ¥ 48 OsWRKY71 #4575 33
o hm Ay ? » OsSWRKY7l 4 ¥4 GA 2 ABAA LB Hméd md B
¥y o-amylase L F)\ A ok k wre P chk L (Zhang et al, 2004; Xie et al.,
2005) = & kT I B AT T AR (P A TR AT 4
1§ Fe 0 i AN EY Gk S Prahs 3 A

v Bz R A e ME T RAER HEH KR § £ P 5 ABA
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€ Mk 2 Em BAPRIgRZREBEDIFE GA 2R 2 P A (B -)e
- R EH AT ABA (4 BB SBMEMAE R 2 SR > 25T ABA
¢ ito-amylsae £ B-amylase fi¥ % /=1 > @ #r4] AGPase 2 GBSS iE{2 (B -+ =) °
BE AR B W A 0 ABA 13 TP A E D B n RS R
R AEF] S > R R F R E RS B E B o AP AR AT 3 X PR AR 25
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3£ 17 real-time

Accession

number
U66041
AGP-L2

D50317
AGP-S1

AY028315
AGP-S2

Table 1 ~ Primers for analyzing starch synthesis, starch degradation and sucrose
transport-related gene expression by real-time RT-PCR
AGP-L1

primer ( 5.3 )
F-

CGGGACCGTCATATAAAAGCA
F-

GBSSI

Amplicon Size

(bp)

R- TCCCATTCCAAAACAAACCA

J04960

AF515482
GBSSII

AY069940
SSSI

D38221
SSSil-1

R-
AFR383878
SSSil-2

AF396537
SSSII-3

AF419099
SSSii

AF432915
SSSiv-1

AY100470
SSSIV-2

AY100471
SBEI

F-
SBEII

D11082

BI
SBEIV

R
D16201

F-
DBE

E14723

D50602
Actin

AB047313
Ubiquitin

D12629
B-amylase

AK068968
a-amylase 1A

X16509
a-amylase 2A

F-
M74177

F-

ACGTACCTTTGAAGGTAG
R- GCCGATCATCGCACCT

81

R- AACTGCATGGCTCAAGAECT

F- GAAAGACAGGAAGATTGAGGG

F- GGTCTGGAACTTCATCAAGA
R#=,TGCCCGTTCTGTICTTGTC
F- _TCTI6TECAGTGEAGCCTT
R- ~-TGCGAAGCAAAATGGAGAG
F- GGAGCACTCTCAACAACTTTT
R- CT@TCTTCCGTCACCGTCAG
F- TTCAACCAAGAAGTCCTCAA
R- GETGCAAACTCCATATACCE
| F- CAATCCCACCTCTCCTAACC
R- AGCTTICACAGTACGAAAACC
TCTCACTAAACCGCCAGAG
R- AAGCCTGAGGCCTGGAAAC
TCTCCCCAGTIGTTGCTTC
GCCCTAACTCATTCAAAGTCC
CGCAAAGCACAAAAGCAAG
R-- TGAGAACACCAAGAGGCAG
F- TGGAGCCTGCACAGCAAAC
R- TTGAGGAGGAGGAAGAGATT
F- CGTGTGGACAGACATTGAAG
R- AAGTGACATTGAGCAAAGGG
F- AATCACAAGTGAGAACCACAG
R- GAATGCTAAGCCAAGAGGAG
F- CGCAAGTACAACCAGGACAA
R- TGGTTGCTGTGACCACACTT
F- TCAATCAAACAGAGACAGACAG
R- AACCCTCACAATCCCGTTC
AATTGCATCCGTAATTCGGA
R- CACGATGACGAGACTCTCA

TCTTGAGGACTATTACAAGCA

242
R-

R- GTCCATAGTCAGATGCTCGA
F- GGCAGCATGGAATAAACCAC

170
E=

R= STGTCCAAGAAGCTGCAAGAGA
F-

AGAATGCTCGTATTGGAGAAAATG
CACTACAACAAACAAACCACTG

249
TCCCAAAACATCTGAAAAGCA

F-

270
R- GCGAAGAACTGGGAGAAIG

200
ACAGGCAAATGECATGCCATC 350
196
CGACATACAGGGAACACAAG
195
148
205
152
548
146
153
150
599
164
170
101
222
e

114




(B 4-)

Gene A::;s;;?n primer (5— 3 ) Ampl;ﬁ;’; sl

a-amylase 3E M59352 F- AAACGAACAGTAGCTAGTTA 168
R-  GCTATGAATCATGCAATTTT

OsSUT 1 D87819 F- CTGTGATTTTCCTGTCCCTG 136
R- AACACTGCTAGTGGACCAGT

OsSUT 2 AB091672 F- AGGAGGAGAGGTCACCGATAA 240
R- CCAACATCCAATGTACAACAGCA

OsSUT 3 AB071809 F- GCCCAAGGTCTCCGTCC 137
R- TGCTATAGTACCCGCTCTAA

OsSUT 4 AB091673 F- TTTGGCTGAGCAGAACACCA 249
R-

OsSUT 5 AB091674 250

OsWRKY71 110

OsDOF3 220
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Table 2 ~ Correlation between mRNA levels of starch synthesis-related genes and
starch content in -2 leaf sheath during heading period. The expression levels of
starch synthesis-related genes were detected by real-time RT-PCR and were analyzed
the relationships with starch content in leaf sheath. (sampling day : -20, -15, -10, -5, 0,
10, 15, 20 days after heading) * r indicated the cotrelation coefficient of gene transcript
level and starch content. *; ** indicated.significant correlation at the p < 0.05 and p <

0.01, respectively.

ADP-glucose pyrophos- Branching enzyme and
phorylase SIEIE SRR debranching enzyme

Gene r Gene .:1 P Gene r
AGP-L1 -0.27 GBSSII 0.88" SBEI 0.84**
AGP-L2 0.88** SSSI 0.69* SBEIII 0.86**
AGP-S1 058, T SéSII—1 0.23 SBEIV 0.81**
AGP-S2 0.44 SSSII-2 0.52 =5 \DBE 0.06

SSSil 0.34

SSSIV-1 -0.06

SSSIV-2 -0.44
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Table 3 ~ Primers for analyzing signaling and transcriptional regulation, carbohydrate
metabolism and glycosylated modification, developmental regulation, hormone synthe-
sis and signaling, molecule transport-related gene expression by real-time RT-PCR and

semi-quantitative RT-PCR.

Gene Agzt:.:s::n primer (5— 3 ) g\lr:g I(ll;:;)n

Genes with some function related to signaling and transcriptional regulation

AP2-related transcription factor AKO073812 F- TGACGAGTTCCAGGCAATC 99
R- CAAAACCTCACCACATTTCAC

DRE-binding protein 1B AK062422 F-  TCGCACTGAAAAGTGTGG 178
R- CATTCAAAATCAGATGGAAT

DNA-binding protein ABF2 AKO058773 F- “==TCTCTGCCTCTICTGTTCTTG 115
R- = ACAGCGAATCATCAATTCCTC

EF-hand Ca**-binding protein CCD1, + AK111852 E- TCTCCTCTECTCCTCCTCTC 119
R- “ATCATCTFGCFGCTGCTGTC

NPK1-related protein kinase- AKO071585 F- TCGAATECTCCATTAGGCAG 108

like protein R- CGAATCTCACTGATFEAGTCC

Putative B regulatory-subunit of AK069462 F- _JFGAAGGCAAAGCATGTATCG 199

PP2A R- TTGECAAGCACACCAGATG

Plasma membrane Ca”*-ATPase AK065088%, 1 F-i #AGCAACAGTGGCTCATCAGC 129

l_':;_ R-- “TGGTGTGTGTGGTTTACGGC
Receptor serine/threonineikinase AK099657 7.- !:',-, TTCTITCCAAACTGTGTCGC 247
" ,"R- CTCCCTTCCTCATCTCTCTC
Putative guanylate cyclase AK102175 '5| F- AATGCAATCCCAGCCCACTTAC 161
ITR-  TTGAGGTTTTCACAAGGAGCCC

Abscisic acid- and stress-inducible AK064892 ~F' TTTTCACAAGAGTCTCCGGC 108

protein 1 R- TTGGACACACAGAGGGCAAG

Genes with some function‘related'to carbohydrate metabolism.and glycosylated modification

S-amylase AK068968 F- " AACCCJCACAATCCCGTTC 222
R- TCAATCAAACAGAGACAGACAG

UDP-glucose- glucosyltransferase AK105783 F- JCAACATCGATAGGCTCATCGAC 140
R- CCTTCCGACTTATTCTGGTGTG

f-galactosidase mRNA AK102192 F- = CCGAGACGAATTTAGAGATG 220
R-~ TTAGCAGTTGGTCACTCTGA

sucrose synthase AK100334 F- AGGCTGAGACTCTGAAAGAG 220
R- AGAGCACCAACCACACACCA

Endo-1,3-1,4-beta-D-glucanase AK067264 F- GGCGACCTTACAATGGAGAC 221
R- CGATGAAGGATGGGAGATGAC

S-glucosidase AK059517 F- GTAGTGGATGCCAGCAGTAT 180
R- CACTGAAACACACAATAGCG

Xyloglucan endotransglycosy- AK060654 F- TGTCCTACAACTACTGCGCC 265

lase-like protein R- GCGGCAATAGTAATTCACCA

Pyrophosphate-dependent phos- AK070279 F- CCACATTCGCTTGTGTCATC 149

phofructokinase R- CCAGTCCAACCAAACACATC

p-D-glucan exohydrolase AK065044 F-  AAGGCAGAGGAGAGGGAAAG 211
R- GCACACACATACATACAGCAC

Snf1 AK068637 F-  AGCTATGATCTCCAGCTCCC 278

R-  TTCTTTGTTCGCTTCGCC
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(EF42)

Genes with some function related to developmental regulation

Early proembryo mRNA AK109648 F- CCAGTACGAATACGAACCG 109
R- TGCCACAAGCCAGTTATCC
Homeodomain leucine zipper protein ~ AK109177 F-  TGGACAGAGAGGGAAAAGAG 135
R- GCACCATCCAAAACACAAA
Floral organ regulator 2 AK101897 F- TGTAGTACACGGTACGACG 200
R- ACACACACTTGCATCATCATC
Putative dormancy-asociated protein ~ AK060981 F- TCTCTGTCACGCCACGTTTG
R- CGCTGAAAGTAGGGAAACAC 177
Genes with some function related to hormone synthesis and signaling
aminocyclopropane-1-carboxylate AK061064 F- GCTTGATAGCGTGTGTACC 113
oxidase (ACO1) R- GTAGAAAACGCGAGCTGAG
Genes with some function related to molecule transport
Ammonium transporter 1%{ "'I'—'-'.-'!E'n ~ ATGC éTTTGCCGCTCTCTC 137
a .-_. TCACACCACAC
Phosphate transporter 4, ‘-' " Koeageq.:"i" F- (E:ITTGCAA AGCGAG 232
R _%&;
hl; ! = R GAGGG GAT GAAGAG
Putative sorbitol transpo‘leﬁ _,.;"'ff =AKO7 ACCGT 179
(=" | TCACT
Zinc transporter ":'l.,r 148
0
I‘.J e
Phospholipid trang['fa;oi'tel"-’i:-l;:r" 193
ABC transporte 251
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Table 4 ~ The expression levels of genes have been selected from Microarray. Ex-

pression patterns of microarray-selected genes were detected by real-time RT-PCR in

leaf sheaths during heading period (sampling day : -14, -7, 0, 7, 14 days after heading).

. 3
Accession Microarray real-time RT-PCR

Category and putative gene function

No. ratio” Stage1 Stage2  Stage3  Stage4  Stage5
Genes with some function related to sighaling and transcriptional regulation

WRKY transcription factor 50 (OSWRKY77) AK108522 427 ND*
AP2-related transcription factor AKO73812mm #3:25 0.1193 0.1593 0.0962 0.1348 0.2033
DRE-binding protein 1B AK0624-I2‘2#='—'(§.00 0.00030 0.00019 0.00024 0.00014 0.00016
DNA-binding protein ABF2 (OsWRKY 71) AKOSB?;?;.E* 8.87 0.0031% 0.0031 0.0030 0.0040 0.0061
EF-hand Caztbinding protein"GebD1 AK111852 :- 4.75 0.2133 0.3223 0.4293 0.7337 0.8950
NPK1-related protein kinase-like protein AK071585 6.36 0.0137 0.0153 0.0153 0.0225 0.0211
phosphatase 2C d AK069274 3.25 | ND
phosphatase 2C AK063334 4.30 ) ND
B regulatory subunit of protein phosphatase 2A AK069462 0.27 0.0000159.. 0.0000173 0.0000160 0.0000143 0.0000112
Plasma membrane Ca*-ATPase (SCA1) AK065088 0.32 0.4907 0.5270 0.4847 0.4560 0.4660
Receptor serine/threonine kinase AK099657 0.29 0.0056 0.0062 0.0054 0.0063 0.0067
Abscisic acid- and stress-inducible protein AK064892 0.305 0.0005 0.0008 0.0010 0.0003 0.0003
Putative guanylate cyclase AK102175 0.33 0.4158 0.1380 0.0993 0.1659 0.0842
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Category and putative gene function .
No. ratio

Accession Microarray

real-time RT-PCR

Stage1 Stage2 Stage3 Stage4 Stage5
Genes with some function related to carbohydrate metabolism
Beta-amylase AK068968 3.63 0.1187 0.0724 0.1056 0.2033 0.1926
UDP-glucose glucosyltransferase AK105783 3.33 0.8753 0.6483 0.9893 1.1353 1.3160
beta-galactosidase mRNA AK102192 0.20 0.000008 0.000019 0.000014 0.000004 0.000002
BSUS1b sucrose synthase 2 AK100334 0.15 1.647 1.927 2.327 0.819 1.320
Endo-1,3-1,4-beta-D-glucanase AK067264 0.32 0.0111 0.0202 0.0163 0.0138 0.0106
Beta-glucosidase AK059517 0.25 0.0097 0.0223 0.0065 0.0073 0.0050
Xyloglucan endotransglycosylase-like protein AK060654 0.20 0.0491 0.0635 0.0276 0.0289 0.0224
Pyrophosphate-dependent phosphofructokinase AK070279 0.26 0.0027 0.0025 0.0012 0.0011 0.0006
Beta-D-glucan exohydrolase AK065044 0.31 0.0710 0.1024 0.0485 0.0424 0.0369
Snfl AK068637 0.17 0.0008 0.0011 0.0007 0.0007 0.0005
Genes with some function-related to developmental regulation

Early proembryo mRNA | AK109648 3,56 379.17 363.33 982.30 390.67 587.67
Floral organ regulator 2 (FOR2) AK10:I=83_77..r _0.18 0.000029 0.000268 0.000064 0.000057 0.000022
Putative dormancy-asociated protein AKOGOQBI“_—__;O.?G 3.5267 4.8500, 3.2033 3.6000 3.3733
Homeodomain leucine zipper protein AK10917L7-' I .::.63 0.1463 0.0592 0.0883 0.1678 0.3547
Genes with some function related to i10_rmone t:'jnsport, metabolism and sighaling
1-aminocyclopropane-1-carboxylate oxidase 4K0610647 - 4.313 RT-PCR assay
Genes with some function,related to;molecule transport
Ammonium transporter 3 ,.AK107601 0.294 04790 0.4437 0.6927 1.4243 7.5697
Phosphate transporter AK063990 3.4 0.1016 0.1104 0.1490 0.2440 0.2463
Putative sorbitol transporter AK073216 5.00 0.5292 0.4603 0.5663 0.7613 1.0803
Zinc transporter AK069804 0.217 0.0008 0.0009 0.0005 0.0005 0.0005
Phospholipid transfer protein AK062529 0.273 0.0017 0.0015 0.0009 0.0009 0.0009
ABC transporter protein AKO072452 0.172 0.0125 0.0104 0.0184 0.0068 0.0074

'ND # 7 4 it {7 real-time RT-PCR 1§ ;|2 & %] - *Microarray ratio : % iR ¥ i @

AT AR EERGEEY Y AFLAREZ VB 3Real-time RT-PCR : % 7 H & 7

22 ubiqutin 72 F12_ (P E L E

'ND indicated the genes without detecting by real-time RT-PCR. *Microarray ratio : The

ratio of transcript levels in source leaf sheath to sink leaf sheath. *Real-time RT-PCR :

The relative quantity of mRNA expression levels to ubiqutin gene.
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T 4 8857 AGP-L2 ~ GBSSII ~ SSSI ~ SBEI ~ SBEIII & SBEIV = 1 J# & & B 4t 4 7]

fa#:+ b > X £ § 2 cis-acting elements o

Figure 5 ~ The common cis-acting elements were shared by AGP-L2 ~ GBSSII ~
SS8S1 ~ SBEI ~ SBEIII and SBEIV promoters.

Name of cis- Consensus L
acting element sequence’ DO A
Hormone signal-related
ARRI1AT NGATT Cytokinin-regulated transcription factor, ARR1, binding site
DOFCOREZM AAAG Dof transcription factor binding site
MYBCORE CNGTTR Dehydration stress-induced transcription factor, MYB, binding site
MYCCONSENSUSAT CANNTG Dehydration-responsive transeription factor, MYC, binding site
WRKY710S TGAC Gibberellin-regulated transcription repressor, WRKY71, binding site
Light signal-related
GT1CONSENSUS GRWAAW Light-regulated transcriptionfactor,"GT-1, binding site
INRNTPSADB YTCANTYY | Lightiresponsive transcription factor, psaDb,-binding site
GATABOX GATA GATAEﬁnscription factor family binding site
Others o
GTGANTG10 GTGA Found in:;promoter of late pollen gene 10
POLLEN1LELAT52 AGAAA Found i,n'fp:omoter of late pollen genei52
NODCON2GM/ CICTT - Putative nodulin consensus seqguences
OSE2ROOTNODULE I
EBOXBNNAPA CANNTG Motif present on napA starage protein gene promoter
CACTFTPPCAl YACT Mesophyll specific:motif
CAATBOX1 CAAT CAAT promoter consensus sequence
ROOTMOTIFTAPOX1 ATATT Motif found both in promoters of rolD

PR ANEATHB AT UIAST-CAG REZFETLEZ AR GeWR &
ABEANTUEAST YR EHCEATAS -

¥ N=A/T/C/G,R=AorGW=AorT,Y=CorT
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%+ K3 & 3 OsSUTs & TRXh # Flich 5 2 % - {43

3

Figure 6 ~ Primers for amplifying OsSUTs and TRXh gene promoters by genomic

PCR.

Gene Primer Name  Position primer (5— 3') Amplicon Size (bp)

OsSUT1
PSUT1-F1 -1972  CCGACCGAATTGAATCGAG 903 (with PSUT1-R5)
PSUT1-R5 -1070  ATACCCGTAATCAACGCATC
PSUT1-F4 -1189  TATCTCGACGTAGCCAGAGAGC 1076 (with PSUT1-R6)
PSUT1-R6 -114  AGGGGGAGATGGAAATGGAAAG
PSUT1-F5 -200 CCAAACACAAACCCACCAC 191 (with PSUT1-R4)
PSUT1-R4 -10 GCCACGEACAAACACAAACC
PSUT1-R2 280 AGTGTGCAAAATACACAGGAG 480 (with PSUT1-F5)
PSUT1-F1-Sac | -1972 | GAGCTCCCGACCGAATTGAA 1961 (with PSUT1-R4-Sma I)
PSUT1-R4-Small -10 CCCGGGGCCACGCACAAACA

OsSUT2
PSUT2-F1 -830 TTAAGGAGEACCAAATGAGC 834 (with PSUT2-R2)
PSUT2-R2 +4  gealCTTCTICRCETGTTTGC
PSUT2-F1-Sac|l -830 GAGCTCT’T’_A‘AGéAGCACCAA 830 (with PSUT2-R2-Sma 1)
PSUT2-R2-Small -1 CCCGGGCTTETTCTCETGTT

OsSUT4
PSUT4-F1 843 C;TGTGCCTTTTTCTGTCGG 833 (with PSUT4-R4)
PSUT4-R4 -11 AGATCTGGTAGGGTTTGGTG
PSUT4-F4 -30 CACCAAACCCTACCAGATCT 322 (with PSUT4-R2)
PSUT4-R2 +292 ' AAGGGAGAGCAAAGGGTAG
PSUT4-F1-Sac | -843  GAGCTCGTGTGCCTTTTTCT 833 (with PSUT4-R4-Sma )
PSUT4-R4-Sma | -11 CCCGGGAGATCTGGTAGGGT

TRXh
PTRXh-F -1018  GAGCTCATCTAAAATGGGAATA 1007 (with PTRXh-R)
PTRXh-R -12 CCCGGGCTCCTAATTCCTC
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Table 7 ~ Primers for amplifing OsSUT4 promoter fragments and EMSA DNA

probes by PCR.

Primer Name

Position

primer (5— 3')

Amplicon Size (bp)

OsSUTH4 fc#>+ 5’4 deletion &% - 43513

PSUT4-DF2-Sac |
PSUT4-DF2a-Sac |
PSUT4-DF3-Sac |
PSUT4-DF3a-Sac |
PSUT4-DF4-Sac |
PSUT4-DF5-Sac |
PSUT4-DF6-Sac |
PSUT4-DF7-Sac |
PSUT4-R4-Small

-643
-602
-550
-483
-434
-328
-248
-139
-11

GAGCTCGGTAACGTTGAGTGAT
GAGCTCAGAAGATGATGCCT
GAGCTCCCATTGTGGTGATTCA
GAGCTCCAAACACGCATGAA
GAGCTCAGCACTCCTAGTTTCA
GAGCTCAGTTTCACATGGAGG
GAGCTCTTGTCTTCCTCTTGGCT
GAGCTCGAGGAGACAATTICCT,
CCCGGGAGATCTGGTAGGGT

633 (with PSUT4-R4-Sma 1)
592 (with PSUT4-R4-Sma 1)
540 (with PSUT4-R4-Sma 1)
473 (with PSUT4-R4-Sma )
424 (with PSUT4-R4-Sma )
318 (with PSUT4-R4-Sma 1)
238 (with PSUT4-R4-Sma 1)
129 (with PSUT4-R4-Sma 1)

EMSA DNA 3 412835 & L 51 5

PSUT4-DF2-Biotin
PSUT4-DR2
PSUT4-DF3-Bietin
PSUT4-DR3

-643
-603
-550
-484

BiO-GGTAACGTTGAGTGATCA
TTTTGCTCG@AGCCT
Bio- CCATTGT GGTGATTCATG
GTAGCAGTCCI\CTCCATT

41 (with PSUT4-DR2)

67 (with PSUT4-DR3)
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Figure 8 ~ Transformation efficiency of transgenic TNG 67 rice introduced with

different length of OsSUT4 promoter fragments.

No. of callus  No. of hygromycin  No. of normal  No. of etiolated plant  Transformation

Plasmid infection resist. Calli plant regenerated regenerated efficiency (%)?
pCamPSUT4-DF(-843/-11) 145 48 4 5 6.2
pCamPSUT4-DF(-643/-11) 123 70 12 0 9.8
pCamPSUT4-DF(-550/-11) 71 24 0 3 4.2
pCamPSUT4-DF(-434/-11) 81 0 14.8
pCamPSUT4-DF(-328/-11) 0 3.1

pCamPSUT4-DF(-248/-11) 11.7

pCamPSUT4-DF(-139/-1 _— 5.4
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44 ~ OsSUT4 # Flgcds + DF(-550/-484) # gL + @ 4v cis-acting elements

Table 9 ~ Discription of cis-elements within the DF(-550/-484) fragment of OsSUT4

promoter.
Name of cis- Description Corresponding References
acting element trans- element

ARRIAT Cytokinin-responsive ARRI1 Ross et al.,
element 2004

CACTFTPPCA1 Cis-regulatory ele-
ments for meso-
phyll-specific gene
expression

CURECORECR Copper-résponse
clement

GTGANTGI10 Found in.promoter of
late pollen gene 10

NODCON2GM/ Putative nodulin:

OSE2ROOTNODULE! « consensus seciu'e%!cés

WBBOXPCWRKY1 Found in promaotet of WRKY1 Eulgem et al.,
amylase genes i« 2000
wheat, barley and oat

WBOXATNPRI salicyliclacid (SA) AtWRKY18 Chen and
-responsive clement . Chen, 2002

WBOXHVISOI1 sugar-responsive SUSIBA2 Sun et al.,
elements 2003

WBOXNTERF3 Wounding-responsive WRKY Nishiuchi et
elements al., 2004

WRKY710S GA- and WRKY71 Zhang et al.,
ABA-responsive 2004

element
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flag leaf
-1 leaf
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-3 leaf collar of flag leaf

collar of -1 leaf

-4 |leaf
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BE AL AE S T HREREL-12 32 4FFL (d)-

Figure 1 ~ The method for observing the developmental stages of rice. The

pre-heading day was defined by the collar distance between flag leaf and the first leaf
below flag leaf (-1 leaf). The inter-collar length of -4+1 ~ 0 and 4+1 cm were termed 15,

10 and 5 days before heading during winter (a-c), and 20, 15 and 10 days before head-
ing on summer. The last leaf of rice was called flag leaf, the first leaf below flag leaf

was called -1 leaf (d).
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14r A2 leaf sheath

-1 leaf sheath

Starch content

-3 leaf sheath

+
-26 -20 -15 -10 -5 0 5 10 15 20 25

Days after heading

= After heading ' e
NS *»*'#‘ﬁi’t#ﬁ@lﬂl’ﬁk”i%}“l.f Ry
@ i 20 < 5 20 < " PR A0 2(0) 3 mER ¥
s L (:]f;s’{:CFELFF'“—é» :fdzﬁaw 20 ~ 'IO S& 'lli:'di?f%fg 0351520 %) FLE
2 standard errors % 7 (n= 3) % ?E;Lriﬂ ,a:fdr g p - (b) 2 EEG RS Rp R
RN VAN U IBE D - 02 S ok 2 v m&#ﬂﬁi/’v\ i o

Figure 2 ~ Changes of starch content in rice upper leaf sheaths during heading pe-
riod. (a) The changes of starch content on -1 (@) ~ -2 (©) and -3 (m) leaf sheaths from
20-days before heading to 20-days after heading (sampling day : -20, -10, -5, 0, 5, 15,
20 days after heading). Standard errors (n=3) were indicated with vertical bars. Arrow
indicates heading day. (b) The distribution of starch granules in -2 leaf sheath. The
starch granules were detected by iodine staining. S © starch granule ; MC : mesophyll
cell ; V ¢ vascular tissue ; FW : fresh weight.
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Figure 4 ~ Changes of starch content patterns in -2 leaf sheath of rice with and
without panicles. The starch content were detected in -2 leaf sheath of rice with (e) and
without (0) panicles (sampling day : -7, 0, 5, 10, 15 and 20 days after heading). Standard
errors (n=3) were indicated with vertical bars. The arrow indicates the day when re-

moved young panicle from leaf sheath of flag leaf (5 days before heading).

96



Early

=

% GBSSII ~ SSST » SSST-1

v

< _

S NMud

3 AGP-L2 ~ AGP-51 ~ SS5TIT ~ SSSTV-1 ~

% SSSIvV-2

©  Late

SSSIF2 ~ SBET ~ SBEIII ~ SBEIV
1
25 20 15 10 5 0 5
Days after heading

I -~k ’*##EM%ﬂ*“#@féwa% w&lﬁn
TR S e B A T A #&f@auxﬁg%*uﬁé‘t&éﬁéci () EWEMA
F)(early stage) s ¥ AR F b AW ‘*"’Pﬂﬁm LM BRFETE S F

GBSSII ~ SSST ¥ SSSII-1's (= ) % Iﬁbgﬂ (mid stage) ? #.AGP-L2~ AGP-SI ~
SSSIII ~ SSSIV-1.82 'SSSIV-2 i—i G AR R TR |20 AW BRI 2 s
et 2 0 2 S 10 %pg' 1% %8 (2) rdrﬁ#%m,gﬂ (late stage) : iB57 &
Tl AR 20 X 310 = ‘F"K,u:'iﬁ.x%%:ﬁu P EASHE R R L BRI ¢ AT
4 SSSII-2 ~ SBEI ~ SBEHI'A SBEIV =3, @R A4 A8l 7 A F1 & B2 555 o

Figure 5 ~ Expression levels of genes envolved in starch synthesis at pre-heading
stage. Three patterns in leaf sheaths were defined at pre-heading stage : (1) Early stage
genes, which expressed high level at 20 days before heading (DBH) and followed by
decline expressions. This group conteined GBSSII ~ SSSI and SSSII-1 ; (2) Mid stage
group, included AGP-L2 ~ AGP-S1 ~ SSSIII ~ SSSIV-1and SSSIV-2. They had medium
expression levels at 20 DBH, quickly rised a peak at 10 DBH ; (3) Late stage genes,
which had low expression levels from 20 DBH to 10 DBH, followed by a rapidly in-
creased at heading day. The group comprehended SSS/I-2 ~ SBEI ~ SBEIII and SBEIV. In

rectangle, the color indicated the gene expression pattern.
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- = - o

during heading period. Th'é'-:t_i’ar;;g_r'iﬁ' proﬁ'l.es of . a;g'my[_c']_&é-y}l 24 ~ 3E and p-amylase
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Standard errors (n=3) were indicated with vertical bars. The arrow indicates heading

day.
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Figure 7 ~ Expression levels of genes involved in sucrose transport in leaf sheaths
during heading period. The transcript profiles of OsSUTI ~ 2 and 4 were analyzed by
real-time RT-PCR (sampling day : -14, -7, 0, 7, 14 days after heading). Standard errors

(n=3) were indicated with vertical bars. The arrow indicates heading day.
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{1 * whole-genome microarray 3= ;% 5 B L PERASEH P G H 2 ERY
EFABMBEARZ AT B Eg 223 BAFIET BiERFHAREES Prgl 2 R
vk ﬁéw%ﬁ%ﬂmﬁﬁr‘ RET R A NECE O BlY Mo B - B2 LHE e g
ek T B #c o B Y ApESE X B (carbohydrate metabolism) ~ & Ak 2 47 (glycosylated

P
[

o\

modification) ~ & =+ i& #i; (molecule transport) ~J7 [ % & & (hormone synthesis) ~ 2

SN S (developmental regulation) ~ 3 4 34 ¥ (signaling regulatlon) B A
(transcriptional regulation) + #77] J1 ek F] > % 14 real-time RT-PCR = 2 fzuiE 2 &
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Tt A F) 20 & T3 microarray % real-fime RT-PCR-4 % %307 | & &> 1 real-time
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Figure 8 ~ Grouping'of the rice genes differentially expressed-at the sink and source
leaf sheaths. To identify the genes differentially expressed in leaf sheaths at pre- and
post-heading stage by migroarray approac'lli:f_otqlly 223lgenes showed at least 3-fold in-
creased or repressed expressions in the sdui:éé:.l;tf Sheaths compared to the sink leaf sheaths.
These genes were classified according to puthiive function, and the number indicated the
amount of genes involoed in this grou:p. Thie-expression patterns of carbohydrate metabol-
ism—, glycosylated modifications, molecule transport—, hormone synthesis—, developmental
regulation—, signaling— and trahseriptional regulation—relatéd. genes listed here all have been
confirmed by real-time RT-PCR: Red color showed'that the genes were up-regulated in
source leaf sheaths, and green colorindicated the genes were down-regulated at
post-heading stages.

aindicated the expression pattern of gene was corrected by real-time RT-PCR analysis.
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Figure 9 ~ Expression levels of carbohydrate metabolism- and molecule transloca-
tion-related genes in leaf sheaths during heading period. The transcript profiles of
carbohydrate metabolism-related genes (sucrose synthase and f-D-glucan exohydrolase )

(a) and molecule translocation-related genes (putative sorbitol transporter ~ ammonium

transporter and phosphate transporter) (b) were analyzed by real-time RT-PCR analysis
(sampling day : -14, -7, 0, 7, 14 days after heading). Standard errors (n=3) were indi-

cated with vertical bars. The arrow indicates heading day.
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Figure 10 ~ Expression levels of transcription factors involved in hormone signaling

transduction in leaf sheaths during heading period. The transcript profiles of Os-
DOF3 and OsWRKY71 were analyzed by real-time RT-PCR analysis (sampling day : -14,

-7, 0, 7, 14 days after heading). Standard errors (n=3) were indicated with vertical bars.

The arrow indicates heading day.
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Figure 11 ~ The effects of hormone on the growth and starch content of rice leaf
sheath. (a) Changes of length of sink stage leaf blade and leaf sheath (7-10 days before
heading) under GA ~ ABA and BAP treatments for 24 h. The sink stage leaf sheath (7-10
days before heading) (b) and source stage leaf sheath (7-10 days after heading) (c)
treated GA ~ ABA and BAP for 24 h were detected starch content. Standard errors (n=3)
were indicated vertical bars. ([_]) LB : leaf blade ; (ll) LS : leaf sheath ; DW : dry weight.

104



< 60 = 80
7] —
> 9 50 2 70 P
= a > 2 60
2 oD 40 o
s E & B0
® £ 30 — E 40
gc £
g :l_‘. 20 g £ 30
L] n —
R 5 20
< 3 a 10
£ o
£ 00— =~ 0
Control Control
E —_—
S 60 c ‘g 40 d
= ° 35
w 50 =
2o 2530
= E 40 2 E25
- = - —
& E 30 8 E 20
"o &l
» & 20 a1
m < w10
©Oe q0 @
2 g S
£ 0 E ol | S
Control = Control
20 120 =
> 80€ > f
S E70 s £100
=9 =]
8% 60 $3 80
o = 50 o = 60
§ 240 S
E £ 30 E- & 40
& ?i 0 s 5 20
o 10 a™
oL—— 0
Control ABA Control ABA

M- - iR ABA SRS E R & 3% A B MR S PP
Yo AT 7-10 X chr B > AST ABA R 5 2401 B > Rl AR & S Ap B R
% : AGPase (a) ~ SBE (b) ~ GBSS (¢) ~ SSS (d)& 5t ~ jZ4p B f% % : a-amylase (e) »
B-amylase (f)2. &4 o F .%E(a)~(d)§9:47;} 2S5 EAFTEmESE > (e) (N5 3 £4F T
324 % > A @2 standard errors % 7 ° () o-amylase FHEH & F A
a-glucosidase i % enif it T > & o 45d PNPG7 #2c ! 1 umole &1 p-nitrophenol 3
- ¥ i+ o (f) p-amylase F ¥ = 2 & 5 & o-glucosidase i ¥ cHif 2T > & S dsd
PNPGS5 $# -2z 4! 1 umole = p-nitrophenol 5 - ¥ i~ -

Figure 12 ~ The effects of hormone on starch synthesis- and degradation-related
enzyme activities in rice leaf sheath. The sink leaf sheath (7-10 days before heading)

treated with ABA were analyzed starch metabolism enzyme activities. Changes in en-
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zyme activities for AGPase (a), SBE (b), GBSS (c), SSS (d), a-amylase (e) and
B-amylase (f) in leaf sheath. (a)~(d) Standard errors (n=5) were indicated vertical bars.
(e) ~ (f) Standard errors (n=3) were indicated vertical bars. (¢) One Unit ofa-amylase
activity is defined as the amount of enzyme, in the presence of excess a-glucosidase,
required to release one micromole of p-nitrophenol from BPNPG7 in one minute ubder
the defined assay conditions. (f) One Unit of B-amylase activity is defined as the amount
of enzyme, in the presence of excess a-glucosidase, required to release one micromole

of p-nitrophenol from PNPGS5 in one minute ubder the defined assay conditions.
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Figure 13 ~ The effects of hormone on transcript levels of OsSUTs in leaf sheaths
during heading period. The sink leaf sheath (7-10 days before heading) treated with
ABA for 24 h were analyzed OsSUTs genes (OsSUTI ~ OsSUT2 and OsSUT4) expres-

sions. Standard errors (n=3) were indicated with vertical bars.
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Figure 14 ~ Changes of starch cphte}t ABAjcontenﬁanJi starch degradation-related
enzyme activities in leaf sheath during heading period. Detection of starch content

(a), ABA content (b), and a-amylase (c), B-amylase (d) enzyme activities in leaf sheath
during heading period (sampling day : -3, 4, 11, 18, and 25 days after heading). Standard

errors (n=3) were indicated with vertical bars. The arrow indicates heading day.
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/WRKY7 108 i DR
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GT1CONSENSUS  GAREAT/MYBGAHV
—-768  CCTCAGCGAATTCGTTATATTAATTAAATCAATGAAAACATTTACTGGATTAATAAAACT  -709
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—-528  CTCCTCTATTAAATTCACCTACAGAAAGTCGTTCCCGCTGAAATAATCGCACCGTCTAGA  —469
-468  AGCTCGGCAAGCGTGTCGCTAATCCGATACTAACTCCATTAATTCCATTTTCATTTCAAT — -409

-408  AATTGTTGAAGTTATTACTGCACTGGAAATAATAAAGGCAGGGGGGTGTAACTGGGTGTG  -349
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—-830 JTAAGGAGCACCAMIGAGCATTGTGTGTGCGCACAGCCGCATTGTGTTACGTGCACCAG —771

MYCCONSENSUSAT ABRELATERD1
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/MYCATRD22/MYCCONSENSUSAT

—-530 AATTATTACTTTAGTGATAGATGATATACTTATCAAAAGTGAACCATTAGCAGTGACTAT  —471

WRKY710S/WBOXHV 1 SO 1

470 CAATTTTAAGATACGTTGGTTCAATATTTCAGATGTATTTATAGGGCAAAGTATACCGGT -411
MYCCONSENSUSAT

-410  GCTTATAGGGATAGTGATTTTATTAAATCTCGAGATATATCGTTTCAAGGTTGTACCTGT —351

ARR1AT
—-350 GTTGTGAATGCTCATGITTTTAAGAGAATACGAAGATGTATEITCCATTATCIATACAAAA  —-291

o

-290 TGAAGACGTATGTATTFGMACGAGGGTGéGAGTAAAAGAAAGTCTAGI ACTAGAAGGA -231
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Figure 16~ OsSUT2 promoter. OsSUT?2 promoter (PSUT2) was amplified from TNG67
by genomic PCR. The 830 bp amplicon range was indicated by arrows (-830~-1). Red
and green colors showed that the hormone- and carbohydrate-responsive cis-acting ele-

ments, respectively, and blue color indicated both.
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Figure 17~ OsSUT4 promoter. OsSUT4 promoter (PSUT4) was amplified from TNG67
by genomic PCR. The 833 bp amplicon range was indicated by arrows (-833~-11). Red
and green colors showed that the hormone- and carbohydrate-responsive cis-acting ele-

ments, respectively, and blue color indicated both.
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Figure 18 ~ Transient expression of TRXh and Ubi promoters. (a) Activity analysis of
TPXh promoter in leaf sheath. The PUbi::luciferase plasmid severs as blank. Standard
errors (n=4) were indicated with vertical bars. (b) Activity analysis of Ubi promoter in
sink leaf sheath and source leaf sheath. Standard errors (n=3) were indicated with ver-
tical bars. BH : before heading ; AH : after heading. GUS/LUC : the ration of GUS

activities to LUC activities.
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Figure 19 ~ PSUTs construct map I. The PSUT1 (1959 bp), PSUT2 (830 bp) and
PSUT4 (833 bp) were amplified by genomic PCR and cloned into Sacl-Smal digested
GUS vector to generate the PSUTs::GUS plasmids. GUS vector contains GUS reporter
gene, and 3’ terminator of HVA22 (0.3 kb).
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Figure 20 ~ PSUTs construct map II. The PSUT1 (1959 bp), PSUT2 (830 bp) and
PSUT4 (833 bp) were amplified by genomic PCR and cloned into Sacl-Smal digested
Ubint::GUS vector to generate the PSUTs::Ubint::GUS plasmids. Ubint::GUS vector
contains ubiqutin intron 1 (1.1 kb) ~ GUS reporter gene, and 3’ terminator of HVA422 (0.3
kb).
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Figure 21 ~ Transient expression of OsSUTs promoters. (a) Transient expression
analysis of OsSUTs promoters in sink leaf sheaths (0 day after heading) and source leaf
sheaths (30 day after heading). (b) Expression levels of OsSUTI, 2 and 4 in -2 leaf
sheath during heading period (sampling day : -10, 0, 10, 20, 30 days after heading). The
PUbi::luciferase plasmid severs as blank. Standard errors (n=3) were indicated with ver-
tical bars. HO : 0 day after heading (heading day) ; A30 : 30 day after heading.
GUS/LUC : the ration of GUS activities to LUC activities.
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Figure 22 ~ OsSUT4 5’ deletion promoter construct map. OsSUT4 5’ deletion pro-
moter fragments were amplified by PCR and cloned into Sacl-Smal digested

Ubint::GUS vectors. Ubint::GUS vector contains ubiqutin intron 1 (1.1 kb) ~ GUS re-
porter gene, and 3’ terminator of HVA22 (0.3 kb).
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GUS iElat7 o (b) fc s 5 X SRR 15 2 v RAe&EH > JI* A FHiEF
PSUT4-DF(-643/-11) ~ PSUT4-DF(-602/-11) ~ PSUT4-DF(-550/-11) ~
PSUT4-DF(-483/-11) ~ PSUT4-DF(-434/-11)% PSUT4-DF(-248/-11)2 gic#s & 75 |4 A
17 ° $-4 82 standard errors % 5+ (n=3) - DBHS : 5 days before heading ; DAH1S :
15 days after heading - GUS/LUC : GUS # %158 & 22 LUC # %1% & 2.V & o
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Figure 23 ~ Transient expressions of OsSUT4 5’-deletion promoter fragments. (a)
Deletion analysis of PSUT4-DF (-843/-11)~PSUT4-DF(-643/-11)~PSUT4-DF(-434/-11)
and PSUT4-DF(-248/-11) promoter fragments by bombardment in sink ( 5 day before
heading) and source ( 15 day after heading) leaf sheaths. (b) Deletion analysis of
PSUT4-DF(-643/-11) ~ PSUT4-DF(-602/-11) ~ PSUT4-DF(-550/-11) ~
PSUT4-DF(-483/-11) ~ PSUT4-DF(-434/-11) and PSUT4-DF(-248/-11) promoter
fragments in sink ( 5 days before heading) and source ( 15 days after heading) leaf
sheaths. Standard errors (n=3) were indicated with vertical bars. DBHS : 5 days before
heading; DAH15: 15 days after heading. GUS/LUC : the ration of GUS activities to LUC

activities.
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Figure 24 ~ The position of EMSA DNA probes. The range of DF(-550/-484) DNA
probe is from -550 to -484, and DF(-643/-603) DNA probe is from -643 to -603 on
OsSUT4 promoter.

* indicated the cis-acting elements were located at up-stream of -484 on OsSUT4 promoter.
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Figure 25 ~ Binding activities analysis of OsSUT4 promoter fragments and leaf
sheaths nuclear extracts. DF(-550/-484) DNA probe (a) and DF(-643/-603) (b) DNA
probe were used to analyze the binding activity with nuclear extract of leaf sheaths.
BH-LS NE : before heading leaf sheath nuclear extract ; AH-LS NE : after heading leaf

sheath nuclear extract ; S : shift band.
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Figure 26 ~ Competition EMSA analysis of OsSUT4 promoter fragments. Competi-
tion EMSAs were proformed with 0, 0.5-fold, 1-fold unlabeled DF(-550/-484) DNA
probes (Cold probes) and labeled DF(-550/-484) DNA probe. BH-LS NE : before
heading leaf sheath nuclear extract ; AH-LS NE : after heading leaf sheath nuclear ex-
tract ; S © shift band.
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Figure 27 ~ Stable expression OsSUT4 5’ deletion promoter construct map. Stable

expression cassettes, containing OsSUT4 5’ deletion promoter fragments, ubiqutin in-

tron 1, GUS reporter gene, and 3’ terminator of HVA22 were cloned into Sacl-HindIll
digested pPCAMBIA 1302 vectors.
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Figure 28 ~ GUS staining of transgenic rice. The leaf blade (a-g), leaf sheath (h-n) and
young panicle (o-u) from plants expressing PSUT4-DF(-643/-11) (d-e, k-1, r-s) and
PSUT4-DF(-434/-11) (f-g, m-n, t-u) constructs were detected by GUS staining. (b, I, p)
and (c, j, q) were transgenic line no. 15 and no. 17 of PSUT4-DF(-843/-11), repectively.
(d, k, r) and (e, 1, s) were transgenic line no. 7 and no. 50 of PSUT4-DF(-643/-11), re-
pectively. (f, m, t) and (g, n, u) were transgenic line no. 45 and no. 49 of
PSUT4-DF(-434/-11), repectively. (a, h, 0) indicated wild-type plant. SinL : Sink leaf ;

SouL : Source leaf. Bar in a-u, 1 cm.
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Figure 29 ~ GUS staining of spikelet. (a, d) were wild-type plant, (b, e-1) were
PSUT4-DF(-434/-11)/49 transgenic line. (b, c) were spikelet at booting and flowing
stages, respectively. (e- g) samples were collected from spikelets pre flowing. (h, 1)
samples were from spikelets after flowing. lem : lemma ; pal : palea ; o : ovary ; sty :

style ; st : stigma ; ant : anther ; fil : filament.

125



(XW:) DF(-843/-11)
10 ¢

9| - meH
8 ! O AH
7l
o
|
4 |
1
o 2
c 14
= ol n B L
— 15 17 18 20
=
& )
= (X10%) DF(-643/-11)
a 12 mBH
g: e O AH
3 10
2 8
6
=
- 2
E= ol
= 7 9 27 54
@
0 (X11%“‘} DF(-434/-11)
- 14 mBH
O o O AH

8 -

6

4

2

0 | N

7 38 42 45 48 49 51 52

The line number of transgenic plants

W= -+ ~ OsSUT promoter::GUS B #8378 -k f52 fxd + E 124 47

Jekf R 3-5 X B fais 10-15 % g K452 ¥ Fi > & {7 DF(-843/-11) ~
DF(-643/-11)22 DF (-434/-11)fc# + 2. GUS 7E 47 o

(I)BH : before heading ([_])AH : after heading

Figure 30 ~ Stable expression of OsSUTs promoters in transgenic plants. GUS ac-
tivities analysis of DF(-843/-11), DF(-643/-11) and DF(-434/-11) promoter fragments
in sink leaf sheaths (3-5 days before heading) and source leaf sheaths (10-15 days after
heading) of transgenic plants. (ll)BH : before heading ([_])AH : after heading.
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CCSINE R Y Sl

A solution (500X, 1L)

(NH4),SO04 24.1¢g
KNO; 925¢
MgS0O4 & MgSO4 7TH,0 330g# 675¢g
KH,PO,4 124 ¢
B solution (500X, 1L)
Fe-citrate 7.5 g CRAc i3 f#)

Ca(NOy), # Ca(NOz)a4FhO ' 30¢g & 43.1g
12N HCI

C solution (1000X, 1L

127



‘ﬁ'ﬁ“: N ,J;,‘fg,',sq' FLAF 4 £

§ :100 kg/ha =100 kg/500,000 & -] pot=0.2 g/-|] pot=0.5g/+ pot

FifedE - T F B 20% - 9 F kg PRk
0.5/20%=25 25X2Q2®&)=5g
RE - FF B 4% - 8 F BhRk
0.5/46%=1.1 1.1X2Q2&)=22¢g

A% :100 kg/ha = 100 kg/500,000 & -] pot=10.2 g/-|- pot=0.5g/+ pot

WAL - AR 18% - A d A FEP > 2 RRRR

0.5/18%=28 28X3( &)=glgl I,

47 :100 kg/ha =100 kg/500,000 & -] pot=0.2 g/-]- pot=10.5g/+ pot

e £ = ~ U5 @

0.5/ 60% = 0.8 J{Eﬁfx 303 2

. pot » & B pot #1E .

| pot ﬁ;%t f :L . %
: et I
¢ y ,
E{:ﬁ "t? |_I5_'“.::'|I

128



%t4-= ~ pAHC18 map

NAME OF CLONE patc18

INSERT Ubituciferase+3” nos

VECTOR _ pBlueScript

luciferase

(

pAHCI18 was constructed " nset _

Kb) into the pUCI18 (2.7 Kb).

Antibiotic: Ampicillin
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1. Callus Induction Medium (CIM)

N6 salts 3.98¢
N6 vitamins (1000X)* 1 mL
Sucrose 3049
Casamine acids 19
2,4-D? 5 mL
Proline 28¢g

A ZEAR T 1L 3 ¥ pHSZ 84~ Phytagel 3 g 1+ 121°Ci= ] 15 ~ & -
! N6 vitamins (1000X stock)
Nicotinic acid 0.05.g / Thiamine-HEL.0.1 g
Pyridoxin HCI 0.05 g /iMyo-inositol 10 g
AR FARE 400 miks =2t g 4C
2 2,4-D fieiz
2 1 mL 50% ethanol 7% %40 mg, 2,4Dyks % - 4 745k 99mL - fie ¥
+ 0.4mg/mL & &35k P A Gk g T -

2. CIM-CH

1L 2 CIM3 &R Fi b B4 4 & 40T 4 » 1 mliCefotaxime®
(1000X) % 0.5:mL Hygromycin®(2000X):f & tag. » @ % -

! Cefotaxime (1000X stock)

4 mL e F-ki3 & 1 g Cefotaxime #5 & - fe & 250 mg/mL 2 &% 7%
R0 E-20C k@ *e

Hygromycin (2000x stock)

4 mL = F ki3 f# 0.4 g Hygromycin # % » fe ¥ = 100 mg/mL 2 &%
Tk E-20C k4 H T o
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3. AB minimal medium
20X Buffer A (phosphate buffer)

KoHPO, 609
NaH,PO, 20 ¢
20X Buffer B (salts buffer)
NH,4CI 20 ¢
MgSO, ¢ 7TH20 69
KCI 39
CacCl, 0.2g
FeSO, ¢ 7H,0 0.05¢g

20X Buffer A 22 B& B3¢ F4g-K 1 1L » A% pHB.7 1 2 121°C i ] 15
LB o
50X Glucose solution

25 g glucose ;% # 100'mL = F-k ¢ o
50 mL 20X Buffer A~50 mL 20X'Buffer;B ¥ 20 mL 50X-Glucose solution
AEFEL IL 20 * - "

4. Co-culture, 2N6SA medium

N6 salt 3.98 g
N6 vitamins (1000X)* I'mL
Sucrose 3049
Casamine acids 19
2,4-D? 5 mL
Glucose 10g

A ZEAR T 1L 3 & pHS5.2 {5 4 » Phytagel 39> ™ 121°Ci= # 15 4 45>
@4 #ris 40 » 1 mL Acetosyringone (AS)® -
! N6 vitamins (1000X stock) -fiz;% = CIM 2 % # -
2 24-Dpeit-peiz e CIM % & o
® Acetosyringone
r2 DMSO ;3 f# Acetosyringone # % > e @l = JE & 0.2 M 2 g5 & » 3%
¥-20C k4 H * o
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5. Pre-regeneration medium (PM)

N6 salt 3.98¢g
N6 vitamins (1000X)* 1 mL
Sucrose 309

Casein 0549
Proline 289
Sorbitol 90g

NAAZ 1mL
BAP® 1mL

A Ak 2 1L FF pHSIT {8 4 > Phytagel 3 g 1 121°Ci= ] 15 » 4 -
! N6 vitamins (1000X stock)~ fi ;# I CIM 32 % ke
2 NAA iz
21 mL LN NaOH % 22100 mg NAA 5 R o 478 99 mL » iz & =
1mg/mL 2 G5k s 3 4ACkfan * -
® BAP pej2
r2 1 mL 1IN NaOH 73 f#50.mg BAP o ¢ 4f 7477k 99 mL > fie } =
0.5 mg/mL 2 & 5 % » Pk 4@¥KEH T b

6. Regeneration medium (RM)

N6 salt : I 3:98 g
N6 vitamins (2000X)* 1 mL
Sucrose 30¢g
Casamino acids 19
NAA? 0.5 mL
Kinetin® 1 mL

M EAR T 1L 3 & pHS.7 1 4 ~ Phytagel 4 9> 4 121°Ci= ] 15 ~ 48
! N6 vitamins (1000X stock)-fz; I+ CIM 2 % # o
2 NAA feis-fe i | PM 32 % 4 o
® Kinetin pei2
2 0.5 mL 1IN NaOH ;3 f# 250 mg Kinetin % % » 48 z45-k 2 50 mL >
fel = 5mg/mL 2 &#757% > 3l 4Crkfadg * o

132



7. Root induction medium (MS)

MS salt 4.4 g
MS vitamins (1000X)* 1mL
Sucrose 309

A a4k D 1L 3 5 pHS.7 {5 4 » Phytagel 49> ™ 121°Ci= # 15 4 4.
! MS vitamins (1000X stock)

Nicotinic acid 0.125 g / Thiamine HCI 0.025 g

Pyridoxine HCI 0.125 g / Myo-inositol 2.5 g

Glycine 0.6 g

AR EkE 250mL > 2l 4CH
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