Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90069
標題: 社群媒體平台合作影片之競食效應預測
Is Your Guest an Ally or an Enemy? Predicting Cannibalization Effects of Featured Videos on Social Media Platforms
作者: 林璟耀
Ching-Yao Lin
指導教授: 魏志平
Chih-Ping Wei
關鍵字: 深度學習,競食效應,合作影片,社群媒體,網紅,網紅編碼器,
Deep Learning,Cannibalization,Featured Videos,Social Media,Influencers,Influencer Encoders,
出版年 : 2023
學位: 碩士
摘要: 傳統上,關於競食效應(Cannibalization)的討論通常局限於產品的範疇。 在本研究中,我們提出了一個新穎的研究任務,探討社群媒體網紅的合作影片中的競食效應預測。 本研究旨在預測社群媒體網紅邀請其他網紅嘉賓出現自己的影片中時,導致其自身未來影片的平均觀看量下降的情況,稱之為競食效應。
為了處理這個研究任務,我們提出一種新穎的深度神經網路預測模型Cannibalization Identification with Influencer Encoder (CIIE),其利用網紅編碼器(Influencer Encoder)萃取主持網紅、特邀嘉賓網紅,以及他們過去創作內容的關鍵資訊。此外,我們也提出多種基準模型(Baseline Models)以綜合評估我們提出的CIIE 模型之整體表現,其中,包括先驗機率模型 (PPM)、有約束的先驗機率模型(CPPM)和隨機預測模型(RGM)。根據我們的實驗結果,我們提出的 CIIE 模型之在所有方法中表現最優,尤其對於預測少數類別方面表現尤其出眾,這也是我們研究的主要關注點。這項研究為我們對社群媒體網紅競食效應的理解做出了具體的貢獻,並證實我們提出的深度神經網路預測模型可以有效地預測可能發生競食效應之社群媒體網紅的合作影片。
Traditional discussion regarding cannibalization is restricted to the context of products. In this research, we present a novel research task which investigates the prediction of the cannibalization effect in the context of featured videos by social media influencers. This research aims to identify instances where the exposure of a social media influencer as a guest in another influencer’s video leads to a decline in their own video’s viewership, known as cannibalization.
To address this research task, a novel deep neural network predictive model, referred to as Cannibalization Identification with Influencer Encoders (CIIE), is proposed, utilizing influencer encoders to capture essential information about both the host and guest influencers and their past video content. The model’s effectiveness is evaluated against various benchmark methods, including Prior Probabilistic Model (PPM), Constrained Prior Probabilistic Model (CPPM), and Random Guess Model (RGM). According to our evaluation results, our proposed CIIE model outperforms all benchmarks and is especially effective in the predict minority classes, which is the main focus of our study. This research contributes to a comprehensive understanding of cannibalization among social media influencers and underscores the potential of our proposed DNN model as a valuable tool for predicting possible cannibalization effects for featured videos.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90069
DOI: 10.6342/NTU202304164
全文授權: 同意授權(全球公開)
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf1.14 MBAdobe PDF檢視/開啟
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved