請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90069完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 魏志平 | zh_TW |
| dc.contributor.advisor | Chih-Ping Wei | en |
| dc.contributor.author | 林璟耀 | zh_TW |
| dc.contributor.author | Ching-Yao Lin | en |
| dc.date.accessioned | 2023-09-22T17:17:02Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-09-22 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-14 | - |
| dc.identifier.citation | Agarap, A. F. (2018). Deep learning using rectified linear units (relu). arXiv preprint arXiv:1803.08375.
Ahn, J., Kim, A., & Sung, Y. (2021). The effects of sensory fit on consumer evaluations of co-branding. Leveraged Marketing Communications (pp. 42-59). Alalwan, A. A., Rana, N. P., Algharabat, R., & Tarhini, A. (2016). A systematic review of extant literature in social media in the marketing perspective. Social Media: The Good, the Bad, and the Ugly (pp. 79-89). https://doi.org/10.1007/978-3-319-45234-0_8 Ba, J. L., Kiros, J. R., & Hinton, G. E. (2016). Layer normalization. arXiv preprint arXiv:1607.06450. Bouten, L. M., Snelders, D., & Hultink, E. J. (2011). The impact of fit measures on the consumer evaluation of new co‐branded products. Journal of Product Innovation Management, 28(4), 455-469. Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: synthetic minority over-sampling technique. Journal of artificial intelligence research, 16(1), 321-357. Copulsky, W. (1976). Cannibalism in the marketplace. Journal of Marketing, 40(4), 103-105. Cui, Y., Che, W., Liu, T., Qin, B., & Yang, Z. (2021). Pre-training with whole word masking for Chinese BERT. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 29, 3504-3514. Decker, C., & Baade, A. (2016). Consumer perceptions of co-branding alliances: Organizational dissimilarity signals and brand fit. Journal of brand management, 23, 648-665. Freberg, K., Graham, K., McGaughey, K., & Freberg, L. A. (2011). Who are the social media influencers? A study of public perceptions of personality. Public relations review, 37(1), 90-92. Han, H., Wang, W.-Y., & Mao, B.-H. (2005). Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning. Advances in Intelligent Computing, ICIC 2005 (pp. 878-887). Springer. He, H., Bai, Y., Garcia, E. A., & Li, S. (2008). ADASYN: Adaptive synthetic sampling approach for imbalanced learning. In Proceedings of 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence) (pp. 1322-1328). He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR) (pp. 770-778). Heskett, J. L. (1976). Marketing. Macmillan. Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780. Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings of International conference on machine learning, ICML 2015 (pp. 448-456). Keller, K. L. (1993). Conceptualizing, measuring, and managing customer-based brand equity. Journal of Marketing, 57(1), 1-22. Keller, K. L. (2013). Strategic Brand Management: Building, Measuring, and Managing Brand Equity. Pearson. Keller, K. L. (2016). Reflections on customer-based brand equity: perspectives, progress, and priorities. AMS review, 6, 1-16. Kerin, R. A., Harvey, M. G., & Rothe, J. T. (1978). Cannibalism and new product development. Business Horizons, 21(5), 25-31. Koch, C., Lode, M., Stohr, D., Rizk, A., & Steinmetz, R. (2018). Collaborations on YouTube: From unsupervised detection to the impact on video and channel popularity. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), 14(4), 1-23. Koschmann, A. (2017). Brand alliances: Growing your pie or stealing your slice? examining field evidence using causal methods. Journal of Marketing Development & Competitiveness, 11(4). Lassar, W., Mittal, B., & Sharma, A. (1995). Measuring customer‐based brand equity. Journal of consumer marketing, 12(4), 11-19. Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., & Stoyanov, V. (2019). Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692. Lomax, W., Hammond, K., East, R., & Clemente, M. (1996). The measurement of cannibalization. Marketing Intelligence & Planning, 14, 20-28. Ma, R., Gui, X., & Kou, Y. (2023). Multi-Platform Content Creation: The Configuration of Creator Ecology through Platform Prioritization, Content Synchronization, and Audience Management. In Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems (pp. 1-19) Newmeyer, C. E., Venkatesh, R., & Chatterjee, R. (2014). Cobranding arrangements and partner selection: A conceptual framework and managerial guidelines. Journal of the Academy of Marketing Science, 42, 103-118. Novelli, F. (2013). Measuring Sales Cannibalization in Information Technology Markets: Conceptual Foundations and Research Issues. In G. Herzwurm & T. Margaria, Software Business. From Physical Products to Software Services and Solutions, ICSOB 2013 (pp. 31-42). Springer, Berlin, Heidelberg. Paydas Turan, C. (2021). Success drivers of co‐branding: A meta‐analysis. International Journal of Consumer Studies, 45(4), 911-936. Rao, A. R., Qu, L., & Ruekert, R. W. (1999). Signaling unobservable product quality through a brand ally. Journal of marketing research, 36(2), 258-268. Ruekert, R. W., & Rao, A. (1994). Brand alliances as signals of product quality. Sloan management review, 36(1), 87-97. Santurkar, S., Tsipras, D., Ilyas, A., & Madry, A. (2018). How does batch normalization help optimization? Advances in neural information processing systems 31 (NeurIPS 2018) (pp. 2488-2498). Shocker, A. D., Srivastava, R. K., & Ruekert, R. W. (1994). Challenges and opportunities facing brand management: An introduction to the special issue. Journal of marketing research, 31(2), 149-158. Simonin, B. L., & Ruth, J. A. (1998). Is a company known by the company it keeps? Assessing the spillover effects of brand alliances on consumer brand attitudes. Journal of marketing research, 35(1), 30-42. Van der Lans, R., Van den Bergh, B., & Dieleman, E. (2014). Partner selection in brand alliances: An empirical investigation of the drivers of brand fit. Marketing science, 33(4), 551-566. Xiao, M., Wang, R., & Chan-Olmsted, S. (2018). Factors affecting YouTube influencer marketing credibility: a heuristic-systematic model. Journal of media business studies, 15(3), 188-213. Zhou, R., Khemmarat, S., Gao, L., Wan, J., & Zhang, J. (2016). How YouTube videos are discovered and its impact on video views. Multimedia Tools and Applications, 75, 6035-6058. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90069 | - |
| dc.description.abstract | 傳統上,關於競食效應(Cannibalization)的討論通常局限於產品的範疇。 在本研究中,我們提出了一個新穎的研究任務,探討社群媒體網紅的合作影片中的競食效應預測。 本研究旨在預測社群媒體網紅邀請其他網紅嘉賓出現自己的影片中時,導致其自身未來影片的平均觀看量下降的情況,稱之為競食效應。
為了處理這個研究任務,我們提出一種新穎的深度神經網路預測模型Cannibalization Identification with Influencer Encoder (CIIE),其利用網紅編碼器(Influencer Encoder)萃取主持網紅、特邀嘉賓網紅,以及他們過去創作內容的關鍵資訊。此外,我們也提出多種基準模型(Baseline Models)以綜合評估我們提出的CIIE 模型之整體表現,其中,包括先驗機率模型 (PPM)、有約束的先驗機率模型(CPPM)和隨機預測模型(RGM)。根據我們的實驗結果,我們提出的 CIIE 模型之在所有方法中表現最優,尤其對於預測少數類別方面表現尤其出眾,這也是我們研究的主要關注點。這項研究為我們對社群媒體網紅競食效應的理解做出了具體的貢獻,並證實我們提出的深度神經網路預測模型可以有效地預測可能發生競食效應之社群媒體網紅的合作影片。 | zh_TW |
| dc.description.abstract | Traditional discussion regarding cannibalization is restricted to the context of products. In this research, we present a novel research task which investigates the prediction of the cannibalization effect in the context of featured videos by social media influencers. This research aims to identify instances where the exposure of a social media influencer as a guest in another influencer’s video leads to a decline in their own video’s viewership, known as cannibalization.
To address this research task, a novel deep neural network predictive model, referred to as Cannibalization Identification with Influencer Encoders (CIIE), is proposed, utilizing influencer encoders to capture essential information about both the host and guest influencers and their past video content. The model’s effectiveness is evaluated against various benchmark methods, including Prior Probabilistic Model (PPM), Constrained Prior Probabilistic Model (CPPM), and Random Guess Model (RGM). According to our evaluation results, our proposed CIIE model outperforms all benchmarks and is especially effective in the predict minority classes, which is the main focus of our study. This research contributes to a comprehensive understanding of cannibalization among social media influencers and underscores the potential of our proposed DNN model as a valuable tool for predicting possible cannibalization effects for featured videos. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T17:17:01Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-09-22T17:17:02Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iii Table of Contents iv List of Tables vii List of Figures viii Chapter 1 Introduction 1 1.1 Background 1 1.2 Research Motivation 4 1.3 Research Objectives 7 Chapter 2 Literature Review 9 2.1 Traditional Definition of Cannibalization 9 2.2 Cannibalization Among Social Media Influencers 13 2.3 Summary 16 Chapter 3 Our Proposed CIIE Model for Cannibalization Prediction 17 3.1 Problem Formulation 17 3.2 Model Architecture 19 3.2.1 Overview 19 3.2.2 Influencer Encoder 20 3.2.3 Mean-pooling Layer 23 3.2.4 Classifier 24 3.2.5 Class Imbalance Method 25 Chapter 4 Empirical Evaluation 26 4.1 Dataset 26 4.1.1 Data Collection 26 4.1.2 Overview of Our Dataset 27 4.1.3 Featured Video Identification 28 4.1.4 Featured Video Identification 29 4.1.5 Featured Video Filtering Process 32 4.2 Evaluation Procedure 37 4.2.1 Experimental Setup 37 4.2.2 Model Configuration 37 4.2.2 Performance Benchmarks 39 4.2.3 Benchmark 1: Prior Probabilistic Model (PPM) 40 4.2.4 Benchmark 2: Constrained Prior Probabilistic Model (CPPM) 42 4.2.5 Benchmark 3: Random Guess Model (RGM) 43 4.3 Evaluation Results 44 4.3.1 Experiment Results 44 4.3.2 Ablation Test 1: Effects of Different Inputs on Model Performance 46 4.3.3 Ablation Test 2: Effects of Image Inputs on Model Performance 47 4.3.4 Effect of Class Imbalance Methods on Classification Effectiveness 48 Chapter 5 Conclusions 50 References 52 | - |
| dc.language.iso | en | - |
| dc.subject | 網紅編碼器 | zh_TW |
| dc.subject | 網紅 | zh_TW |
| dc.subject | 合作影片 | zh_TW |
| dc.subject | 深度學習 | zh_TW |
| dc.subject | 競食效應 | zh_TW |
| dc.subject | 社群媒體 | zh_TW |
| dc.subject | Cannibalization | en |
| dc.subject | Social Media | en |
| dc.subject | Influencers | en |
| dc.subject | Featured Videos | en |
| dc.subject | Deep Learning | en |
| dc.subject | Influencer Encoders | en |
| dc.title | 社群媒體平台合作影片之競食效應預測 | zh_TW |
| dc.title | Is Your Guest an Ally or an Enemy? Predicting Cannibalization Effects of Featured Videos on Social Media Platforms | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳建錦;楊錦生 | zh_TW |
| dc.contributor.oralexamcommittee | Chien-Chin Chen;Chin-Sheng Yang | en |
| dc.subject.keyword | 深度學習,競食效應,合作影片,社群媒體,網紅,網紅編碼器, | zh_TW |
| dc.subject.keyword | Deep Learning,Cannibalization,Featured Videos,Social Media,Influencers,Influencer Encoders, | en |
| dc.relation.page | 56 | - |
| dc.identifier.doi | 10.6342/NTU202304164 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-08-14 | - |
| dc.contributor.author-college | 管理學院 | - |
| dc.contributor.author-dept | 資訊管理學系 | - |
| 顯示於系所單位: | 資訊管理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf | 1.14 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
