Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90039
Title: 利用熱退火啟發式連續非拘束最佳化演算法解決組合問題
Using Annealing-inspired Continuous Unconstrained Optimization Algorithm to Solve Combinatorial Problem
Authors: 張書平
Shu-Ping Chang
Advisor: 陳中平
Chung-Ping Chen
Keyword: 模擬退火法,旅行商人問題,組合最佳化問題,病態系統,梯度下降,
Simulated Annealing,Travelling Salesman Problem,Combinatorial Optimization Problem,Ill-conditioned System,Gradient-descent,
Publication Year : 2023
Degree: 碩士
Abstract: 組合最佳化問題有許多工業應用,例如IC佈局、工業排程調度、異構體分析等,然而,組合最佳化是在一個有限的解集合中尋找最佳解的問題,其時間複雜度會呈階乘性成長,這類型的問題屬於NP-hard或NP-complete,隨著維度增加窮舉法便是不可行的,其中最知名的組合最佳化問題便是旅行商人問題(Travelling Salesman Problem; TSP)。
模擬退火演算法提供了能夠使用隨機搜索方向來脫離局部最小值的組合求解器,我們提出了一種不同於以往的熱退火啟發式演算法,是基於非線性規劃將組合問題建構成一個函數最佳化問題,再利用梯度下降(gradient descent)的求解器,可以將收斂速度大大提高到與梯度下降搜索相同的水平,當中還包含一個新的熱退火啟發正則化約束函數,用於通過逐漸增加函數凸性來放大全局最小值來逃避局部最小值。
我們試著將熱退火啟發式連續非拘束最佳化演算法(Annealing-inspired Continuous Unconstrained Optimization; ACUO)應用於不同城市數的旅行商人問題 (TSP),在實驗結果中表明,演算法的運算為多項式時間複雜度,相較於窮舉求解法階乘時間複雜度,大幅加速了收斂時間,且對於高維旅行商人問題能夠有效解決,在50個城市的旅行商人問題中僅有5%的相對誤差。
Combinatorial optimization problem has various industrial applications, such as IC layout, industrial scheduling, isomer analysis, etc. However, the combinatorial optimization problem is to find the best solution in a limited solution set, and its time complexity grows exponentially. This type of problem is NP-hard or NP-complete. As the dimensions increase, the exhaustive method is not feasible. One of the most well-known combinatorial optimization problems is the Traveling Salesman Problem (TSP).
Simulated Annealing Algorithm provides a combinatorial solver capable of escaping local minima using random search directions. We propose a novel annealing-inspired heuristic algorithm that approaches the combinatorial problem as a function optimization problem based on nonlinear programming. We use a gradient-descent(GD) based solver to greatly improve the convergence rate to the same level as GD search. Also included a new annealing-inspired regularization constraint function for escaping local minima by gradually increased convexity to zoom in on the global minima.
We attempted to apply the Annealing-inspired Continuous Unconstrained Optimization (ACUO) to the Traveling Salesman Problem (TSP) with different numbers of cities. The experiment results show that the algorithm operates in polynomial time complexity, which is a great improvement compared to the factorial time complexity of exhaustive method. It especially accelerates the convergence time and effectively solves high-dimensional TSP instances. For a TSP with 50 cities, the relative error is only 5%.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90039
DOI: 10.6342/NTU202302620
Fulltext Rights: 同意授權(限校園內公開)
metadata.dc.date.embargo-lift: 2028-08-01
Appears in Collections:生醫電子與資訊學研究所

Files in This Item:
File SizeFormat 
ntu-111-2.pdf
  Restricted Access
3.62 MBAdobe PDFView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved