Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90026
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉振良zh_TW
dc.contributor.advisorCheng-Liang Liuen
dc.contributor.author王冠傑zh_TW
dc.contributor.authorKuan-Chieh Wangen
dc.date.accessioned2023-09-22T17:06:26Z-
dc.date.available2023-11-10-
dc.date.copyright2023-09-22-
dc.date.issued2023-
dc.date.submitted2023-08-10-
dc.identifier.citation1. C. Forman, I. K. Muritala, R. Pardemann and B. Meyer, Renew. Sust. Energ. Rev., 2016, 57, 1568-1579.
2. D. Beretta, N. Neophytou, J. M. Hodges, M. G. Kanatzidis, D. Narducci, M. Martin- Gonzalez, M. Beekman, B. Balke, G. Cerretti, W. Tremel, A. Zevalkink, A. I. Hofmann, C. Müller, B. Dörling, M. Campoy-Quiles and M. Caironi, Mater. Sci. Eng., 2019, 138, 100501.
3. G. J. Snyder and E. S. Toberer, Nat. Mater., 2008, 7, 105-114.
4. O. Bubnova, Z. U. Khan, A. Malti, S. Braun, M. Fahlman, M. Berggren and X. Crispin, Nat. Mater., 2011, 10, 429-433.
5. G. Tan, L. D. Zhao and M. G. Kanatzidis, Chem. Rev., 2016, 116, 12123-12149.
6. P. Reddy, S. Y. Jang, R. A. Segalman and A. Majumdar, Science, 2007, 315, 1568-1571.
7. O. Bubnova and X. Crispin, Energy Environ. Sci., 2012, 5, 9345-9362.
8. R. Kroon, D. A. Mengistie, D. Kiefer, J. Hynynen, J. D. Ryan, L. Yu and C. Müller, Chem. Soc. Rev., 2016, 45, 6147-6164.
9. B. Russ, A. Glaudell, J. J. Urban, M. L. Chabinyc and R. A. Segalman, Nat. Rev. Mater., 2016, 1.
10. W. Zhao, J. Ding, Y. Zou, C. A. Di and D. Zhu, Chem. Soc. Rev., 2020, 49, 7210-7228.
11. M. Berggren, D. Nilsson and N. D. Robinson, Nat. Mater., 2007, 6, 3-5.
12. E. Yvenou, M. Sandroni, A. Carella, M. N. Gueye, J. Faure-Vincent, S. Pouget, R. Demadrille and J. P. Simonato, Mater. Chem. Front., 2020, 4, 2054-2063.
13. Y. Chen, Y. Zhao and Z. Liang, Energy Environ. Sci., 2015, 8, 401-422.
14. Y. Du, J. Xu, B. Paul and P. Eklund, Appl. Mater. Today, 2018, 12, 366-388.
15. Y. Wang, L. Yang, X. L. Shi, X. Shi, L. Chen, M. S. Dargusch, J. Zou and Z. G. Chen, Adv. Mater., 2019, 31.
16. M. S. Hossain, T. Li, Y. Yu, J. Yong, J. H. Bahk and E. Skafidas, RSC Adv., 2020, 10, 8421-8434.
17. Z. Fan, Y. Zhang, L. Pan, J. Ouyang and Q. Zhang, Renew. Sust. Energ. Rev., 2021, 137.
18. G. Prunet, F. Pawula, G. Fleury, E. Cloutet, A. J. Robinson, G. Hadziioannou and A. Pakdel, Mater. Today Phys., 2021, 18.
19. L. Zhang, X.-L. Shi, Y.-L. Yang and Z.-G. Chen, Mater. Today, 2021, 46, 62-108.
20. Z. Qiu, B. A. G. Hammer and K. Müllen, Prog. Polym. Sci., 2020, 100.
21. H. Sun, X. Guo and A. Facchetti, Chem, 2020, 6, 1310-1326.
22. I. H. Eryilmaz, Y.-F. Chen, G. Mattana and E. Orgiu, in Organic Flexible Electronics, eds. P. Cosseddu and M. Caironi, Woodhead Publishing, 2021, DOI: https://doi.org/10.1016/B978-0-12-818890-3.00011-4, pp. 335-351.
23. R. S. Ashraf, I. Meager, M. Nikolka, M. Kirkus, M. Planells, B. C. Schroeder, S. Holliday, M. Hurhangee, C. B. Nielsen, H. Sirringhaus and I. McCulloch, Journal of the American Chemical Society, 2015, 137, 1314-1321.
24. Z. Fei, Y. Han, E. Gann, T. Hodsden, A. S. R. Chesman, C. R. McNeill, T. D. Anthopoulos and M. Heeney, Journal of the American Chemical Society, 2017, 139, 8552-8561.
25. Z. Wang, Z. Liu, L. Ning, M. Xiao, Y. Yi, Z. Cai, A. Sadhanala, G. Zhang, W. Chen, H. Sirringhaus and D. Zhang, Chem. Mat., 2018, 30, 3090-3100.
26. Y. Sun, C. A. Di, W. Xu and D. Zhu, Adv. Electron. Mater., 2019, 5.
27. J. G. Park and Y. H. Lee, Current Applied Physics, 2016, 16, 1202-1215.
28. D. Mühlbacher, M. Scharber, M. Morana, Z. Zhu, D. Waller, R. Gaudiana and C. Brabec, Adv. Mater., 2006, 18, 2884-2889.
29. M. Zhang, H. N. Tsao, W. Pisula, C. Yang, A. K. Mishra and K. Müllen, Journal of the American Chemical Society, 2007, 129, 3472-3473.
30. Z. Zhu, D. Waller, R. Gaudiana, M. Morana, D. Mühlbacher, M. Scharber and C. Brabec, Macromolecules, 2007, 40, 1981-1986.
31. H. N. Tsao, D. Cho, J. W. Andreasen, A. Rouhanipour, D. W. Breiby, W. Pisula and K. Müllen, Adv. Mater., 2009, 21, 209-212.
32. R. B. Aïch, N. Blouin, A. Bouchard and M. Leclerc, Chem. Mat., 2009, 21, 751-757.
33. E. H. Suh, Y. J. Jeong, J. G. Oh, K. Lee, J. Jung, Y. S. Kang and J. Jang, Nano Energy, 2019, 58, 585-595.
34. J. Guo, G. Li, H. Reith, L. Jiang, M. Wang, Y. Li, X. Wang, Z. Zeng, H. Zhao, X. Lu, G. Schierning, K. Nielsch, L. Liao and Y. Hu, Adv. Electron. Mater., 2020, 6.
35. T. L. Dexter Tam, C. K. Ng, S. L. Lim, E. Yildirim, J. Ko, W. L. Leong, S. W. Yang and J. Xu, Chem. Mat., 2019, 31, 8543-8550.
36. J. Fan, J. D. Yuen, M. Wang, J. Seifter, J. H. Seo, A. R. Mohebbi, D. Zakhidov, A. Heeger and F. Wudl, Adv. Mater., 2012, 24, 2186-2190.
37. J. Fan, J. D. Yuen, W. Cui, J. Seifter, A. R. Mohebbi, M. Wang, H. Zhou, A. Heeger and F. Wudl, Adv. Mater., 2012, 24, 6164-6168.
38. T. L. D. Tam, G. Wu, S. W. Chien, S. F. V. Lim, S. W. Yang and J. Xu, ACS Mater. Lett., 2020, 2, 147-152.
39. C. B. Nielsen, M. Turbiez and I. McCulloch, Adv. Mater., 2013, 25, 1859-1880.
40. X. Zhang, L. J. Richter, D. M. Delongchamp, R. J. Kline, M. R. Hammond, I. McCulloch, M. Heeney, R. S. Ashraf, J. N. Smith, T. D. Anthopoulos, B. Schroeder, Y. H. Geerts, D. A. Fischer and M. F. Toney, Journal of the American Chemical Society, 2011, 133, 15073-15084.
41. I. H. Jung, C. T. Hong, U. H. Lee, Y. H. Kang, K. S. Jang and S. Y. Cho, Sci Rep, 2017, 7.
42. Z. Liu, Y. Hu, P. Li, J. Wen, J. He and X. Gao, J. Mater. Chem. C, 2020, 8, 10859-10867.
43. J. Ding, Z. Liu, W. Zhao, W. Jin, L. Xiang, Z. Wang, Y. Zeng, Y. Zou, F. Zhang, Y. Yi, Y. Diao, C. R. McNeill, C. A. Di, D. Zhang and D. Zhu, Angew. Chem. Int. Ed., 2019, 58, 18994-18999.
44. B. Cho, K. S. Park, J. Baek, H. S. Oh, Y. E. Koo Lee and M. M. Sung, Nano Lett., 2014, 14, 3321-3327.
45. N. Kim, S. Kee, S. H. Lee, B. H. Lee, Y. H. Kahng, Y. R. Jo, B. J. Kim and K. Lee, Adv. Mater., 2014, 26, 2268-2272.
46. B. J. Worfolk, S. C. Andrews, S. Park, J. Reinspach, N. Liu, M. F. Toney, S. C. B. Mannsfeld and Z. Bao, Proc. Natl. Acad. Sci. U. S. A., 2015, 112, 14138-14143.
47. M. N. Gueye, A. Carella, N. Massonnet, E. Yvenou, S. Brenet, J. Faure-Vincent, S. Pouget, F. Rieutord, H. Okuno, A. Benayad, R. Demadrille and J. P. Simonato, Chem. Mat., 2016, 28, 3462-3468.
48. E. Jin Bae, Y. Hun Kang, K. S. Jang and S. Yun Cho, Sci Rep, 2016, 6.
49. D. Farka, H. Coskun, J. Gasiorowski, C. Cobet, K. Hingerl, L. M. Uiberlacker, S. Hild, T. Greunz, D. Stifter, N. S. Sariciftci, R. Menon, W. Schoefberger, C. C. Mardare, A. W. Hassel, C. Schwarzinger, M. C. Scharber and P. Stadler, Adv. Electron. Mater., 2017, 3.
50. Y. Wang, C. Zhu, R. Pfattner, H. Yan, L. Jin, S. Chen, F. Molina-Lopez, F. Lissel, J. Liu, N. I. Rabiah, Z. Chen, J. W. Chung, C. Linder, M. F. Toney, B. Murmann and Z. Bao, Sci. Adv., 2017, 3.
51. E. M. Thomas, B. C. Popere, H. Fang, M. L. Chabinyc and R. A. Segalman, Chem. Mat., 2018, 30, 2965-2972.
52. X. Wang, X. Zhang, L. Sun, D. Lee, S. Lee, M. Wang, J. Zhao, Y. Shao-Horn, M. Dincǎ, T. Palacios and K. K. Gleason, Sci. Adv., 2018, 4.
53. A. C. Hinckley, S. C. Andrews, M. T. Dunham, A. Sood, M. T. Barako, S. Schneider, M. F. Toney, K. E. Goodson and Z. Bao, Adv. Electron. Mater., 2021, 7, 2001190.
54. Y. Huang, D. H. Lukito Tjhe, I. E. Jacobs, X. Jiao, Q. He, M. Statz, X. Ren, X. Huang, I. McCulloch, M. Heeney, C. McNeill and H. Sirringhaus, Appl. Phys. Lett., 2021, 119, 111903.
55. Y. Lu, Z. D. Yu, Y. Liu, Y. F. Ding, C. Y. Yang, Z. F. Yao, Z. Y. Wang, H. Y. You, X. F. Cheng, B. Tang, J. Y. Wang and J. Pei, Journal of the American Chemical Society, 2020, 142, 15340-15348.
56. C. Y. Yang, Y. F. Ding, D. Huang, J. Wang, Z. F. Yao, C. X. Huang, Y. Lu, H. I. Un, F. D. Zhuang, J. H. Dou, C. A. Di, D. Zhu, J. Y. Wang, T. Lei and J. Pei, Nat. Commun., 2020, 11.
57. K. Feng, H. Guo, J. Wang, Y. Shi, Z. Wu, M. Su, X. Zhang, J. H. Son, H. Y. Woo and X. Guo, Journal of the American Chemical Society, 2021, 143, 1539-1552.
58. Y. Lu, Z.-D. Yu, H.-I. Un, Z.-F. Yao, H.-Y. You, W. Jin, L. Li, Z.-Y. Wang, B.-W. Dong, S. Barlow, E. Longhi, C.-a. Di, D. Zhu, J.-Y. Wang, C. Silva, S. R. Marder and J. Pei, Adv. Mater., 2021, 33, 2005946.
59. M. Xiong, X. Yan, J. T. Li, S. Zhang, Z. Cao, N. Prine, Y. Lu, J. Y. Wang, X. Gu and T. Lei, Angew. Chem. Int. Ed., 2021, 60, 8189-8197.
60. S. Wang, G. Zuo, J. Kim and H. Sirringhaus, Prog. Polym. Sci., 2022, 129, 101548.
61. G. Lu, J. Blakesley, S. Himmelberger, P. Pingel, J. Frisch, I. Lieberwirth, I. Salzmann, M. Oehzelt, R. Di Pietro, A. Salleo, N. Koch and D. Neher, Nat. Commun., 2013, 4.
62. D. Khim, K. J. Baeg, M. Caironi, C. Liu, Y. Xu, D. Y. Kim and Y. Y. Noh, Adv. Funct. Mater., 2014, 24, 6252-6261.
63. Y. Xu, H. Sun, A. Liu, H. H. Zhu, W. Li, Y. F. Lin and Y. Y. Noh, Adv. Mater., 2018, 30.
64. Y. Zhang, H. Zhou, J. Seifter, L. Ying, A. Mikhailovsky, A. J. Heeger, G. C. Bazan and T. Q. Nguyen, Adv. Mater., 2013, 25, 7038-7044.
65. Y. Lin, Y. Firdaus, M. I. Nugraha, F. Liu, S. Karuthedath, A. H. Emwas, W. Zhang, A. Seitkhan, M. Neophytou, H. Faber, E. Yengel, I. McCulloch, L. Tsetseris, F. Laquai and T. D. Anthopoulos, Adv. Sci., 2020, 7.
66. Y. Yamashita, J. Tsurumi, M. Ohno, R. Fujimoto, S. Kumagai, T. Kurosawa, T. Okamoto, J. Takeya and S. Watanabe, Nature, 2019, 572, 634-638.
67. I. E. Jacobs, Y. Lin, Y. Huang, X. Ren, D. Simatos, C. Chen, D. Tjhe, M. Statz, L. Lai, P. A. Finn, W. G. Neal, G. D'Avino, V. Lemaur, S. Fratini, D. Beljonne, J. Strzalka, C. B. Nielsen, S. Barlow, S. R. Marder, I. McCulloch and H. Sirringhaus, Adv. Mater., 2022, 34, 2102988.
68. M. Culebras, C. M. Gómez and A. Cantarero, Journal, 2014, 7, 6701-6732.
69. J. Liang, S. Yin and C. Wan, Ann. Rev. Mater. Res., 2020, 50, 319-344.
70. L. Wang, Z. Zhang, Y. Liu, B. Wang, L. Fang, J. Qiu, K. Zhang and S. Wang, Nat. Commun., 2018, 9, 3817.
71. G. Goo, G. Anoop, S. Unithrattil, W. S. Kim, H. J. Lee, H. B. Kim, M.-H. Jung, J. Park, H. C. Ko and J. Y. Jo, Adv. Electron. Mater., 2019, 5, 1800786.
72. Z. Liang, M. J. Boland, K. Butrouna, D. R. Strachan and K. R. Graham, J. Mater. Chem. A, 2017, 5, 15891-15900.
73. Y. Wang, S. M. Zhang and Y. Deng, J. Mater. Chem. A, 2016, 4, 3554-3559.
74. M. Mitra, C. Kulsi, K. Kargupta, S. Ganguly and D. Banerjee, J. Appl. Polym. Sci., 2018, 135, 46887.
75. A. Dey, O. P. Bajpai, A. K. Sikder, S. Chattopadhyay and M. A. Shafeeuulla Khan, Renew. Sust. Energ. Rev., 2016, 53, 653-671.
76. N. Nandihalli, C.-J. Liu and T. Mori, Nano Energy, 2020, 78, 105186.
77. K. Yusupov and A. Vomiero, Adv. Funct. Mater., 2020, 30, 2002015.
78. Y.-H. Lin, T.-C. Lee, Y.-S. Hsiao, W.-K. Lin, W.-T. Whang and C.-H. Chen, ACS Appl. Mater. Interfaces, 2018, 10, 4946-4952.
79. D. Li, C. Luo, Y. Chen, D. Feng, Y. Gong, C. Pan and J. He, ACS Appl. Energy Mater., 2019, 2, 2427-2434.
80. R. Niu, C. Pan, Z. Chen, L. Wang and L. Wang, Chem. Eng. J., 2020, 381, 122650.
81. D. Kim, Y. Park, D. Ju, G. Lee, W. Kwon and K. Cho, Chem. Mat., 2021, 33, 4853-4862.
82. S. Wei, Y. Zhang, H. Lv, L. Deng and G. Chen, Chem. Eng. J., 2022, 428, 131137.
83. L. Wang, H. Bi, Q. Yao, D. Ren, S. Qu, F. Huang and L. Chen, Compos. Sci. Technol., 2017, 150, 135-140.
84. N. Yang, X. Chen, T. Ren, P. Zhang and D. Yang, Sens. Actuator B-Chem., 2015, 207, 690-715.
85. J.-H. Hsu and C. Yu, Nano Energy, 2020, 67, 104282.
86. Y. Zheng, H. Zeng, Q. Zhu and J. Xu, J. Mater. Chem. C, 2018, 6, 8858-8873.
87. W. Lee, Y. H. Kang, J. Y. Lee, K.-S. Jang and S. Y. Cho, Mater. Today Commun., 2017, 10, 41-45.
88. C. Yu, K. Choi, L. Yin and J. C. Grunlan, ACS Nano, 2011, 5, 7885-7892.
89. Z. Liu, J. Sun, H. Song, Y. Pan, Y. Song, Y. Zhu, Y. Yao, F. Huang and C. Zuo, RSC Adv., 2021, 11, 17704-17709.
90. P. Li, Y. Zhao, H. Li, S. Liu, Y. Liang, X. Cheng and C. He, Compos. Sci. Technol., 2020, 189, 108023.
91. J. Wang, K. Cai, S. Shen and J. Yin, Synth. Met., 2014, 195, 132-136.
92. W. Lee, C. T. Hong, O. H. Kwon, Y. Yoo, Y. H. Kang, J. Y. Lee, S. Y. Cho and K.-S. Jang, ACS Appl. Mater. Interfaces, 2015, 7, 6550-6556.
93. M. Tonga, L. Wei, E. Wilusz, L. Korugic-Karasz, F. E. Karasz and P. M. Lahti, Synth. Met., 2018, 239, 51-58.
94. C. T. Hong, W. Lee, Y. H. Kang, Y. Yoo, J. Ryu, S. Y. Cho and K.-S. Jang, J. Mater. Chem. A, 2015, 3, 12314-12319.
95. Y. H. Kang, U.-H. Lee, I. H. Jung, S. C. Yoon and S. Y. Cho, ACS Appl. Electron. Mater., 2019, 1, 1282-1289.
96. S. Qu, M. Wang, Y. Chen, Q. Yao and L. Chen, RSC Adv., 2018, 8, 33855-33863.
97. Y. Du, S. Z. Shen, W. D. Yang, S. Chen, Z. Qin, K. F. Cai and P. S. Casey, J. Electron. Mater., 2012, 41, 1436-1441.
98. M. T. Z. Myint, T. Nishikawa, H. Inoue, K. Omoto, A. K. K. Kyaw and Y. Hayashi, Org. Electron., 2021, 90, 106056.
99. Y. Liu, M. Nitschke, L. Stepien, V. Khavrus, V. Bezugly and G. Cuniberti, ACS Appl. Mater. Interfaces, 2019, 11, 21807-21814.
100. J. U. Ha, J. Cho, S. Yoon, M. S. Jang, S. Z. Hassan, M. G. Kang and D. S. Chung, Nanotechnology, 2019, 30, 14LT01.
101. J. H. Lehman, M. Terrones, E. Mansfield, K. E. Hurst and V. Meunier, Carbon, 2011, 49, 2581-2602.
102. H. A. Badehian and K. Gharbavi, Mol. Simul., 2018, 44, 590-598.
103. V. N. Popov, Mater. Sci. Eng., 2004, 43, 61-102.
104. D. Kim, Y. Kim, K. Choi, J. C. Grunlan and C. Yu, ACS Nano, 2010, 4, 513-523.
105. F. Abdallah, L. Ciammaruchi, A. Jiménez-Arguijo, E.-S. M. Duraia, H. S. Ragab, B. Dörling and M. Campoy-Quiles, Adv. Mater. Technol., 2020, 5, 2000256.
106. J. Li, A. B. Huckleby and M. Zhang, J. Materiomics, 2021, 7, 51-58.
107. M. Culebras, C. Cho, M. Krecker, R. Smith, Y. Song, C. M. Gómez, A. Cantarero and J. C. Grunlan, ACS Appl. Mater. Interfaces, 2017, 9, 6306-6313.
108. M. Aghelinejad and S. N. Leung, Journal, 2018, 11.
109. E. M. Pérez and N. Martín, Chem. Soc. Rev., 2015, 44, 6425-6433.
110. A. N. Sokolov, T. Friščić and L. R. MacGillivray, Journal of the American Chemical Society, 2006, 128, 2806-2807.
111. T. Chen, M. Li and J. Liu, Cryst. Growth Des., 2018, 18, 2765-2783.
112. G. H. Kim, D. H. Hwang and S. I. Woo, Phys. Chem. Chem. Phys., 2012, 14, 3530-3536.
113. Y. Huang, J. Liang, C. Wang, S. Yin, W. Fu, H. Zhu and C. Wan, Chem. Soc. Rev., 2020, 49, 6866-6883.
114. S. A. Hashemi, S. Ramakrishna and A. G. Aberle, Energy Environ. Sci., 2020, 13, 685-743.
115. X. Guan, B. Xu and J. Gong, Nano Energy, 2020, 70, 104516.
116. Y. Wang, L. Yang, X.-L. Shi, X. Shi, L. Chen, M. S. Dargusch, J. Zou and Z.-G. Chen, Adv. Mater., 2019, 31, 1807916.
117. J. Ding, W. Zhao, W. Jin, C.-a. Di and D. Zhu, Adv. Funct. Mater., 2021, 31, 2010695.
118. L. Deng, Y. Liu, Y. Zhang, S. Wang and P. Gao, Adv. Funct. Mater., 2023, 33, 2210770.
119. M. Massetti, F. Jiao, A. J. Ferguson, D. Zhao, K. Wijeratne, A. Würger, J. L. Blackburn, X. Crispin and S. Fabiano, Chem. Rev., 2021, 121, 12465-12547.
120. Y. Bao, Y. Sun, F. Jiao and W. Hu, Adv. Electron. Mater., 2023, 9, 2201310.
121. B. Jiang, Y. Yu, J. Cui, X. Liu, L. Xie, J. Liao, Q. Zhang, Y. Huang, S. Ning, B. Jia, B. Zhu, S. Bai, L. Chen, S. J. Pennycook and J. He, Science, 2021, 371, 830-834.
122. V. Raja, Z. Hu and G. Chen, Compos. Commun., 2021, 27, 100886.
123. H. Zhu, T. Zhao, B. Zhang, Z. An, S. Mao, G. Wang, X. Han, X. Lu, J. Zhang and X. Zhou, Adv. Energy Mater., 2021, 11, 2003304.
124. H. Wang and C. Yu, Joule, 2019, 3, 53-80.
125. F. Zhang and C.-a. Di, Chem. Mat., 2020, 32, 2688-2702.
126. Y. Jia, Q. Jiang, H. Sun, P. Liu, D. Hu, Y. Pei, W. Liu, X. Crispin, S. Fabiano, Y. Ma and Y. Cao, Adv. Mater., 2021, 33, 2102990.
127. Y. Hao, X. He, L. Wang, X. Qin, G. Chen and J. Yu, Adv. Funct. Mater., 2022, 32, 2109790.
128. J. Wang, L. Liu, F. Wu, Z. Liu, Z. Fan, L. Chen and Y. Chen, ChemSusChem, 2022, 15, e202102420.
129. D. Zhou, H. Zhang, H. Zheng, Z. Xu, H. Xu, H. Guo, P. Li, Y. Tong, B. Hu and L. Chen, Small, 2022, 18, 2200679.
130. I. Vijitha, N. Jacob, N. Raveendran, C. Vijayakumar and B. Deb, Mater. Today Energy, 2023, 32, 101233.
131. J. Choi, Y. Jung, S. J. Yang, J. Y. Oh, J. Oh, K. Jo, J. G. Son, S. E. Moon, C. R. Park and H. Kim, ACS Nano, 2017, 11, 7608-7614.
132. Y. Zhang, Q. Zhang and G. Chen, Carbon Energy, 2020, 2, 408-436.
133. N. Bisht, P. More, P. K. Khanna, R. Abolhassani, Y. K. Mishra and M. Madsen, Materials Advances, 2021, 2, 1927-1956.
134. Y. Liu, D. R. Villalva, A. Sharma, M. A. Haque and D. Baran, ACS Appl. Mater. Interfaces, 2021, 13, 411-418.
135. Y. Nonoguchi, Carbon, 2021, 176, 657.
136. G. Prunet, F. Pawula, G. Fleury, E. Cloutet, A. J. Robinson, G. Hadziioannou and A. Pakdel, Mater. Today Phys., 2021, 18, 100402.
137. Y. Wang, K. Li, J. Wang, X. Dai, X. Sun, D. Chong, J. Yan, L. Zhang and H. Wang, J. Mater. Chem. A, 2022, 10, 25740-25751.
138. M.-T. Lau, Z. Li and W.-Y. Wong, Macromolecular Chemistry and Physics, 2023, 224, 2200419.
139. J. Liang, R. Cui, X. Zhang, K. Koumoto and C. Wan, Adv. Funct. Mater., 2023, 33, 2208813.
140. Z. Fan and J. Ouyang, Adv. Electron. Mater., 2019, 5, 1800769.
141. L. Wang, J. Zhang, Y. Guo, X. Chen, X. Jin, Q. Yang, K. Zhang, S. Wang and Y. Qiu, Carbon, 2019, 148, 290-296.
142. H. Zhou, M. H. Chua, Q. Zhu and J. Xu, Compos. Commun., 2021, 27, 100877.
143. L. Zhang, B. Xia, X.-L. Shi, W.-D. Liu, Y. Yang, X. Hou, X. Ye, G. Suo and Z.-G. Chen, Carbon, 2022, 196, 718-726.
144. J. Chen, L. Wang, X. Gui, Z. Lin, X. Ke, F. Hao, Y. Li, Y. Jiang, Y. Wu, X. Shi and L. Chen, Carbon, 2017, 114, 1-7.
145. L. Feng, R. Wu, C. Liu, J. Lan, Y.-H. Lin and X. Yang, ACS Appl. Energy Mater., 2021, 4, 4081-4089.
146. H. Li, Y. Liang, Y. Liu, S. Liu, P. Li and C. He, Compos. Sci. Technol., 2021, 210, 108797.
147. S. Wang, F. Liu, C. Gao, T. Wan, L. Wang, L. Wang and L. Wang, Chem. Eng. J., 2019, 370, 322-329.
148. P.-S. Lin, S. Inagaki, J.-H. Liu, M.-C. Chen, T. Higashihara and C.-L. Liu, Chem. Eng. J., 2023, 458, 141366.
149. L. Wang, C. Pan, Z. Chen, W. Zhou, C. Gao and L. Wang, ACS Appl. Energy Mater., 2018, 1, 5075-5082.
150. T. Wan, X. Yin, C. Pan, D. Liu, X. Zhou, C. Gao, W.-Y. Wong and L. Wang, Polymers, 2019, 11, 593.
151. Z. Chen, T. Liu, C. Pan and G. Tan, Polymers, 2020, 12, 848.
152. J. Jung, E. H. Suh, Y. J. Jeong, H. S. Yang, T. Lee and J. Jang, ACS Appl. Mater. Interfaces, 2019, 11, 47330-47339.
153. X. Zhou, C. Pan, A. Liang, L. Wang and W.-Y. Wong, Compos. Sci. Technol., 2017, 145, 40-45.
154. Z. Chen, M. Lai, L. Cai, W. Zhou, D. Xie, C. Pan and Y. Qiu, Polymers, 2020, 12, 1447.
155. H. Zhou, X. Li, C. Gao, F. Yang, X. Ye, Y. Liu and L. Wang, Compos. Sci. Technol., 2021, 201, 108518.
156. H. Huang, Z. Chen, X. Chen, J. Jin, S. Huang, D. Wang, L. Wang and D. Liu, Adv. Mater. Interfaces, 2022, 9, 2201193.
157. S. H. Kim, S. Jeong, D. Kim, C. Y. Son and K. Cho, Adv. Electron. Mater., 2023, 9, 2201293.
158. H. J. Lee, G. Anoop, H. J. Lee, C. Kim, J.-W. Park, J. Choi, H. Kim, Y.-J. Kim, E. Lee, S.-G. Lee, Y.-M. Kim, J.-H. Lee and J. Y. Jo, Energy Environ. Sci., 2016, 9, 2806-2811.
159. Y. Wang, X. Yang, A. G. Pandolfo, J. Ding and D. Li, Adv. Energy Mater., 2016, 6, 1600185.
160. H. M. Lee, G. Anoop, H. J. Lee, W. S. Kim and J. Y. Jo, RSC Adv., 2019, 9, 11595-11601.
161. W. S. Kim, G. Anoop, I.-S. Jeong, H. J. Lee, H. B. Kim, S. H. Kim, G. W. Goo, H. Lee, H. J. Lee, C. Kim, J.-H. Lee, B. S. Mun, J.-W. Park, E. Lee and J. Y. Jo, Nano Energy, 2020, 67, 104207.
162. W. D. Liu, Y. Yu, M. Dargusch, Q. F. Liu and Z. G. Chen, RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2021, 141, 110800.
163. Z. Lin, H. Dang, C. Zhao, Y. Du, C. Chi, W. Ma, Y. Li and X. Zhang, Nanoscale, 2022, 14, 9419-9430.
164. S. Liu, H. Li, X. Fan and C. He, Compos. Sci. Technol., 2022, 221, 109347.
165. Y.-C. Lin, Y.-W. Huang, C.-C. Hung, Y.-C. Chiang, C.-K. Chen, L.-C. Hsu, C.-C. Chueh and W.-C. Chen, ACS Appl. Mater. Interfaces, 2020, 12, 50648-50659.
166. Q. Liu, S. E. Bottle and P. Sonar, Adv. Mater., 2020, 32, 1903882.
167. T. Lei, Y.-C. Lai, G. Hong, H. Wang, P. Hayoz, R. T. Weitz, C. Chen, H. Dai and Z. Bao, Small, 2015, 11, 2946-2954.
168. H. A. Zeinabad, A. Zarrabian, A. A. Saboury, A. M. Alizadeh and M. Falahati, Sci Rep, 2016, 6, 26508.
169. Z. Spitalsky, D. Tasis, K. Papagelis and C. Galiotis, Prog. Polym. Sci., 2010, 35, 357-401.
170. S. Wood, J. Wade, M. Shahid, E. Collado-Fregoso, D. D. C. Bradley, J. R. Durrant, M. Heeney and J.-S. Kim, Energy Environ. Sci., 2015, 8, 3222-3232.
171. M. He, J. Ge, Z. Q. Lin, X. H. Feng, X. W. Wang, H. B. Lu, Y. L. Yang and F. Qiu, Energy Environ. Sci., 2012, 5, 8351-8358.
172. M. N. Hasan, M. Nafea, N. Nayan and M. S. Mohamed Ali, Adv. Mater. Technol., 2022, 7, 2101203.
173. Y. Liu, X. Wang, S. Hou, Z. Wu, J. Wang, J. Mao, Q. Zhang, Z. Liu and F. Cao, Nat. Commun., 2023, 14, 3058.
174. D. Zhang, Y. Wang and Y. Yang, Small, 2019, 15, 1805241.
175. J. Xia, C. Liang, H. Gu, S. Mei, S. Li, N. Zhang, S. Chen, Y. Cai and G. Xing, Energy Environ. Mater., 2023, 6, e12296.
176. F. J. DiSalvo, Science, 1999, 285, 703-706.
177. I. H. Jung, C. T. Hong, U.-H. Lee, Y. H. Kang, K.-S. Jang and S. Y. Cho, Sci Rep, 2017, 7, 44704.
178. J. Tang, J. Ji, R. Chen, Y. Yan, Y. Zhao and Z. Liang, Adv. Sci., 2022, 9, 2103646.
179. J. Ding, Z. Liu, W. Zhao, W. Jin, L. Xiang, Z. Wang, Y. Zeng, Y. Zou, F. Zhang, Y. Yi, Y. Diao, C. R. McNeill, C.-a. Di, D. Zhang and D. Zhu, Angew. Chem. Int. Ed., 2019, 58, 18994-18999.
180. D. Liu, J. Mun, G. Chen, N. J. Schuster, W. Wang, Y. Zheng, S. Nikzad, J.-C. Lai, Y. Wu, D. Zhong, Y. Lin, Y. Lei, Y. Chen, S. Gam, J. W. Chung, Y. Yun, J. B. H. Tok and Z. Bao, J. Am. Chem. Soc., 2021, 143, 11679-11689.
181. B. Park, H. Kang, Y. H. Ha, J. Kim, J.-H. Lee, K. Yu, S. Kwon, S.-Y. Jang, S. Kim, S. Jeong, S. Hong, S. Byun, S.-K. Kwon, Y.-H. Kim and K. Lee, Adv. Sci., 2021, 8, 2100332.
182. Y. Zheng, S. Zhang, J. B. H. Tok and Z. Bao, J. Am. Chem. Soc., 2022, 144, 4699-4715.
183. Y. Lei, P. Deng, J. Li, M. Lin, F. Zhu, T.-W. Ng, C.-S. Lee and B. S. Ong, Sci Rep, 2016, 6, 24476.
184. J. Xu, S. Wang, G. N. Wang, C. Zhu, S. Luo, L. Jin, X. Gu, S. Chen, V. R. Feig, J. W. To, S. Rondeau-Gagné, J. Park, B. C. Schroeder, C. Lu, J. Y. Oh, Y. Wang, Y. H. Kim, H. Yan, R. Sinclair, D. Zhou, G. Xue, B. Murmann, C. Linder, W. Cai, J. B. Tok, J. W. Chung and Z. Bao, Science, 2017, 355, 59-64.
185. J. Wang, Y. Wang, Q. Li, Z. Li, K. Li and H. Wang, CCS Chem., 2021, 3, 2482-2493.
186. J. Xu, H.-C. Wu, J. Mun, R. Ning, W. Wang, G.-J. N. Wang, S. Nikzad, H. Yan, X. Gu, S. Luo, D. Zhou, J. B. H. Tok and Z. Bao, Adv. Mater., 2022, 34, 2104747.
187. A. Furlani, M. V. Russo, G. Polzonetti, K. Martin, H. H. Wang and J. R. Ferraro, Appl. Spectrosc., 1990, 44, 331-334.
188. M. V. Russo, G. Polzonetti and A. Furlani, Synth. Met., 1991, 39, 291-301.
189. Y. H. Kang, S.-J. Ko, M.-H. Lee, Y. K. Lee, B. J. Kim and S. Y. Cho, Nano Energy, 2021, 82, 105681.
190. C.-H. Tsai, Y.-C. Lin, W.-N. Wu, S.-H. Tung, W.-C. Chen and C.-L. Liu, J. Mater. Chem. C, 2023, 11, 6874-6883.
191. K.-H. Jeon and J.-W. Park, Macromolecules, 2022, 55, 8311-8320.
192. D. Khim, A. Luzio, G. E. Bonacchini, G. Pace, M.-J. Lee, Y.-Y. Noh and M. Caironi, Adv. Mater., 2018, 30, 1705463.
193. B. H. Lee, B. B. Y. Hsu, S. N. Patel, J. Labram, C. Luo, G. C. Bazan and A. J. Heeger, Nano Lett., 2016, 16, 314-319.
194. C. Luo, A. K. K. Kyaw, L. A. Perez, S. Patel, M. Wang, B. Grimm, G. C. Bazan, E. J. Kramer and A. J. Heeger, Nano Lett., 2014, 14, 2764-2771.
195. Y. J. Jeong, J. Jung, E. H. Suh, D.-J. Yun, J. G. Oh and J. Jang, Adv. Funct. Mater., 2020, 30, 1905809.
196. G. Zhang, M. McBride, N. Persson, S. Lee, T. J. Dunn, M. F. Toney, Z. Yuan, Y.-H. Kwon, P.-H. Chu, B. Risteen and E. Reichmanis, Chem. Mat., 2017, 29, 7645-7652.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90026-
dc.description.abstract對可再生能源日益增長的需求使高分子熱電材料受到巨大關注,這種材料以其易於製造、靈活性、低毒性以及在各種工業應用中的潛力而聞名。提升高分子材料的功率因數 (PF) 主要涉及傳統的摻雜和高分子奈米複合材料的開發。
在第一項研究中,我研究了由隨機供體-受體共軛共聚物和單壁奈米碳管 (SWCNTs) 組成的奈米複合材料的熱電性能。通過調控共軛共聚物 二酮吡咯吡咯羅 (DPP) 和異靛藍 (IID) 的組成比例,設計出一系列的隨機共軛共聚物 (DPP0,DPP5,DPP10,DPP30,DPP50,DPP90,DPP95和DPP100)。主要目標是為了改善SWCNTs在溶液態的分散性,使其形成較小的管束,從而提高共聚物/SWCNT奈米複合材料的熱電性能。良好的分散性促進了導電網絡的形成,這對優化熱電性能至關重要。我對薄膜表面形貌的研究表明,DPP95/SWCNT奈米複合材料在兩個材料間展現出最強的交互作用力,導致最高的功率因數值為711.1 μW m–1 K–2。這種卓越的性能源自於高電導率 (σ) 1690 S cm−1和塞貝克係數 (S) 64.8 μV K–1。此外,我們成功利用DPP95/SWCNT膜組裝了熱電發電元件 (TEGs),在溫差為29.3 K時達到最大功率輸出20.4 μW m–2。這些發現突顯了調控隨機共軛共聚物的組成和混合SWCNTs的奈米複合材應用於穿戴式熱電原件上的潛力。
在第二項研究中,我開發兼具柔軟性和可拉伸性的氯化鐵摻雜隨機共軛共聚物的熱電性能。通過調整隨機共軛共聚物的組成,具體為diindenothieno[2,3-b]thiophene (DITT) 和二酮吡咯吡咯羅的比例,合成了一系列隨機共軛共聚物 (PDPP, DITT10, DITT20, DITT30, DITT50, DITT80, 和DITT100)。目標是在保持其電能的同時提高摻雜薄膜的拉伸性。通過使用低入射角寬角X射線散射 (GIWAXS) 分析,我們觀察到,具有高結晶度的共軛共聚物薄膜在摻雜過程前後都呈現出邊向取向。在測試樣品中,DITT30展現出最高的拉伸性能,能夠承受超過100%的應變,同時還能維持一定的電導率 (σ)。這個結果表明了DITT基團被引入PDPP基質有助於提高薄膜的拉伸性能。此外,摻雜的DITT30膜呈現出良好的穩定性,即使在經過200個拉伸/釋放周期後,仍能保持其電性。此研究展現出一種製作出色熱電性能的拉伸共聚物薄膜的創新方法,使其可以在高應變下運作。這個發現對於開發具有拉伸性能的熱電元件有巨大的幫助,為穿戴式裝置和能源回收提供良好的願景。
zh_TW
dc.description.abstractThe increasing demand for renewable energy has sparked significant interest in polymer-based thermoelectric materials, known for their ease of fabrication, flexibility, low toxicity, and potential in various industrial applications. Efforts to enhance the power factor (PF) values of polymers mainly involve traditional doping and the development of polymer-based nanocomposites.
In the first study, we investigated the thermoelectric properties of nanocomposites comprising donor-acceptor random conjugated copolymers and single-walled carbon nanotubes (SWCNTs). By manipulating the composition of the conjugated polymers, specifically the ratio of diketopyrrolopyrrole (DPP) to isoindigo (IID), we designed a series of random conjugated copolymers (DPP0, DPP5, DPP10, DPP30, DPP50, DPP90, DPP95, and DPP100). The main objective was to improve the dispersion of SWCNTs into smaller bundles, leading to enhanced thermoelectric properties of the polymer/SWCNT nanocomposite. This dispersion strategy facilitated the formation of an interconnected conducting network, crucial for optimizing the thermoelectric performance. Our systematic investigation of the morphologies revealed that the DPP95/SWCNT nanocomposite exhibited the strongest interaction, resulting in the highest PF value of 711.1 μW m–1 K–2. This superior performance was derived from its high electrical conductivity (σ)of 1690 S cm−1 and Seebeck coefficient (S) of 64.8 μV K–1. Moreover, we successfully assembled prototype flexible thermoelectric generators (TEGs) using the DPP95/SWCNT film, achieving a maximum power output of 20.4 μW m–2 at a temperature difference of 29.3 K. These findings highlight the potential of manipulating the composition of random conjugated copolymers and incorporating SWCNTs to efficiently harvest low-grade waste heat in wearable thermoelectric devices.
In the second study, our focus shifted to the development of thermoelectric properties in flexible and stretchable FeCl3-doped random conjugated copolymers. By adjusting the composition of the random conjugated polymers, particularly the ratio of diindenothieno[2,3-b]thiophene (DITT) to DPP, we synthesized a series of random conjugated copolymers (PDPP, DITT10, DITT20, DITT30, DITT50, DITT80, and DITT100). Our goal was to enhance the stretchability of the doped films while maintaining their electrical properties. Through Grazing-Incidence Wide Angle X-ray Scattering (GIWAXS) analysis, we observed that the spin-coated films with high crystallinity exhibited an edge-on orientation before and after the sequential doping process Among the tested samples, DITT30 demonstrated the highest endurance, withstanding strains exceeding 100% while maintaining decent σ. The incorporation of the DITT unit into the PDPP matrix contributed to the film's exceptional mechanical stretchability. Moreover, the doped DITT30 film exhibited remarkable stability, preserving its electrical properties even after 200 stretch/release cycles. Overall, our results present an innovative approach to fabricating stretchable polymeric thin films that maintain outstanding thermoelectric performance even under high strain levels. These findings hold great potential for the development of stretchable thermoelectric devices, opening up applications in wearable electronics and energy harvesting.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T17:06:26Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-22T17:06:26Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
ABSTRACT iii
中文摘要 vi
Figure Captions xiii
Table Captions xviii
Chapter 1. Introduction 1
1.1 Background 1
1.2 Thermoelectric parameters 3
1.3 Donor-acceptor copolymers as efficient thermoelectric materials 4
1.3.1 Benzothiadiazole(BT)-based copolymers 4
1.3.2 Pyridinethiadiazole(PT)-based copolymers 5
1.3.3 Benzo [1,2-c;4,5-c’]bisthiadiazole(BBT)-based copolymers 6
1.3.4 Diketopyrrolopyrrole (DPP)-based copolymers 7
1.3.5 Doping method 8
1.4 Introduction of Polymer/Carbon TE Nanocomposites 12
1.5 Carbon Nanomaterials 14
1.5.1 Carbon Nanotubes 14
1.6 Synthetic Strategies for Polymer/Carbon TE Nanocomposites 16
1.6.1 Mechanical mixing 16
1.6.2 Direct immersion 17
1.6.3 Layer-by-layer assembly 18
1.6.4 Single-Phase In Situ Polymerization with Oxidants 18
1.6.5 Electrochemical In Situ Polymerization 19
1.7 Interactions between Polymer Chains and Carbon Nanomaterials 19
1.7.1 π-π Coupling 20
1.7.2 Electrostatic Interaction 21
1.7.3 Covalent Bonds 21
1.7.4 Van der Waals Interaction 22
Chapter 2. Tunable Thermoelectric Performance of the Nanocomposites Formed by Diketopyrrolopyrrole/Isoindigo-Based Donor-Acceptor Random Conjugated Copolymers and Carbon Nanotubes 23
2.1 Research background 23
2.2 Experimental section 30
2.2.1 Materials 30
2.2.2 Preparation of random conjugated copolymers/SWCNT nanocomposite solution. 30
2.2.3 Fabrication and measurement of p-type nanocomposite thermoelectrics. 30
2.2.4 Fabrication and measurement of flexible nanocomposite thermoelectric generator 31
2.3 Result and Discussion 32
2.3.1 Polymer characterization 32
2.3.2 Ultraviolet-Visible-Near Infrared Spectra (UV-vis-NIR Spectra) 34
2.3.3 Photoluminescence (PL) 36
2.3.4 Raman Spectra 38
2.3.5 Field-Emission Scanning Electron Microscope (FESEM) 40
2.3.6 Atomic Force Microscope (AFM) 42
2.3.7 Transmission electron microscopy (TEM) 43
2.3.8 Grazing-Incidence Wide Angle X-ray Scattering (GIWAXS) 45
2.3.9 Thermoelectric Measurements 46
2.3.10 Flexible DPP95/SWCNT nanocomposite thermoelectric generator 49
2.4 Summary 52
Chapter 3. Advancing Electrical Conductivity and Mechanical Properties of Stretchable Doped Semiconducting Polymer 54
3.1 Research Background 54
3.2 Experiential section 57
3.2.1 Materials 57
3.2.2 Device Fabrication 58
3.2.3 Thermoelectric Properties Measurement 59
3.2.4 Stretching Properties Measurement 59
3.3 Results and Discussion 59
3.3.1 Ultraviolet-Visible-Near Infrared Spectra (UV-vis-NIR Spectra) 59
3.3.2 X-ray Photoemission Spectroscopy (XPS) 61
3.3.3 Atomic Force Microscope (AFM) 63
3.3.4 Grazing-Incidence Wide Angle X-ray Scattering (GIWAXS) 66
3.3.5 Thermoelectric Measurement 71
3.3.6 Derjanguin-Muller-Toporov (DMT) contact mechanic model 77
3.3.7 Optical microscope (OM) 79
3.3.8 Mechanical Properties and TE Properties of Doped Films under Stretching 80
3.4 Summary 85
Chapter 4. Conclusion 86
References 88
-
dc.language.isoen-
dc.subject有機熱電zh_TW
dc.subject浸沒摻雜zh_TW
dc.subject穿戴式裝置zh_TW
dc.subject奈米複合材料zh_TW
dc.subject導電高分子zh_TW
dc.subject奈米碳管zh_TW
dc.subject共軛半導體高分子zh_TW
dc.subjectdonor-acceptor conjugated polymeren
dc.subjectorganic thermoelectricen
dc.subjectsequential dopingen
dc.subjectwearable thermoelectric generatoren
dc.subjectconductive polymeren
dc.subjectnanocompositeen
dc.subjectcarbon nanotubesen
dc.title摻雜高分子與奈米複合熱電材料: 分析、穿戴式元件應用zh_TW
dc.titleDoped Polymer & Nanocomposite Thermoelectric Materials: Characterization & Wearable Device Applicationen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee鄭彥如;童世煌zh_TW
dc.contributor.oralexamcommitteeYen-Ju Cheng;Shih-Huang Tungen
dc.subject.keyword有機熱電,共軛半導體高分子,奈米碳管,導電高分子,奈米複合材料,穿戴式裝置,浸沒摻雜,zh_TW
dc.subject.keywordorganic thermoelectric,donor-acceptor conjugated polymer,carbon nanotubes,conductive polymer,nanocomposite,wearable thermoelectric generator,sequential doping,en
dc.relation.page107-
dc.identifier.doi10.6342/NTU202303450-
dc.rights.note未授權-
dc.date.accepted2023-08-11-
dc.contributor.author-college工學院-
dc.contributor.author-dept材料科學與工程學系-
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
4.52 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved