請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8978
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林宗賢 | |
dc.contributor.author | Yao-Hong Liu | en |
dc.contributor.author | 劉耀鴻 | zh_TW |
dc.date.accessioned | 2021-05-20T20:05:36Z | - |
dc.date.available | 2010-08-19 | |
dc.date.available | 2021-05-20T20:05:36Z | - |
dc.date.copyright | 2009-08-19 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-08-13 | |
dc.identifier.citation | [1] Zarlink Semiconductor, “RF Integrated Circuits for Medical Applications: ZL70081,” http://www.zarlink.com
[2] R. Harrison, P. Watkins, R. Jier, R. Lovejoy, D. Black, R. Normann, F. Solzbacher, “A Low-Power Integrated Circuit for A Wireless 100-electrode Neural Recording System,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 454-455, Feb. 2006. [3] M. Chae, W. Liu, Z. Yang, T. Chen, J. Kim, M. Sivaprakasan, M. Yuce, “A 128-channel 6mW Wireless Neural Recording IC With On-the-fly Spike Sorting and UWB Transmitter,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 146-603, Feb. 2008. [4] J. Aziz, R. Genov, M. Derchansky, B. Bardakjian, and P. Carlen, “256-Channel Neural Recording Microsystem with On-chip 3D Electrodes,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 160-161, Feb. 2007. [5] E. Matei, E. Lee, J. Gord, P. Nercessian, P. Hess, H. Stover, T. Li, J. Wolfe, “A Biomedical Implantable FES Battery-powered Micro-stimulator,” in Proc. IEEE Custom Integrated Circuits Conference, pp. 317-324, Sep. 2008. [6] J. Ryckaert, P. D. Doncker, R. Meys, A. L. Hoye, S. Donnay, “Channel Model for Wireless Communication Around Human Body”, IEE Electronics Letters, vol. 40, pp. 543-544, Apr. 2004. [7] T. Akin, K. Najafi, R.M. Bradley, “A Wireless Implantable Multichannel Digital Neural Recording System for A Micromachined Sieve Electrode,” IEEE J. Solid-State Circuits, vol. 33, pp. 109-118, Jan. 1998. [8] FCC Rules and Regulations, “MICS Band Plan,” Part 95, Jan. 2003. [9] L. E. Larson, RF and Microwave Circuit Design for Wireless Communication. Boston: Artech House, 1996. [10] M. H. Perrott, T. L. Tewksbury III, and C. G. Sodini, “A 27-mW CMOS Fractional-N Synthesizer Using Digital Compensation for 2.5-Mb/s GFSK Modulation,” IEEE J. Solid-State Circuits, vol. 32, pp. 2048-2060, Dec. 1997. [11] B. W. Cook, A. D. Berny, A. Molnar, S. Lanzisera, and K. S. J. Pister, “An Ultra-Low Power 2.4GHz RF Transceiver for Wireless Sensor Network in 0.13 mm CMOS with 400mV Supply and Integrated Passive RX Front-End,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 370-371, Feb. 2006. [12] C. Cojocaru, T. Pamir, F. Balteanu, A. Namdar, D. Payer, I. Gheorghe, T. Lipan, K. Sheikh, J. Pingot, H. Paananen, M. Littow, M. Cloutier, E. Macrobbie, “A 43mW Bluetooth Transceiver with -91dBm Sensitivity” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 90-91, Feb. 2003. [13] B. Sklar, Digital Communications. Upper Saddle River, N.J.: Prentice Hall, 2001. [14] T. Kimura, H. Yano, Y. Aoki, N. Yoshida, J. Noda, T. Sukenari, Y. Konishi, T. Nakao, A. Mitsuhasi, D. Taguchi, “A Wireless Dual-Link System for Sensor Network Applications,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 534-535, Feb. 2008. [15] D. C. Daly, P. P. Mercier, M. Bhardwaj, A. L. Stone, J. Voldman, R. B. Levine, J. G. Hildebrand, A. P. Chandrakasan, “A Pulsed UWB Receiver SoC for Insect Motion Control,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 200-201, Feb. 2009. [16] E. H. Armstrong, “Some Recent Development of Regenerative Circuits,” Pro. IRE, vol. 10, pp. 244-260, Aug. 1922. [17] A. Vouilloz, M. Declercq, and C. Dehollain, “A Low-power CMOS Super-regenerative Receiver at 1 GHz,” IEEE J. Solid-State Circuits, vol. 36, pp. 440-451, March 2001. [18] B. Otis, Y. H. Chee, J. Rabaey, “A 400mW-RX, 1.6mW-TX Super-Regenrative Transceiver for Wireless Sensor Networks,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 396-397, Feb. 2005. [19] J.–Y. Chen, M. Flynn, J. P. Hayes, “A Fully Integrated Auto-Calibrated Super-Regenerative Receiver,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 376-377, Feb. 2006. [20] J. L. Bohorquez, J. L. Dawson, A. P. Chandrakasan, “A 350mW CMOS MSK Transmitter and 400mW OOK Super-Regenerative Receiver for Medical Implant Communications,” in Proc. Symp. VLSI Circuits, pp. 32-33, Jun., 2008. [21] D. Shi, N. Behdad, J.-Y. Chen, M. P. Flynn, “A 5GHz Fully Integrated Super-Regenerative Receiver with On-Chip Slot Antenna in 0.13mm CMOS,” in Proc. Symp. VLSI Circuits, pp. 34-35, Jun., 2008. [22] Y.-H. Liu, H.-H. Liu, and T.-H. Lin, “A Super-Regenerative ASK Receiver with DS Pulse-width Digitizer and SAR-based Fast Frequency Calibration for MICS Applications,” in Proc. Symp. VLSI Circuits, pp. 38-39, Jun., 2009. [23] F. Colodro, A. Torralba, and M. Languna, “Continuous-Time Sigma-Delta Modulator with an Embedded Pulsewidth Modulation,” IEEE Tran. Circuits Syst. I, vol. 55, pp. 775-785, Apr. 2008. [24] R. Schreier and G. C. Temes, Understanding Delta-Sigma Data Converters. Chichester: Wiley, 2005. [25] V. Dhanasekaran, M. Gambhir, M. M. Elsayed, E. Sanchez-Sinencio, J. Silva-Martinez, C. Mishra, L. Chen, E. Pankratz, “A 20MHz BW 68dB DR CT DS ADC Based on a Multi-Bit Time-Domain Quantizer and Feedback Element,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 174-175, Feb. 2009. [26] R. B. Staszewski, C.-M. Hung, K. Maggio, J. Wallberg, D. Leipold, P. T. Balsara, “All-Digital Phase-Domain TX Frequency Synthesizer for Bluetooth Radios in 0.13mm CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 275-276, Feb. 2004. [27] M. H. Perrott, M. D. Trott, and C. G. Sodini, “A Modeling Approach for DS Fractional-N Frequency Synthesizers Allowing Straightforward Noise Analysis,” IEEE J. Solid-State Circuits, vol. 37, pp. 1028-1038, Aug. 2002. [28] E. Zwan, E. Dijkmans and J. Huijsing, “A 0.2 mW SD Modulator for Speech Coding with 80 dB Dynamic Range,” IEEE J. Solid-State Circuits, vol. 31, pp. 1873-1880, Dec. 1996. [29] R. G. Meyer, “Low-power Monolithic RF Peak Detector Analysis,” IEEE J. Solid-State Circuits, vol. 30, pp. 65-67, Jan. 1995. [30] F. M. Gardner, “Interpolation in Digital Modem - Part I: Fundamental,” IEEE Tran. On Communications, vol. 41, pp. 501-507, Mar. 1993. [31] P. Chen, C.-C. Chen, C.-C. Tsai, W.-F. Lu, “A Time-to-Digital-Converter-Based CMOS Smart Temperature Sensor,” IEEE J. Solid-State Circuits, vol. 40, pp. 1642-1648, Aug. 2005. [32] J. Craninckx and M. S. J. Steyaert, “A 1.75-GHz/3-V Dual-Modulus Divided-by-128/129 Prescaler in 0.7-mm CMOS,” IEEE J. Solid-State Circuits, vol. 31, pp. 890-897, July, 1996. [33] C.-H. Heng and B.-S. Song, “A 1.8-GHz CMOS Fractional-N Frequency Synthesizer with Randomized Multiphase VCO,” IEEE J. Solid-State Circuits, vol. 38, pp. 848-854, Jun., 2003. [34] C.-H. Park, I. Kim, and B. Kim, “A 1.8-GHz Self-Calibrated Phase-Locked Loop with Precise I/Q Matching,” IEEE J. Solid-State Circuits, vol. 31, pp. 777-783, May, 2001. [35] A. M. Fahim and M. I. Elmasry, “A Wideband Sigma-Delta Phase-Locked Loop Modulator for Wireless Applications,” IEEE Tran. Circuits Syst. II, vol. 55, pp. 775-785, Apr. 2008. [36] W. P. Robins, Phase Noise in Signal Sources. London: Peter Peregrinus, 1982. [37] R. B. Staszewski, C.-M. Hung, N. Barton, M.-C. Lee, and D. Leipold, “A Digitally Controlled Oscillator in a 90 nm Digital CMOS Process for Mobile Phones,” IEEE J. Solid-State Circuits, vol. 40, pp. 2203-2211, Nov. 2005. [38] S. Brown and Z. Vranesic, Fundamentals of Digital Logic with VHDL Design. Boston: McGraw-Hill, 2000. [39] N. Panitantum, K. Mayaram, and T. S. Fiez, “A 900-MHz Low-Power Transmitter With Fast Frequency Calibration for Wireless Sensor Networks,” in Proc. IEEE Custom Integrated Circuits Conference, pp. 595-598, Sep. 2008. [40] A. Jerng and C. G. Sodini, “A Wideband DS Digital-RF Modulator for High Data Rate Transmitters,” IEEE J. Solid-State Circuits, vol. 42, pp. 1710 -1722, Aug. 2007. [41] “HP 89440A/HP 89441A Operator’s Guide”, Hewlett-Packard Company, Palo Alto, CA, 1996. [42] Y.-H. Liu and T.-H. Lin, “A 3.5-mW 15-Mbps O-QPSK transmitter for real-time wireless medical imaging applications,” in Proc. IEEE Custom Integrated Circuits Conference, pp. 599-602, Sep. 2008. [43] B. D. Muer, M. S. J. Steyaert, CMOS Fractional-N Synthesizers. Boston: Kluwer Academic, 2003. [44] Q. Gu, RF System Design of Transceiver for Wireless Communications. New York: Springer, 2005. [45] Y. H. Chee, A. M. Niknejad, and J. Rabaey, “A 46% Efficient 0.8dBm Transmitter for Wireless Sensor Networks,” in Proc. Symp. VLSI Circuits, pp. 43 -44, Jun., 2006. [46] A. Molnar, B. Lu, S. Lanzisera, B. W. Cook, and K. S. J. Pister, “An Ultra-low Power 900 MHz RF Transceiver for Wireless Sensor Networks,” in Proc. IEEE Custom Integrated Circuits Conference, pp. 401-404, Sep. 2004. [47] A. C.-W. Wong, D. McDonagh, G. Kathiresan, O. C. Omeni, O. El-Jamaly, T. C.-k. Chan, P. Paddan, A. J. Burdett, “A 1V, Micropower System-on-chip for Vital-sign Monitoring in Wireless Body Sensor Networks,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 138-139, Feb. 2008. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8978 | - |
dc.description.abstract | 在本篇論文中將介紹一個可用於植入式醫療用途之低功率射頻收發器。此收發器操作在400MHz的頻段,且在上傳及下傳的路徑上採用不同的調變方式以及傳輸率來達到最佳化。在下傳路徑上使用一個156kbps的ASK接收器,而在上傳路徑上則使用6Mbps GFSK、17.5Mbps OQPSK以及25Mbps HS-OQPSK三種發射器架構。第一章及第二章將先討論我們預定使用的醫療用途及收發器設計考量。第三章則介紹了常用的低功率收發器架構,包括超再生式接收器以及鎖相迴路式及混波器式直接調變發射器。
第四章首先會介紹用於下傳接收上,採用一個具有”三角積分脈寬數位器”之超再生式ASK接收器。此三角積分脈寬數位器是相當於用於脈寬領域上之三角積分調變器,它可以達到0.23ns的脈寬偵測解析度。整體接收器消耗900uW,在156kbps的接收率時可以達到-78dBm的接收靈敏度。 然後在第五章及第六章將會分別介紹用於上傳發射之FSK/PSK雙模發射器。首先,第五章討論一個可做G/FSK上傳調變之”三角積分相位旋轉器”。經由適當的選取鎖相迴路輸出之多項位訊號,此三角積分相位旋轉器可以等效合成具有高頻率解析度之頻率調變器。此G/FSK發射器消耗9mW且可輸出-11dBm的功率,在最大6Mbps的傳輸率下可達到1.5nJ/bit的能量效率。然而在第六章則介紹一個OQPSK發射器,它可以使用三角積分相位旋轉器中的”相位選擇器”,直接選擇四相位訊號中的其中一相位輸出來達成OQPSK調變。此OQPSK發射器消耗3.5mW,在最大17.5Mbps的傳輸率時此發射器可以達到200pJ/bit的能量效率並可輸出-8dBm的輸出功率。 為了更進一步的改善OQPSK發射器的頻譜效率,第七章提出一個將”內嵌FIR之相位選擇器”來將OQPSK調變做時域半弦濾波,因此可以將OQPSK調變之旁帶能量降低。此發射器架構消耗1.4mW(不含鎖相迴路)且可達到最大25Mbps的傳輸率。最後,第八章將會提供此論文的總結。 | zh_TW |
dc.description.abstract | A low-power radio transceiver designed for implantable medical applications is presented in this dissertation. These transceivers operate at around 400-MHz band and utilize different modulation schemes and data rate between downlink and uplink. A low-data-rate ASK RX is presented for downlink reception; while high-data-rate GFSK, OQPSK and HS-OQPSK TXs are demonstrated for uplink transmission. Chapter 1 and Chapter 2 will firstly discuss the targeted medical applications as well as the design requirements for the medical transceivers.
In Chapter 3, several low-power transceiver architectures are introduced, including a super-regenerative receiver, mixer-based and PLL-base direct-modulation transmitters. Downlink reception adopted a super-regenerative ASK RX with a proposed Delta-Sigma Pulse-Width-Digitizer (DS-PWD) will be presented in Chapter 4. The DS-PWD can be considered as a pulse-width-domain counterpart of a conventional Delta-Sigma modulator which can suppress quantization jitter by 22 dB and achieve a pulse-width detection resolution of 0.23 ns. The whole receiver consumes 900 uW. With a 156-kbps data rate, the RX achieves -78-dBm sensitivity. Chapter 5 and Chapter 6 will then present a MUX-based dual-mode uplink TX. First, a Sigma-Delta Phase Rotator (SD-PR) designed for G/FSK uplink transmission is discussed in Chapter 4. By properly combining the multi-phase signals from the PLL output, the SD-PR can effectively synthesize frequency modulation signals with fine-resolution frequencies. The proposed G/FSK TX consumes 9 mW and delivers -11-dBm output power. With a maximum data rate of 6-Mbps, the G/FSK TX achieves 1.5-nJ/bit energy efficiency. Chapter 6 presents an energy-efficient OQPSK TX which can also be implemented with the SD-PR proposed in Chapter 5, by directly selecting one of the quadrature phases through the Phase MUX. The whole OQPSK TX dissipates 3.5 mW. With a maximum data rate of 17.5 Mbps, the OQPSK TX achieves an energy efficiency of 200 pJ/bit and is capable of delivering an output power up to -8 dBm. In order to further improve the spectral efficiency of previous MUX-based OQPSK transmitter, Chapter 7 proposed a FIR-embedded Phase-MUX which allows to half-sine shape the OQPSK modulation; thus reducing the side-lobe energy of OQPSK modulation. The proposed HS-OQPSK TX (without PLL) consumes 1.4 mW and achieves 25-Mbps data rate. Finally, Chapter 8 will summarize and conclude this dissertation. | en |
dc.description.provenance | Made available in DSpace on 2021-05-20T20:05:36Z (GMT). No. of bitstreams: 1 ntu-98-D93943017-1.pdf: 2671441 bytes, checksum: 50e97598e770065eccb4a6b180281d15 (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | 謝辭 iii
Acknowledgement iv 中文摘要 v Abstract vii Contents ix List of Figures xii List of Tables xv Chapter 1 Introduction 1 1.1 Implantable Bio-Medical Applications 1 1.1.1 Wireless Capsule Endoscope 2 1.1.2 Multi-Channel Neural Recording 2 1.2 Dissertation Organization 3 Chapter 2 Wireless Interface and Design Requirements 5 2.1 Asymmetrical Transceiver Architecture 5 2.2 Data Rate Requirements 6 2.3 Operation Frequency Band for Implantable Transceivers 7 2.4 Modulation Schemes 8 2.5 Link Budget Analysis 9 Chapter 3 Introduction to Low-Power RF Transceiver Architectures 13 3.1 Super-Regenerative Receiver Architecture 13 3.2 Low-Power Direct-Conversion RF Transmitter Architectures 17 3.2.1 Mixer-Based Direct-Conversion Transmitters 17 3.2.2 PLL-Based Direct-Conversion Transmitters 18 Chapter 4 A Super-regenerative ASK Downlink Receiver with A DS Pulse-Width Digitizer 21 4.1 Introduction 21 4.2 Proposed DS Pulse-Width Digitizer Architecture 21 4.3 Analysis of the DS Pulse-Width Digitizer 27 4.3.1 Linear Model of the DS-PWD 28 4.3.2 Pulse-Width Quantization Noise of DS-PWD 30 4.3.3 Non-idealities and Design Considerations in The DS-PWD 32 4.4 Circuit Implementations 33 4.4.1 Low Noise Amplifier (LNA) and Digital-Controlled-Oscillator (DCO) 33 4.4.2 Complementary Differential Envelope Detector and Limiter 35 4.4.3 Charge Pump and Loop Capacitor 37 4.4.4 Single-bit Clocked Quantizer 38 4.4.5 Quench Timing Controller (QTC) 39 4.4.6 Digital Baseband 40 4.5 Experimental Results 41 4.6 Conclusion 47 Chapter 5 A MUX-based Dual-mode Uplink Transmitter: G/FSK Mode 49 5.1 Introduction 49 5.2 Proposed G/FSK Transmitter Architecture 49 5.3 Noise Analysis of the Proposed SD-PR 53 5.3.1 SD-PR Noise 53 5.3.2 Noise Analysis of the Proposed TX with SD-PR 55 5.4 Circuit Implementations 56 5.4.1 High-speed Glitch-free Phase Controller (PC) 56 5.4.2 High-speed Digital 2nd-order SD Modulator 61 5.4.3 Digital G/FSK Modulator 62 5.4.4 VCO 62 5.4.5 Frequency Synthesizer and Clock Plan 64 5.5 Experimental Results 66 5.6 Conclusion 74 Chapter 6 A MUX-based Dual-mode Uplink Transmitter: Offset-QPSK Mode 75 6.1 Introduction of Offset-QPSK Modulation 75 6.2 Proposed O-QPSK Transmitter Architecture 76 6.3 Circuit Implementation 77 6.3.1 Phase MUX 78 6.3.2 Inverter-Type Power Amplifier 79 6.3.3 Digital O-QPSK Modulator 81 6.4 Design Considerations of the MUX-Based O-QPSK Transmitter 82 6.4.1 Quadrature Mismatch 82 6.4.2 Non-ideal Switching of the Data Switches 83 6.4.3 Offset of the LO Switches 85 6.4.4 Non-linearity 86 6.5 Experimental Results 86 6.6 Conclusion 92 Chapter 7 An FIR-embedded MUX-based Transmitter for Half-sine Shaping O-QPSK Modulation 95 7.1 Introduction 95 7.2 Proposed HS-OQPSK Transmitter 96 7.3 Experimental Results and Conclusion 99 7.4 Conclusion 102 Chapter 8 Conclusion 103 Appendix A Chip Description 113 A.1 MUX-Based Dual-Mode Transmitter 113 A.2 Asymmetrical Transceiver: ASK Super-Reg. RX and HS-OQPSK TX 115 References 105 Publication List 111 | |
dc.language.iso | en | |
dc.title | 用於植入式生醫用途具高能量效率之400MHz射頻收發器設計 | zh_TW |
dc.title | Design of 400-MHz Energy-Efficient RF Transceivers for Bio-medical Implantable Applications | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 吳介琮,劉深淵,鄭國興,魏駿愷,郭泰豪,林珩之 | |
dc.subject.keyword | 植入式生醫元件,低功率射頻收發器,超再生接收器,三角積分,頻率合成器,鎖相迴路,FSK,PSK,Half-sine shaping OQPSK, | zh_TW |
dc.subject.keyword | bio-medical implantable devices,low-power RF transceivers,super-regenerative receivers,sigma-delta,frequency synthesizers,phase-locked loop (PLL),FSK,PSK,Half-sine shaping OQPSK, | en |
dc.relation.page | 117 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2009-08-13 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
顯示於系所單位: | 電子工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf | 2.61 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。