請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89689
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 謝淑貞 | zh_TW |
dc.contributor.advisor | Shu-Chen Hsieh | en |
dc.contributor.author | 郭詩筠 | zh_TW |
dc.contributor.author | Shih-Yun Kuo | en |
dc.date.accessioned | 2023-09-15T16:16:09Z | - |
dc.date.available | 2023-09-16 | - |
dc.date.copyright | 2023-09-15 | - |
dc.date.issued | 2022 | - |
dc.date.submitted | 2002-01-01 | - |
dc.identifier.citation | Taghinezhad, S. S.; Mohseni, A. H.; Bermudez-Humaran, L. G.; Casolaro, V.; Cortes-Perez, N. G.; Keyvani, H.; Simal-Gandara, J., Probiotic-Based Vaccines May Provide Effective Protection against COVID-19 Acute Respiratory Disease. Vaccines (Basel) 2021, 9 (5), 466.
Dawre, S.; Maru, S., Human respiratory viral infections: Current status and future prospects of nanotechnology-based approaches for prophylaxis and treatment. Life Sciences 2021, 278, 119561. Owen, J. L.; Sahay, B.; Mohamadzadeh, M., New generation of oral mucosal vaccines targeting dendritic cells. Curr Opin Chem Biol 2013, 17 (6), 918-24. Wells, J. M.; Mercenier, A., Mucosal delivery of therapeutic and prophylactic molecules using lactic acid bacteria. Nat Rev Microbiol 2008, 6 (5), 349-62. Wang, M.; Gao, Z.; Zhang, Y.; Pan, L., Lactic acid bacteria as mucosal delivery vehicles: a realistic therapeutic option. Appl Microbiol Biotechnol 2016, 100 (13), 5691-701. Vela Ramirez, J. E.; Sharpe, L. A.; Peppas, N. A., Current state and challenges in developing oral vaccines. Adv Drug Deliv Rev 2017, 114, 116-131. Perdigón, G.; Vintiñi, E.; Alvarez, S.; Medina, M.; Medici, M., Study of the possible mechanisms involved in the mucosal immune system activation by lactic acid bacteria. J Dairy Sci 1999, 82 (6), 1108-14. Samuelson, D. R.; Welsh, D. A.; Shellito, J. E., Regulation of lung immunity and host defense by the intestinal microbiota. Front Microbiol 2015, 6, 1085. Mohseni, A. H.; Taghinezhad, S. S.; Keyvani, H., The First Clinical Use of a Recombinant Lactococcus lactis Expressing Human Papillomavirus Type 16 E7 Oncogene Oral Vaccine: A Phase I Safety and Immunogenicity Trial in Healthy Women Volunteers. Mol Cancer Ther 2020, 19 (2), 717-727. Wang, M.; Fu, T.; Hao, J.; Li, L.; Tian, M.; Jin, N.; Ren, L.; Li, C., A recombinant Lactobacillus plantarum strain expressing the spike protein of SARS- CoV-2. Int J Biol Macromol 2020, 160, 736-740. Tsai, Y.-T.; Cheng, P.-C.; Pan, T.-M., The immunomodulatory effects of lactic acid bacteria for improving immune functions and benefits. Applied Microbiology and Biotechnology 2012, 96 (4), 853-862. Hayashi, H.; Takahashi, R.; Nishi, T.; Sakamoto, M.; Benno, Y., Molecular analysis of jejunal, ileal, caecal and recto-sigmoidal human colonic microbiota using 16S rRNA gene libraries and terminal restriction fragment length polymorphism. J Med Microbiol 2005, 54 (Pt 11), 1093-1101. Chao, S.-H.; Wu, R.-J.; Watanabe, K.; Tsai, Y.-C., Diversity of lactic acid bacteria in suan-tsai and fu-tsai, traditional fermented mustard products of Taiwan. International Journal of Food Microbiology 2009, 135 (3), 203-210. Liu, W. H.; Yang, C. H.; Lin, C. T.; Li, S. W.; Cheng, W. S.; Jiang, Y. P.; Wu, C. C.; Chang, C. H.; Tsai, Y. C., Genome architecture of Lactobacillus plantarum PS128, a probiotic strain with potential immunomodulatory activity. Gut Pathog 2015, 7, 22. Liu, Y. W.; Wang, Y. P.; Yen, H. F.; Liu, P. Y.; Tzeng, W. J.; Tsai, C. F.; Lin, H. C.; Lee, F. Y.; Jeng, O. J.; Lu, C. L.; Tsai, Y. C., Lactobacillus plantarum PS128 Ameliorated Visceral Hypersensitivity in Rats Through the Gut-Brain Axis. Probiotics Antimicrob Proteins 2020, 12 (3), 980-993. Wu, S. I.; Wu, C. C.; Tsai, P. J.; Cheng, L. H.; Hsu, C. C.; Shan, I. K.; Chan, P. Y.; Lin, T. W.; Ko, C. J.; Chen, W. L.; Tsai, Y. C., Psychobiotic Supplementation of PS128(TM) Improves Stress, Anxiety, and Insomnia in Highly Stressed Information Technology Specialists: A Pilot Study. Front Nutr 2021, 8, 614105. Chen, H. M.; Kuo, P. H.; Hsu, C. Y.; Chiu, Y. H.; Liu, Y. W.; Lu, M. L.; Chen, C. H., Psychophysiological Effects of Lactobacillus plantarum PS128 in Patients with Major Depressive Disorder: A Preliminary 8-Week Open Trial. Nutrients 2021, 13 (11), 3731. Lu, C. S.; Chang, H. C.; Weng, Y. H.; Chen, C. C.; Kuo, Y. S.; Tsai, Y. C., The Add-On Effect of Lactobacillus plantarum PS128 in Patients With Parkinson's Disease: A Pilot Study. Front Nutr 2021, 8, 650053. Liu, Y.-W.; Su, Y.-W.; Ong, W.-K.; Cheng, T.-H.; Tsai, Y.-C., Oral administration of Lactobacillus plantarum K68 ameliorates DSS-induced ulcerative colitis in BALB/c mice via the anti-inflammatory and immunomodulatory activities. International Immunopharmacology 2011, 11 (12), 2159-2166. Huang, H. Y.; Korivi, M.; Tsai, C. H.; Yang, J. H.; Tsai, Y. C., Supplementation of Lactobacillus plantarum K68 and Fruit-Vegetable Ferment along with High Fat- Fructose Diet Attenuates Metabolic Syndrome in Rats with Insulin Resistance. Evid Based Complement Alternat Med 2013, 2013, 943020. Zagorec, M.; Champomier-Vergès, M. C., Lactobacillus sakei: A Starter for Sausage Fermentation, a Protective Culture for Meat Products. Microorganisms 2017, 5 (3), 56. Se-Eun, J. a. S.-W. M., Lactobacillus sakei S1 Improves Colitis Induced by 2,4,6-Trinitrobenzene Sulfonic Acid by the Inhibition of NF-κB Signaling in Mice. J. Microbiol. Biotechnol. 2020, 30 (1), 71-78. Jhun, J.; Min, H. K.; Ryu, J.; Lee, S.-Y.; Ryu, J.-G.; Choi, J. W.; Na, H. S.; Lee, S. Y.; Jung, Y.; Park, S.-J.; Park, M. S.; Kwon, B.; Ji, G. E.; Cho, M.-L.; Park, S.-H., Lactobacillus sakei suppresses collagen-induced arthritis and modulates the differentiation of T helper 17 cells and regulatory B cells. Journal of Translational Medicine 2020, 18 (1), 317. Jiang, B.; Li, Z.; Ou, B.; Duan, Q.; Zhu, G., Targeting ideal oral vaccine vectors based on probiotics: a systematical view. Appl Microbiol Biotechnol 2019, 103 (10), 3941-3953. Sorvig, E.; Skaugen, M.; Naterstad, K.; Eijsink, V. G. H.; Axelsson, L., Plasmid p256 from Lactobacillus plantarum represents a new type of replicon in lactic acid bacteria, and contains a toxin-antitoxin-like plasmid maintenance system. Microbiology (Reading) 2005, 151 (Pt 2), 421-431. Ding, C.; Ma, J.; Dong, Q.; Liu, Q., Live bacterial vaccine vector and delivery strategies of heterologous antigen: A review. Immunology Letters 2018, 197, 70-77. Desvaux, M.; Dumas, E.; Chafsey, I.; Hébraud, M., Protein cell surface display in Gram-positive bacteria: from single protein to macromolecular protein structure. FEMS Microbiology Letters 2006, 256 (1), 1-15. Tjalsma, H.; Antelmann, H.; Jongbloed, J. D.; Braun, P. G.; Darmon, E.; Dorenbos, R.; Dubois, J. Y.; Westers, H.; Zanen, G.; Quax, W. J.; Kuipers, O. P.; Bron, S.; Hecker, M.; van Dijl, J. M., Proteomics of protein secretion by Bacillus subtilis: separating the "secrets" of the secretome. Microbiol Mol Biol Rev 2004, 68 (2), 207- 33. Lee, J. S.; Poo, H.; Han, D. P.; Hong, S. P.; Kim, K.; Cho, M. W.; Kim, E.; Sung, M. H.; Kim, C. J., Mucosal immunization with surface-displayed severe acute respiratory syndrome coronavirus spike protein on Lactobacillus casei induces neutralizing antibodies in mice. J Virol 2006, 80 (8), 4079-87. Hou, X. L.; Yu, L. Y.; Liu, J.; Wang, G. H., Surface-displayed porcine epidemic diarrhea viral (PEDV) antigens on lactic acid bacteria. Vaccine 2007, 26 (1), 24-31. Lei, H.; Sheng, Z.; Ding, Q.; Chen, J.; Wei, X.; Lam, D. M.-K.; Xu, Y., Evaluation of oral immunization with recombinant avian influenza virus HA1 displayed on the Lactococcus lactis surface and combined with the mucosal adjuvant cholera toxin subunit B. Clin Vaccine Immunol 2011, 18 (7), 1046-1051. Tjalsma, H.; Bolhuis, A.; Jongbloed Jan, D. H.; Bron, S.; van Dijl Jan, M., Signal Peptide-Dependent Protein Transport inBacillus subtilis: a Genome-Based Survey of the Secretome. Microbiology and Molecular Biology Reviews 2000, 64 (3), 515-547. Fredriksen, L.; Kleiveland, C. R.; Hult, L. T. O.; Lea, T.; Nygaard, C. S.; Eijsink, V. G. H.; Mathiesen, G., Surface display of N-terminally anchored invasin by Lactobacillus plantarum activates NF-κB in monocytes. Appl Environ Microbiol 2012, 78 (16), 5864-5871. Mazmanian, S. K.; Liu, G.; Jensen, E. R.; Lenoy, E.; Schneewind, O., Staphylococcus aureus sortase mutants defective in the display of surface proteins and in the pathogenesis of animal infections. Proceedings of the National Academy of Sciences 2000, 97 (10), 5510-5515. Fredriksen, L.; Mathiesen, G.; Sioud, M.; Eijsink, V. G. H., Cell Wall Anchoring of the 37-Kilodalton Oncofetal Antigen by Lactobacillus plantarum for Mucosal Cancer Vaccine Delivery. Appl Environ Microbiol 2010, 76 (21), 7359-7362. Savijoki, K.; Kahala, M.; Palva, A., High level heterologous protein production in Lactococcus and Lactobacillus using a new secretion system based on the Lactobacillus brevis S-layer signals. Gene 1997, 186 (2), 255-62. Kahala, M.; Palva, A., The expression signals of the Lactobacillus brevis slpA gene direct efficient heterologous protein production in lactic acid bacteria. Appl Microbiol Biotechnol 1999, 51 (1), 71-8. Kajikawa, A.; Ichikawa, E.; Igimi, S., Development of a highly efficient protein- secreting system in recombinant Lactobacillus casei. J Microbiol Biotechnol 2010, 20 (2), 375-82. Rusch, S. L.; Kendall, D. A., Interactions That Drive Sec-Dependent Bacterial Protein Transport. Biochemistry 2007, 46 (34), 9665-9673. Freudl, R., Signal peptides for recombinant protein secretion in bacterial expression systems. Microbial Cell Factories 2018, 17 (1), 52. Elvekrog, M. M.; Walter, P., Dynamics of co-translational protein targeting. Curr Opin Chem Biol 2015, 29, 79-86. Bechtluft, P.; Nouwen, N.; Tans, S. J.; Driessen, A. J., SecB--a chaperone dedicated to protein translocation. Mol Biosyst 2010, 6 (4), 620-7. Kusukawa, N.; Yura, T.; Ueguchi, C.; Akiyama, Y.; Ito, K., Effects of mutations in heat-shock genes groES and groEL on protein export in Escherichia coli. Embo j 1989, 8 (11), 3517-21. Wild, J.; Altman, E.; Yura, T.; Gross, C. A., DnaK and DnaJ heat shock proteins participate in protein export in Escherichia coli. Genes Dev 1992, 6 (7), 1165-72. Dalbey, R. E.; Wang, P.; van Dijl, J. M., Membrane proteases in the bacterial protein secretion and quality control pathway. Microbiol Mol Biol Rev 2012, 76 (2), 311-30. de Ruyter, P. G.; Kuipers, O. P.; de Vos, W. M., Controlled gene expression systems for Lactococcus lactis with the food-grade inducer nisin. Appl Environ Microbiol 1996, 62 (10), 3662-7. Sørvig, E.; Grönqvist, S.; Naterstad, K.; Mathiesen, G.; Eijsink, V. G.; Axelsson, L., Construction of vectors for inducible gene expression in Lactobacillus sakei and L plantarum. FEMS Microbiol Lett 2003, 229 (1), 119-26. Bryan, E. M.; Bae, T.; Kleerebezem, M.; Dunny, G. M., Improved vectors for nisin-controlled expression in gram-positive bacteria. Plasmid 2000, 44 (2), 183-90. Brurberg, M. B.; Nes, I. F.; Eijsink, V. G., Pheromone-induced production of antimicrobial peptides in Lactobacillus. Mol Microbiol 1997, 26 (2), 347-60. Sorvig, E.; Mathiesen, G.; Naterstad, K.; Eijsink, V. G. H.; Axelsson, L., High- level, inducible gene expression in Lactobacillus sakei and Lactobacillus plantarum using versatile expression vectors. Microbiology (Reading) 2005, 151 (Pt 7), 2439- 2449. Pavan, S.; Hols, P.; Delcour, J.; Geoffroy, M. C.; Grangette, C.; Kleerebezem, M.; Mercenier, A., Adaptation of the nisin-controlled expression system in Lactobacillus plantarum: a tool to study in vivo biological effects. Appl Environ Microbiol 2000, 66 (10), 4427-32. Bron, P. A.; Hoffer, S. M.; Van, S., II; De Vos, W. M.; Kleerebezem, M., Selection and characterization of conditionally active promoters in Lactobacillus plantarum, using alanine racemase as a promoter probe. Appl Environ Microbiol 2004, 70 (1), 310-7. Rud, I.; Jensen, P. R.; Naterstad, K.; Axelsson, L., A synthetic promoter library for constitutive gene expression in Lactobacillus plantarum. Microbiology (Reading) 2006, 152 (Pt 4), 1011-1019. Tauer, C.; Heinl, S.; Egger, E.; Heiss, S.; Grabherr, R., Tuning constitutive recombinant gene expression in Lactobacillus plantarum. Microbial Cell Factories 2014, 13 (1), 150. Blazeck, J.; Alper, H. S., Promoter engineering: recent advances in controlling transcription at the most fundamental level. Biotechnol J 2013, 8 (1), 46-58. Jensen, P. R.; Hammer, K., Artificial promoters for metabolic optimization. Biotechnol Bioeng 1998, 58 (2-3), 191-5. Peiroten, A.; Landete, J. M., Natural and engineered promoters for gene expression in Lactobacillus species. Appl Microbiol Biotechnol 2020, 104 (9), 3797- 3805. McCracken, A.; Timms, P., Efficiency of transcription from promoter sequence variants in Lactobacillus is both strain and context dependent. J Bacteriol 1999, 181 (20), 6569-72. Ross, W.; Gosink, K. K.; Salomon, J.; Igarashi, K.; Zou, C.; Ishihama, A.; Severinov, K.; Gourse, R. L., A Third Recognition Element in Bacterial Promoters: DNA Binding by the α Subunit of RNA Polymerase. Science 1993, 262 (5138), 1407- 1413. Salis, H. M.; Mirsky, E. A.; Voigt, C. A., Automated design of synthetic ribosome binding sites to control protein expression. Nature Biotechnology 2009, 27 (10), 946- 950. Kane, J. F., Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia coli. Curr Opin Biotechnol 1995, 6 (5), 494-500. Gustafsson, C.; Govindarajan, S.; Minshull, J., Codon bias and heterologous protein expression. Trends Biotechnol 2004, 22 (7), 346-53. Wambre, E.; Jeong, D., Oral Tolerance Development and Maintenance. Immunol Allergy Clin North Am 2018, 38 (1), 27-37. Curiel, T. J.; Morris, C.; Brumlik, M.; Landry, S. J.; Finstad, K.; Nelson, A.; Joshi, V.; Hawkins, C.; Alarez, X.; Lackner, A.; Mohamadzadeh, M., Peptides identified through phage display direct immunogenic antigen to dendritic cells. J Immunol 2004, 172 (12), 7425-31. Vilander, A. C.; Dean, G. A., Adjuvant Strategies for Lactic Acid Bacterial Mucosal Vaccines. Vaccines (Basel) 2019, 7 (4), 150. Shi, S.-H.; Yang, W.-T.; Yang, G.-L.; Zhang, X.-K.; Liu, Y.-Y.; Zhang, L.-J.; Ye, L.-P.; Hu, J.-T.; Xin, X.; Qi, C.; Li, Y.; Wang, C.-F., Lactobacillus plantarum vaccine vector expressing hemagglutinin provides protection against H9N2 challenge infection. Virus Research 2016, 211, 46-57. Yang, W. T.; Shi, S. H.; Yang, G. L.; Jiang, Y. L.; Zhao, L.; Li, Y.; Wang, C. F., Cross-protective efficacy of dendritic cells targeting conserved influenza virus antigen expressed by Lactobacillus plantarum. Sci Rep 2016, 6, 39665. Wang, M. Y.; Zhao, R.; Gao, L. J.; Gao, X. F.; Wang, D. P.; Cao, J. M., SARS- CoV-2: Structure, Biology, and Structure-Based Therapeutics Development. Front Cell Infect Microbiol 2020, 10, 587269. Lai, C. C.; Shih, T. P.; Ko, W. C.; Tang, H. J.; Hsueh, P. R., Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int J Antimicrob Agents 2020, 55 (3), 105924. Tsai, S. C.; Lu, C. C.; Bau, D. T.; Chiu, Y. J.; Yen, Y. T.; Hsu, Y. M.; Fu, C. W.; Kuo, S. C.; Lo, Y. S.; Chiu, H. Y.; Juan, Y. N.; Tsai, F. J.; Yang, J. S., Approaches towards fighting the COVID‐19 pandemic (Review). Int J Mol Med 2021, 47 (1), 3- 22. Brian, D. A.; Baric, R. S., Coronavirus genome structure and replication. Curr Top Microbiol Immunol 2005, 287, 1-30. Pachetti, M.; Marini, B.; Benedetti, F.; Giudici, F.; Mauro, E.; Storici, P.; Masciovecchio, C.; Angeletti, S.; Ciccozzi, M.; Gallo, R. C.; Zella, D.; Ippodrino, R., Emerging SARS-CoV-2 mutation hot spots include a novel RNA-dependent-RNA polymerase variant. J Transl Med 2020, 18 (1), 179. Hu, B.; Guo, H.; Zhou, P.; Shi, Z.-L., Characteristics of SARS-CoV-2 and COVID-19. Nature Reviews Microbiology 2021, 19 (3), 141-154. Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Wang, B.; Xiang, H.; Cheng, Z.; Xiong, Y.; Zhao, Y.; Li, Y.; Wang, X.; Peng, Z., Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus–Infected Pneumonia in Wuhan, China. JAMA 2020, 323 (11), 1061-1069. Smith, D. R., Herd Immunity. Veterinary Clinics of North America: Food Animal Practice 2019, 35 (3), 593-604. Mistry, P.; Barmania, F.; Mellet, J.; Peta, K.; Strydom, A.; Viljoen, I. M.; James, W.; Gordon, S.; Pepper, M. S., SARS-CoV-2 Variants, Vaccines, and Host Immunity. Front Immunol 2021, 12, 809244. Tang, T.; Bidon, M.; Jaimes, J. A.; Whittaker, G. R.; Daniel, S., Coronavirus membrane fusion mechanism offers a potential target for antiviral development. Antiviral Res 2020, 178, 104792. Wang, S.; Chou, T. H.; Sakhatskyy, P. V.; Huang, S.; Lawrence, J. M.; Cao, H.; Huang, X.; Lu, S., Identification of two neutralizing regions on the severe acute respiratory syndrome coronavirus spike glycoprotein produced from the mammalian expression system. J Virol 2005, 79 (3), 1906-10. Martínez-Flores, D.; Zepeda-Cervantes, J.; Cruz-Reséndiz, A.; Aguirre-Sampieri, S.; Sampieri, A.; Vaca, L., SARS-CoV-2 vaccines based on the spike glycoprotein and implications of new viral variants. Frontiers in immunology 2021, 12. Yang, J.; Wang, W.; Chen, Z.; Lu, S.; Yang, F.; Bi, Z.; Bao, L.; Mo, F.; Li, X.; Huang, Y.; Hong, W.; Yang, Y.; Zhao, Y.; Ye, F.; Lin, S.; Deng, W.; Chen, H.; Lei, H.; Zhang, Z.; Luo, M.; Gao, H.; Zheng, Y.; Gong, Y.; Jiang, X.; Xu, Y.; Lv, Q.; Li, D.; Wang, M.; Li, F.; Wang, S.; Wang, G.; Yu, P.; Qu, Y.; Yang, L.; Deng, H.; Tong, A.; Li, J.; Wang, Z.; Yang, J.; Shen, G.; Zhao, Z.; Li, Y.; Luo, J.; Liu, H.; Yu, W.; Yang, M.; Xu, J.; Wang, J.; Li, H.; Wang, H.; Kuang, D.; Lin, P.; Hu, Z.; Guo, W.; Cheng, W.; He, Y.; Song, X.; Chen, C.; Xue, Z.; Yao, S.; Chen, L.; Ma, X.; Chen, S.; Gou, M.; Huang, W.; Wang, Y.; Fan, C.; Tian, Z.; Shi, M.; Wang, F.-S.; Dai, L.; Wu, M.; Li, G.; Wang, G.; Peng, Y.; Qian, Z.; Huang, C.; Lau, J. Y.-N.; Yang, Z.; Wei, Y.; Cen, X.; Peng, X.; Qin, C.; Zhang, K.; Lu, G.; Wei, X., A vaccine targeting the RBD of the S protein of SARS-CoV-2 induces protective immunity. Nature 2020, 586 (7830), 572- 577. Yang, S.; Li, Y.; Dai, L., Safety and immunogenicity of a recombinant tandem- repeat dimeric RBD protein vaccine against COVID-19 in adults: pooled analysis of two randomized, double-blind, placebo-controlled, phase 1 and 2 trials. Lancet Infect. Dis 2021, 21, 1107-1119. Zhang, N.-N.; Li, X.-F.; Deng, Y.-Q.; Zhao, H.; Huang, Y.-J.; Yang, G.; Huang, W.-J.; Gao, P.; Zhou, C.; Zhang, R.-R., A thermostable mRNA vaccine against COVID-19. Cell 2020, 182 (5), 1271-1283. e16. Cai, R.; Jiang, Y.; Yang, W.; Yang, W.; Shi, S.; Shi, C.; Hu, J.; Gu, W.; Ye, L.; Zhou, F.; Gong, Q.; Han, W.; Yang, G.; Wang, C., Surface-Displayed IL-10 by Recombinant Lactobacillus plantarum Reduces Th1 Responses of RAW264.7 Cells Stimulated with Poly(I:C) or LPS. J Microbiol Biotechnol 2016, 26 (2), 421-31. Jameson, B. A.; Wolf, H., The antigenic index: a novel algorithm for predicting antigenic determinants. Comput Appl Biosci 1988, 4 (1), 181-6. Puigbò, P.; Romeu, A.; Garcia-Vallvé, S., HEG-DB: a database of predicted highly expressed genes in prokaryotic complete genomes under translational selection. Nucleic Acids Res 2008, 36 (Database issue), D524-7. Knight, R. D.; Freeland, S. J.; Landweber, L. F., A simple model based on mutation and selection explains trends in codon and amino-acid usage and GC composition within and across genomes. Genome Biology 2001, 2 (4), 1-13. Sharp, P. M.; Li, W. H., The codon Adaptation Index--a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res 1987, 15 (3), 1281-95. Fuglsang, A., The 'effective number of codons' revisited. Biochem Biophys Res Commun 2004, 317 (3), 957-64. Studier, F. W.; Moffatt, B. A., Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. Journal of Molecular Biology 1986, 189 (1), 113-130. Hansen, L. H.; Knudsen, S.; Sørensen, S. J., The effect of the lacY gene on the induction of IPTG inducible promoters, studied in Escherichia coli and Pseudomonas fluorescens. Curr Microbiol 1998, 36 (6), 341-7. Klenow, H.; Henningsen, I., Selective Elimination of the Exonuclease Activity of the Deoxyribonucleic Acid Polymerase from Escherichia coli B by Limited Proteolysis. Proceedings of the National Academy of Sciences 1970, 65 (1), 168-175. Shao, Y.; Zhang, W.; Guo, H.; Pan, L.; Zhang, H.; Sun, T., Comparative studies on antibiotic resistance in Lactobacillus casei and Lactobacillus plantarum. Food Control 2015, 50, 250-258. Bienick, M. S.; Young, K. W.; Klesmith, J. R.; Detwiler, E. E.; Tomek, K. J.; Whitehead, T. A., The Interrelationship between Promoter Strength, Gene Expression, and Growth Rate. PLOS ONE 2014, 9 (10), e109105. Reygaert, W. C., An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol 2018, 4 (3), 482-501. Gaynor, M.; Mankin, A. S., Macrolide antibiotics: binding site, mechanism of action, resistance. Curr Top Med Chem 2003, 3 (9), 949-61. Skinner, R.; Cundliffe, E.; Schmidt, F. J., Site of action of a ribosomal RNA methylase responsible for resistance to erythromycin and other antibiotics. J Biol Chem 1983, 258 (20), 12702-6. Vázquez-Laslop, N.; Ramu, H.; Mankin, A., Nascent peptide-mediated ribosome stalling promoted by antibiotics. In Ribosomes, Springer: 2011; pp 377-392. Ito, K.; Chiba, S.; Pogliano, K., Divergent stalling sequences sense and control cellular physiology. Biochem Biophys Res Commun 2010, 393 (1), 1-5. Gupta, P.; Sothiselvam, S.; Vazquez-Laslop, N.; Mankin, A. S., Deregulation of translation due to post-transcriptional modification of rRNA explains why erm genes are inducible. Nat Commun 2013, 4, 1984. Majiduddin, F. K.; Materon, I. C.; Palzkill, T. G., Molecular analysis of beta- lactamase structure and function. Int J Med Microbiol 2002, 292 (2), 127-37. Weisblum, B., Erythromycin resistance by ribosome modification. Antimicrob Agents Chemother 1995, 39 (3), 577-85. Pasquina-Lemonche, L.; Burns, J.; Turner, R. D.; Kumar, S.; Tank, R.; Mullin, N.; Wilson, J. S.; Chakrabarti, B.; Bullough, P. A.; Foster, S. J.; Hobbs, J. K., The architecture of the Gram-positive bacterial cell wall. Nature 2020, 582 (7811), 294- 297. Huang, K. Y.; Yang, G. L.; Jin, Y. B.; Liu, J.; Chen, H. L.; Wang, P. B.; Jiang, Y. L.; Shi, C. W.; Huang, H. B.; Wang, J. Z.; Wang, G.; Kang, Y. H.; Yang, W. T.; Wang, C. F., Construction and immunogenicity analysis of Lactobacillus plantarum expressing a porcine epidemic diarrhea virus S gene fused to a DC-targeting peptide. Virus Res 2018, 247, 84-93. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89689 | - |
dc.description.abstract | 近年來全球爆發多起由病毒所引起的呼吸道傳染疾病,包含 SARS、MERS 以及現階段的 SARS-CoV-2,造成疫苗需求上升,推動了新型疫苗的發展。益生 菌疫苗是一種口服疫苗,可以引起全身性及黏膜免疫反應,產生特異性抗體 IgG 及 SIgA,在病毒入侵黏膜時即被抗體中和,阻止感染。此外,益生菌疫苗具有 低成本、容易儲存、方便接種等優勢,適合應用於大型流行性疾病的預防。然而, 受到嚴峻腸胃道環境以及口服耐受的挑戰,益生菌疫苗需要提高表達水平以及添 加佐劑來引發有效的保護反應。因此,本研究透過基因工程調整啟動子與抗原表 達方式,並設計 SARS-CoV-2 當作抗原,以乳酸菌作為載體發展高表達抗原之 益生菌疫苗平台。分別使用誘導型及連續表現型啟動子,建造錨定型、分泌型與 分泌錨定型抗原表達模式,後續還比較了質體的不同抗生素抗性基因對抗原表達 的影響。透過流式細胞儀偵側乳酸菌表面抗原量,發現在 ampicillin 抗性基因 (AmpR)篩選下整體表現比 erythromycin(ErmR) 好,且 AmpR 當中的連續型 啟動子(P11)比誘導型(sppA)有更高的表現量,又以錨定型表達模式為最高 者。同時藉由螢光顯微鏡確認抗原確實表現在乳酸菌表面。此外,在不同宿主中, 重 組 菌 株 Lactiplantibacillus plantarum PS128 表 現 量 比 Lactiplantibacillus plantarum K68 及 Latilactobacillus sakei 要來得好,因此,選擇 AmpR 連續型啟 動子的錨定表達質體 pA-P11-ASD,搭配 L.plantarumPS128 可作為高表達抗原 之 COVID-19 益生菌疫苗平台。 | zh_TW |
dc.description.abstract | In recent years, there are many outbreaks of respiratory infectious diseases caused by viruses around the world, including SARS, MERS and the current SARS-CoV-2, resulting in rising demand for vaccines and thus promoting the development of different vaccines. Probiotic vaccine is an oral vaccine that can induce systemic and mucosal immune responses to produce specific antibodies IgG and SIgA, which neutralize viruses to prevent their mucosa invasion. In addition, probiotic vaccines are good choices for pandemic prevention due to the advantages of low cost, easy storage, and convenient vaccination. However, challenged by the harsh gastrointestinal environment and oral tolerance, probiotic vaccines require increased expression levels and the addition of adjuvants to elicit an effective protective response. Therefore, this study adjusted the promoter and antigen expression pattern through genetic engineering, using SARS-CoV-2 as the antigen and lactic acid bacteria as the carrier to develop a probiotic vaccine platform with high antigen expression. Inducible and constitutive promoters were used to construct anchored, secreted and secreted-anchored antigen expression patterns, and antibiotic resistance gene was subsequently replaced for antigen expression analysis. Flow cytometry was used to detect the surface antigen of lactic acid bacteria, and the results displayed that the overall performance of ampicillin resistance gene (AmpR) was better than that of erythromycin, and the constitutive promoter (P11) in AmpR was higher than the inducible type (sppA), furthermore, the anchored expression pattern exhibited the highest expression level. The similar result was revealed under fluorescence microscope, showing that the antigen was indeed expressed on the surface of lactic acid bacteria. Among different hosts, the antigen expression level of Lactiplantibacillus plantarum PS128 was better than that of Lactiplantibacillus plantarum K68 and Latilactobacillus sakei. Therefore, transforming pA-P11-ASD to L. plantarum PS128 could serve as a probiotic vaccine platform for future development of COVID vaccine. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-15T16:16:09Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-09-15T16:16:09Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 謝辭 I
摘要 II Abstract III 總目錄 V 圖目錄 IX 縮寫表 X 壹、文獻探討 1 一、益生菌疫苗 1 (一)益生菌疫苗的優勢 1 (二)益生菌疫苗免疫誘發機制 1 (三)益生菌疫苗的應用 2 二、乳酸菌 4 (一)Lactiplantibacillus plantarum PS128 4 (二)Lactiplantibacillus plantarum K68 5 (三)Latilactobacillus sakei 5 三、益生菌疫苗設計要點 6 (一)質體與宿主之間的穩定性 6 (二)優化抗原生產量 6 1. 抗原表達系統 6 2. 增強基因的表達-啟動子 9 3. 啟動子強度 11 4. 優化密碼子 11 (三)提高免疫激活效率 12 四、SARS-CoV-2 14 (一)病毒的特性 14 (二)感染途徑與臨床症狀 14 (三)Spike protein 15 貳、研究目的與實驗架構 17 一、研究目的 17 二、實驗架構 18 參、實驗材料與方法 19 一、菌株、引子、質體 19 二、藥品 23 三、儀器設備 26 四、實驗方法 28 (一)E.coli TOP10 Competent cell 製備 28 (二)克隆質體流程 29 1. Enzyme digestion 29 2. Ligation 30 3. Transformation 30 4. PCR screen 31 5. 洋菜凝膠電泳 31 (三)質體克隆統整 32 1. E. coli expression vector cloning 32 2. ErmR Plasmids 32 3. AmpR plasmid 33 (四)利用 PCR (polymerase chain reaction) 放大目標片段 35 1. PCR-pLp3050 35 2. PCR-AmpR 35 3. NdeI-ASD-HindIII 36 4. SalI-SD-HindIII 36 (五)使用 Coomassie blue 偵測 E. coli 誘導表現 37 (六)使用 Western blot 偵測 E. coli 誘導表現 38 (七)乳酸菌勝任細胞製備 40 (八)乳酸菌電穿孔轉形 40 (九)以流式細胞儀確認乳酸菌表面重組蛋白的表達 41 (十)以倒立式螢光顯微鏡確認乳酸菌表面重組蛋白的表達 42 (十一)篩選 Ampicillin 抗生素濃度 42 (十二)以西方墨點法確認乳酸菌表面重組蛋白的表達 42 肆、實驗結果 45 一、ASD 抗原表達的基因設計 45 二、利用 E. coli 表達目標抗原 SD 48 (一)建構 E. coli 表現型質體 48 (二)確認重組菌株 E. coli pRSETC-SD 之 SD 蛋白表現 51 三、分析 L. plantarum PS128 ErmR 質體 Spike 蛋白質表現 53 (一)ErmR 系列質體建構流程 53 (二)以流式細胞儀偵測 ErmR 重組菌株表面的抗原量 58 四、置換篩選基因 59 (一)AmpR 抗性基因的替換以及不同表現型的建造 59 (二)篩選 Ampicillin 抗生素濃度 67 五、偵測重組菌株表面抗原 68 (一)以流式細胞儀偵測 AmpR 組別之表面抗原量 68 (二)以螢光顯微鏡偵測重組菌株表面螢光 72 (三)重組菌株高表達抗原之時間點 75 六、挑選益生菌疫苗平台宿主 77 七、確認重組菌株蛋白的表達 78 八、Omicron 抗原序列設計 80 伍、討論 83 一、AmpR 與 ErmR 對乳酸菌在表達抗原時所帶來的影響 83 二、誘導系統 sppA 與 連續系統 P11 之探討 84 三、表現型之間的螢光表現討論 85 四、探討革蘭氏陽性菌細胞壁蛋白之萃取 87 五、未來展望 87 陸、結論 89 柒、參考文獻 90 | - |
dc.language.iso | zh_TW | - |
dc.title | 建立高表達抗原之益生菌疫苗平台 | zh_TW |
dc.title | Development of the probiotic vaccine platform with highly expressed antigens | en |
dc.type | Thesis | - |
dc.date.schoolyear | 110-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 蔡英傑 | zh_TW |
dc.contributor.oralexamcommittee | Ching-Chuan Kuo;Tsun-Yung Kuo;Ying-Chieh Tsai | en |
dc.subject.keyword | 益生菌疫苗,LactiplantibacillusplantarumPS128,P11 啟動子,高表達,抗生素抗性基因, | zh_TW |
dc.subject.keyword | probiotic vaccine,Lactiplantibacillus plantarum PS128,P11 promoter,high expression level,antibiotic resistance gene, | en |
dc.relation.page | 98 | - |
dc.identifier.doi | 10.6342/NTU202203847 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2022-09-27 | - |
dc.contributor.author-college | 生物資源暨農學院 | - |
dc.contributor.author-dept | 食品科技研究所 | - |
顯示於系所單位: | 食品科技研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-110-2.pdf 此日期後於網路公開 2027-09-23 | 48.08 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。