Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89477
標題: 新型有機-無機雜化異質結構的物理與應用
Physics and Application of Novel Organic-Inorganic Hybrid Heterostructures
作者: 沐嘉西
Mujahid Mustaqeem
指導教授: 陳永芳
Yang-Fang Chen
共同指導教授: 周必泰
Pi-Tai Chou
關鍵字: 金屬有機框架 (MOF),非伏爾特存儲器,自旋發光二極管 (Spin-LED),手性材料,柔性自旋檢測器,光氧化還原催化,
Metal-Organic Frameworks (MOFs),Non-Voltilte Memory,Spin Light Emitting Diode (Spin-LED),Chiral Materials,Flexible Spin Detector,Photoredox Catalysis,
出版年 : 2023
學位: 博士
摘要: 本論文致力於有機-無機混合異質結構(如金屬有機框架(MOF))在光電子器件中各個方面的應用。近年來,有機-無機混合材料(如MOFs)的研究因相對類似材料更具有吸引力而得到革命性的進展。這些特點包括規則的孔徑大小、特定的比表面積和可調控的多孔結構。科學家對
MOFs特別感興趣,因為它們可以用於開發不同的先進光電子、生物化學、能源儲存和電子納米器件。在本研究中,利用MOFs的特點,成功展示了高性能的光電子納米器件,如非揮發性記憶體、自旋光電探測器和高靈敏度的自旋發光二極體。
我們的研究工作可以總結如下:
1. 設計、製備和研究基於金屬有機框架的光學編碼和可擦除多級非揮發性柔性記憶體器件。
2. 設計、製備和研究基於手性金屬有機框架的高靈敏自旋極化柔性光電探測器。
3. 設計、製備和研究基於量子點/手性金屬有機框架異質結構的溶液處理和室溫自旋發光二極體。
4. 易於溶液加工的半導體/金屬雜化納米多孔材料;它們的高光氧化還原催化能力。
我們成功製備金屬有機框架(MOFs),這種系統由金屬和有機連接子組成。我們成功展示了基於銦基MOF薄膜組合物的柔性光電子非揮發性記憶體(NVM),該記憶體具有小於0.1 V的低偏壓、高遷移率的石墨烯層作為導電通道,以及存儲超過192個(6位存儲)不同階層的記憶狀態、超過1000次彎曲循環的機械穩定性和長達10000秒的時間穩定度。手性金屬有機框架(CMOFs)是一類新興的手性混合材料,由於其結構多樣性和靈活性、有序納米孔、成本效益和獨特的手性特徵而引起了人們的興趣。我們開發了基於無手性組成單元[(9,10-adc)]的CMOF [Sr(9,10-adc)(DMAc)2]n,用於製備具有超高探測用於製備具有超高探測度(D*高達1.83×1012 jones)、各向異性因子(gIph)高達0.38、光響應度(Rph)和光增益(η)值高達6.0×105(A/W)和1.8×106的自旋極化柔性探測器,優於所有已發表的異手性MOF探測器。我們還提出了一種替代方法,可以在不使用鐵磁接觸或磁場的情況下,在量子點(QDs)/手性金屬有機框架異質結界上實現了室溫自旋極化發光二極體。自旋極化注入層由自組裝單分子層(SAM)/手性MOF ([Sr(9,10-adc)(DMAc)2]n)薄膜組成,產生具有自旋定向的自旋極化空穴,決定圓極化電致發光(CP-EL)的極化和強度。自旋極化發光二極體以12.24%的效率發射CP-EL,為傳統QLED產生新功能提供了優秀的替代方案。我們的方法預計對於生成尚未實現的自旋光電子器件非常有幫助。基於MOFs構建的這些創新設備在光子器件的研究中具有顯著的貢獻。我們還開發了納米多孔(CuO-Ag)光氧化還原催化材料。結果表明,將銀載入CuO多孔結構可以提高CuO-Ag多孔結構的BET比表面積(48.369 m2/g)和孔徑(36.436 nm)。同時,歸功於協同效應,改善的表面積和孔隙度可以進一步顯著提高光催化效率(即對RhB和4-NP的降解率達到約99%)。我們利用高表面積和更大孔隙度的納米多孔材料作為加強活性的先進材料,為光氧化還原催化應用提供了簡單的指南。
This thesis is dedicated to various aspects of organic-inorganic hybrid heterostructures (like Metal Organic Framework (MOF)) regarding their applications in optoelectronics devices.
Research on organic-inorganic hybrid materials (like MOFs)) has been revolutionized in the last few years because of its attractive features compared to similar materials. These features are consistent pore size, defined surface area, and tuneable porous structures. MOFs have become particularly interesting to scientists for developing different advanced optoelectronics, biochemical, energy storage, and electronic nanodevices. In the present research work using the advantageous features of MOFs, high-performance nanodevices for optoelectronics like non-volatile memory, spin photodetector, and highly sensitive spin LEDs have been demonstrated.
Our investigations are summarized into the following approaches:
1. To design, fabricate and study optically encodable and erasable multilevel non-volatile flexible memory devices based on metal-organic framework.
2. To design, fabricate and study chiral metal-organic framework based spin-polarized flexible photodetector with ultrahigh sensitivity.
3. To design, fabricate and study solution-processed and room-temperature spin light-emitting diode based on quantum dots/chiral metal-organic framework heterostructure.
4. Facile Solution-Processed Semiconductor/Metal Hybrid Nanoporous Materials; Their Highly Photoredox Catalytic Power.
The Metal Organic Frameworks (MOFs) system comprising metal and organic linkers was successfully fabricated. We successfully demonstrated a low bias of less than 0.1 V and a high-mobility graphene layer as a conducting channel for flexible optoelectronic non-volatile memory (NVM) based on a composite thin film of Indium-based MOF, with features such as memory states with 192 (6-bit storage) distinct levels, mechanical stability of more than 1000 bending cycles, and stable retention for more than 10000 s. Chiral metal-organic frameworks (CMOFs), a new family of chiral hybrid materials, have piqued the interest of researchers due to their structural variety and flexibility, order nanopores, cost-effectiveness, and distinct chirality properties. We have developed CMOF [Sr(9,10-adc)(DMAc)2]n based on achiral building blocks [(9,10-adc)] to fabricate spin-polarized flexible detectors that give a detectivity (D*) as high as 1.83 × 1012 jones, anisotropy factor (gIph) is up to 0.38, photoresponsivity (Rph) and photogain (η) values of CMOFs reach up to 6.0 × 105 (A/W) and 1.8 × 106, respectively superior to all reported heterochiral MOF-based detectors. Additionally, we provided a different strategy and developed spin-polarized LEDs based on chiral metal-organic framework heterojunction and quantum dots (QDs) at room temperature without using ferromagnetic connections or magnetic fields. The spin-polarized injected layer was made of self-assembled monolayer (SAM)/Chiral-MOF ([Sr(9,10-adc)(DMAc)2]n) film, which developed spin-polarized holes with spin orientation, impacting the polarization and strength of circularly polarized electroluminescence (CP-EL). The spin-QLED emitted CP-EL at a 12.24% efficiency, providing an ideal alternative for generating new functionality for conventional QLEDs. Our approach is expected to be very valuable, allowing us to provide a universal mechanism for generating unrealized spin optoelectronic devices. These innovatively constructed devices based on MOFs significantly contribute to the ongoing study of photonic devices. We have developed nanoporous (CuO-Ag) photoredox catalysis material. The results indicate that the loading of Ag onto the CuO nanoporous improves the BET-specific surface area (48.369 m2/g) with pore size (36.436nm) of CuO-Ag nanoporous. Meanwhile, the improved surface area and porosity can further significantly enhance the photocatalytic efficiency (i.e., ≈99% degradation of RhB and 4-NP), owing to the synergy effect. Our strategy using nanoporous and high surface area with greater porosity as an advanced nanoporous material with improved activity offers a facile guideline for targeting photoredox catalysis applications.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89477
DOI: 10.6342/NTU202301491
全文授權: 同意授權(限校園內公開)
電子全文公開日期: 2024-12-31
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
17.76 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved