請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89477完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳永芳 | zh_TW |
| dc.contributor.advisor | Yang-Fang Chen | en |
| dc.contributor.author | 沐嘉西 | zh_TW |
| dc.contributor.author | Mujahid Mustaqeem | en |
| dc.date.accessioned | 2023-09-07T17:10:55Z | - |
| dc.date.available | 2024-12-31 | - |
| dc.date.copyright | 2023-09-11 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-07-13 | - |
| dc.identifier.citation | Chapter 1
1.10 References (1) Fan, F. R.; Wang, R.; Zhang, H.; Wu, W. Emerging beyond-graphene elemental 2D materials for energy and catalysis applications. Chem. Soc. Rev. 2021, 50 (19), 10983-11031. (2) Hui, X.; Zhao, J.; Mao, J.; Zhao, H. Reduced graphene oxide-wrapped copper cobalt selenide composites as anode materials for high-performance lithium-ion batteries. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2023, 663, 130979. (3) Tsai, D. S.; Bo, Z. M.; Tu, W. C.; Shih, Y. H.; Shen, J. H.; Chen, S. L.; Uen, W. Y. All-Solution-Processed Reduced Graphene Oxide Flexible Photodetectors for Use in Low-Light Environments. IEEE Electron Device Letters 2023, 44 (6), 999-1002. (4) Dimiev, A. M.; Eigler, S. Graphene oxide: fundamentals and applications; John Wiley & Sons, 2016. (5) Ling, H.; Liu, S.; Zheng, Z.; Yan, F. Organic Flexible Electronics. Small Methods 2018, 2 (10), 1800070. (6) Xu, X.; Lou, Z.; Cheng, S.; Chow, P. C.; Koch, N.; Cheng, H.-M. Van der Waals organic/inorganic heterostructures in the two-dimensional limit. Chem 2021, 7 (11), 2989-3026. (7) Khan, J.; Ahmad, R. T. M.; Tan, J.; Zhang, R.; Khan, U.; Liu, B. Recent advances in 2D organic−inorganic heterostructures for electronics and optoelectronics. SmartMat 2023, 4 (2), e1156. (8) Wu, J.; Lin, H.; Moss, D. J.; Loh, K. P.; Jia, B. Graphene oxide for photonics, electronics and optoelectronics. Nat. Rev. Chem. 2023, 1-22. (9) McCarthy, M. A.; Liu, B.; Donoghue, E. P.; Kravchenko, I.; Kim, D. Y.; So, F.; Rinzler, A. G. Low-Voltage, Low-Power, Organic Light-Emitting Transistors for Active Matrix Displays. Science 2011, 332 (6029), 570-573. (10) Chai, L.; Pan, J.; Hu, Y.; Qian, J.; Hong, M. Rational Design and Growth of MOF-on-MOF Heterostructures. Small 2021, 17 (36), 2100607. (11) Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The Chemistry and Applications of Metal-Organic Frameworks. Science 2013, 341 (6149), 1230444. (12) Chen, Z.; Kirlikovali, K. O.; Li, P.; Farha, O. K. Reticular Chemistry for Highly Porous Metal–Organic Frameworks: The Chemistry and Applications. Acc. Chem. Res. 2022, 55 (4), 579-591. (13) Gascon, J.; Corma, A.; Kapteijn, F.; Llabrés i Xamena, F. X. Metal Organic Framework Catalysis: Quo vadis? ACS Catalysis 2014, 4 (2), 361-378. (14) Mason, J. A.; Veenstra, M.; Long, J. R. Evaluating metal–organic frameworks for natural gas storage. Chem. Sci. 2014, 5 (1), 32-51. (15) Greathouse, J. A.; Teich-McGoldrick, S. L.; Allendorf, M. D. Molecular simulation of size-selective gas adsorption in idealised carbon nanotubes. Molecular simulation 2015, 41 (16-17), 1388-1395. (16) Hunter, L. R.; Karlsson, J. K.; Sellars, J. D.; Probert, M. R. (Z)-4, 4′-Stilbene dicarboxylic acid, the overlooked metal–organic framework linker. CrystEngComm 2023, 25 (16), 2353-2358. (17) Zhang, H.-Y.; Xiong, R.-G. Three-dimensional narrow-bandgap perovskite semiconductor ferroelectric methylphosphonium tin triiodide for potential photovoltaic application. Chem. Commun. 2023. (18) Pitcairn, J.; Iliceto, A.; Cañadillas-Delgado, L.; Fabelo, O.; Liu, C.; Balz, C.; Weilhard, A.; Argent, S. P.; Morris, A. J.; Cliffe, M. J. Low-Dimensional Metal–Organic Magnets as a Route toward the S= 2 Haldane Phase. JACS 2023, 145 (3), 1783-1792. (19) Redel, E.; Wang, Z.; Walheim, S.; Liu, J.; Gliemann, H.; Wöll, C. On the dielectric and optical properties of surface-anchored metal-organic frameworks: A study on epitaxially grown thin films. Appl. Phys. Lett. 2013, 103 (9), 091903. (20) Dutta, B.; Debsharma, K.; Dey, S.; Sinha, C. Advancement and future challenges of metal–organic coordination polymers: A case study of optical sensor for the detection of the environmental contaminants. Appl. Organomet. Chem. 2023, 37 (1), e6919. (21) Cheng, L.; Hu, H.; Zhang, L.; Gou, S. A multifunctional three-dimensional uninodal eight-connected metal–organic framework based on pentanuclear cadmium subunits: New topology, fluorescent and NLO properties. Inorg. Chem. Commun. 2012, 15, 202-207. (22) Mustaqeem, M.; Chou, P.-T.; Kamal, S.; Ahmad, N.; Lin, J.-Y.; Lu, Y.-J.; Lee, X.-H.; Lin, K.-H.; Lu, K.-L.; Chen, Y.-F. Solution-Processed and Room-Temperature Spin Light-Emitting Diode Based on Quantum Dots/Chiral Metal-Organic Framework Heterostructure. Adv. Funct. Mater. n/a (n/a), 2213587. (23) Mustaqeem, M.; Kamal, S.; Ahmad, N.; Chou, P.-T.; Lin, K.-H.; Huang, Y.-C.; Guo, G.-Y.; Inbaraj, C. P.; Li, W.-K.; Yao, H.-C. Chiral metal-organic framework based spin-polarized flexible photodetector with ultrahigh sensitivity. Materials Today Nano 2023, 21, 100303. (24) Mustaqeem, M.; Lin, J.-Y.; Kamal, S.; Thakran, A.; Lu, G.-Z.; Naikoo, G.; Chou, P.-T.; Lu, K.-L.; Chen, Y.-F. Optically Encodable and Erasable Multilevel Nonvolatile Flexible Memory Device Based on Metal–Organic Frameworks. ACS Appl. Mater. Interfaces. 2022. (25) Meng, L.; Niu, Z.; Liang, C.; Dong, X.; Liu, K.; Li, G.; Li, C.; Han, Y.; Shi, Z.; Feng, S. Integration of Open Metal Sites and Lewis Basic Sites for Construction of a Cu MOF with a Rare Chiral Oh-type cage for high performance in methane purification. Chemistry – A European Journal 2018, 24 (50), 13181-13187. (26) Huang, X.; Li, Q.; Xiao, X.; Jia, S.; Li, Y.; Duan, Z.; Bai, L.; Yuan, Z.; Li, L.; Lin, Z.; et al. Nonlinear-Optical Behaviors of a Chiral Metal–Organic Framework Comprised of an Unusual Multioriented Double-Helix Structure. Inorg. Chem. 2018, 57 (11), 6210-6213. (27) Zhao, Y.; Xu, X.; Qiu, L.; Kang, X.; Wen, L.; Zhang, B. Metal–Organic Frameworks Constructed from a New Thiophene-Functionalized Dicarboxylate: Luminescence Sensing and Pesticide Removal. ACS Appl. Mater. Interfaces. 2017, 9 (17), 15164-15175. (28) Yuan, S.; Deng, Y.-K.; Xuan, W.-M.; Wang, X.-P.; Wang, S.-N.; Dou, J.-M.; Sun, D. Spontaneous chiral resolution of a 3D (3, 12)-connected MOF with an unprecedented ttt topology consisting of cubic [Cd 4 (μ 3-OH) 4] clusters and propeller-like ligands. CrystEngComm 2014, 16 (19), 3829-3833. (29) Gil-Hernández, B.; Maclaren, J. K.; Höppe, H. A.; Pasan, J.; Sanchiz, J.; Janiak, C. Homochiral lanthanoid (iii) mesoxalate metal–organic frameworks: synthesis, crystal growth, chirality, magnetic and luminescent properties. CrystEngComm 2012, 14 (8), 2635-2644. (30) Han, Z.; Shi, W.; Cheng, P. Synthetic strategies for chiral metal-organic frameworks. Chin. Chem. Lett. 2018, 29 (6), 819-822. (31) Dybtsev, D. N.; Bryliakov, K. P. Asymmetric catalysis using metal-organic frameworks. Coord. Chem. Rev. 2021, 437, 213845. (32) Liu, J.; Mukherjee, S.; Wang, F.; Fischer, R. A.; Zhang, J. Homochiral metal–organic frameworks for enantioseparation. Chem. Soc. Rev. 2021, 50 (9), 5706-5745. (33) Tay, H. M.; Kyratzis, N.; Thoonen, S.; Boer, S. A.; Turner, D. R.; Hua, C. Synthetic strategies towards chiral coordination polymers. Coord. Chem. Rev. 2021, 435, 213763. (34) Zheng, H.; Li, Y.; Liu, H.; Yin, X.; Li, Y. Construction of heterostructure materials toward functionality. Chem. Soc. Rev. 2011, 40 (9), 4506-4524. (35) Zhang, J.; Lin, L.; Jia, K.; Sun, L.; Peng, H.; Liu, Z. Controlled Growth of Single-Crystal Graphene Films. Adv. Mater. 2020, 32 (1), 1903266. (36) Gong, W.; Chen, Z.; Dong, J.; Liu, Y.; Cui, Y. Chiral metal–organic frameworks. Chem. Rev. 2022, 122 (9), 9078-9144. (37) Anasori, B.; Lukatskaya, M. R.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nature Reviews Materials 2017, 2 (2), 16098. Chapter 2 2.10 References (1) Banszerus, L.; Schmitz, M.; Engels, S.; Dauber, J.; Oellers, M.; Haupt, F.; Watanabe, K.; Taniguchi, T.; Beschoten, B.; Stampfer, C. Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper. Sci. Adv. 2015, 1 (6), e1500222. (2) Sun, X.; Lin, L.; Sun, L.; Zhang, J.; Rui, D.; Li, J.; Wang, M.; Tan, C.; Kang, N.; Wei, D.; et al. Low-Temperature and Rapid Growth of Large Single-Crystalline Graphene with Ethane. Small 2018, 14 (3), 1702916. (3) Zhang, J.; Lin, L.; Jia, K.; Sun, L.; Peng, H.; Liu, Z. Controlled Growth of Single-Crystal Graphene Films. Adv. Mater. 2020, 32 (1), 1903266. (4) Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. Large-area synthesis of high-quality and uniform graphene films on copper foils. science 2009, 324 (5932), 1312-1314. (5) Savale, P. Physical vapor deposition (PVD) methods for synthesis of thin films: A comparative study. Arch. Appl. Sci. Res 2016, 8 (5), 1-8. (6) Bashir, A.; Awan, T. I.; Tehseen, A.; Tahir, M. B.; Ijaz, M. Chapter 3—Interfaces and Surfaces. Chemistry of Nanomaterials; Awan, TI, Bashir, A., Tehseen, A., Eds 2020, 51-87. (7) Voo, R.; Mariatti, M.; Sim, L. Properties of epoxy nanocomposite thin films prepared by spin coating technique. Journal of Plastic Film & Sheeting 2011, 27 (4), 331-346. (8) Kim, H.-M.; Lee, M. H.; Lee, H.-S.; Wi, J.-S.; Lim, K.; Kim, K.-B. Method of improving the quality of nanopatterning in atomic image projection electron-beam lithography. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 2009, 27 (6), 2553-2557. (9) Okano, Y. Scanning Electron Microscopy. In Compendium of Surface and Interface Analysis, The Surface Science Society of, J. Ed.; Springer Singapore, 2018; pp 563-569. (10) Hitkari, G.; Singh, S.; Pandey, G. Nanoparticles: an emerging weapon for mitigation/removal of various environmental pollutants for environmental safety. Emerging and Eco-Friendly Approaches for Waste Management 2019, 359-395. (11) Vallikkodi, M. Synthesis, growth and characterization of piperazinium P-aminobenzoate and piperazinium P-chlorobenzoate nonlinear optical single crystals. Alagappa University, Karaikudi, India 2018. (12) Tongay, S.; Suh, J.; Ataca, C.; Fan, W.; Luce, A.; Kang, J. S.; Liu, J.; Ko, C.; Raghunathanan, R.; Zhou, J. Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged and free excitons. Scientific reports 2013, 3 (1), 2657. Chapter 3 3.6 References (1) Root, S. E.; Savagatrup, S.; Printz, A. D.; Rodriquez, D.; Lipomi, D. J. Mechanical properties of organic semiconductors for stretchable, highly flexible, and mechanically robust electronics. Chem. Rev. 2017, 117 (9), 6467-6499. (2) Wuttig, M.; Bhaskaran, H.; Taubner, T. Phase-change materials for non-volatile photonic applications. Nat. Photon 2017, 11 (8), 465-476. (3) Dajczgewand, J.; Ahlefeldt, R.; Böttger, T.; Louchet-Chauvet, A.; Le Gouët, J.-L.; Chaneliere, T. Optical memory bandwidth and multiplexing capacity in the erbium telecommunication window. New Journal of Physics 2015, 17 (2), 023031. (4) Leydecker, T.; Herder, M.; Pavlica, E.; Bratina, G.; Hecht, S.; Orgiu, E.; Samorì, P. Flexible non-volatile optical memory thin-film transistor device with over 256 distinct levels based on an organic bicomponent blend. Nat. Nanotechnol 2016, 11 (9), 769-775. (5) Lee, D.; Hwang, E.; Lee, Y.; Choi, Y.; Kim, J. S.; Lee, S.; Cho, J. H. Multibit MoS2 photoelectronic memory with ultrahigh sensitivity. Adv. Mater. 2016, 28 (41), 9196-9202. (6) Tong, L.; Peng, Z.; Lin, R.; Li, Z.; Wang, Y.; Huang, X.; Xue, K.-H.; Xu, H.; Liu, F.; Xia, H. 2D materials–based homogeneous transistor-memory architecture for neuromorphic hardware. Science 2021, 373 (6561), 1353-1358. (7) Lee, J.; Pak, S.; Lee, Y.-W.; Cho, Y.; Hong, J.; Giraud, P.; Shin, H. S.; Morris, S. M.; Sohn, J. I.; Cha, S. Monolayer optical memory cells based on artificial trap-mediated charge storage and release. Nat. Commun. 2017, 8 (1), 1-8. (8) Khan, A. I.; Daus, A.; Islam, R.; Neilson, K. M.; Lee, H. R.; Wong, H.-S. P.; Pop, E. Ultralow–switching current density multilevel phase-change memory on a flexible substrate. Science 2021, 373 (6560), 1243-1247. (9) Islamoglu, T.; Goswami, S.; Li, Z.; Howarth, A. J.; Farha, O. K.; Hupp, J. T. Postsynthetic tuning of metal–organic frameworks for targeted applications. Acc. Chem. Res. 2017, 50 (4), 805-813. (10) Dechnik, J.; Sumby, C. J.; Janiak, C. Enhancing mixed-matrix membrane performance with metal–organic framework additives. Crystal Growth & Design 2017, 17 (8), 4467-4488. (11) Yao, Z.; Pan, L.; Liu, L.; Zhang, J.; Lin, Q.; Ye, Y.; Zhang, Z.; Xiang, S.; Chen, B. Simultaneous implementation of resistive switching and rectifying effects in a metal-organic framework with switched hydrogen bond pathway. Sci. Adv 2019, 5 (8), eaaw4515. (12) Campbell, M. G.; Dincă, M. Metal–organic frameworks as active materials in electronic sensor devices. Sensors 2017, 17 (5), 1108. (13) Gumilar, G.; Kaneti, Y. V.; Henzie, J.; Chatterjee, S.; Na, J.; Yuliarto, B.; Nugraha, N.; Patah, A.; Bhaumik, A.; Yamauchi, Y. General synthesis of hierarchical sheet/plate-like M-BDC (M= Cu, Mn, Ni, and Zr) metal–organic frameworks for electrochemical non-enzymatic glucose sensing. Chem. Sci. 2020, 11 (14), 3644-3655. (14) Stassen, I.; Burtch, N.; Talin, A.; Falcaro, P.; Allendorf, M.; Ameloot, R. An updated roadmap for the integration of metal–organic frameworks with electronic devices and chemical sensors. Chem. Soc. Rev. 2017, 46 (11), 3185-3241. (15) Allendorf, M. D.; Dong, R.; Feng, X.; Kaskel, S.; Matoga, D.; Stavila, V. Electronic devices using open framework materials. Chem. Rev. 2020, 120 (16), 8581-8640. (16) Kobayashi, H.; Taylor, J. M.; Mitsuka, Y.; Ogiwara, N.; Yamamoto, T.; Toriyama, T.; Matsumura, S.; Kitagawa, H. Charge transfer dependence on CO 2 hydrogenation activity to methanol in Cu nanoparticles covered with metal–organic framework systems. Chem. Sci. 2019, 10 (11), 3289-3294. (17) Cai, Z. X.; Wang, Z. L.; Kim, J.; Yamauchi, Y. Hollow functional materials derived from metal–organic frameworks: synthetic strategies, conversion mechanisms, and electrochemical applications. Adv. Mater. 2019, 31 (11), 1804903. (18) Alezi, D.; Belmabkhout, Y.; Suyetin, M.; Bhatt, P. M.; Weseliński, Ł. J.; Solovyeva, V.; Adil, K.; Spanopoulos, I.; Trikalitis, P. N.; Emwas, A.-H. MOF crystal chemistry paving the way to gas storage needs: aluminum-based soc-MOF for CH4, O2, and CO2 storage. JACS 2015, 137 (41), 13308-13318. (19) Roy, S.; Das, M.; Bandyopadhyay, A.; Pati, S. K.; Ray, P. P.; Maji, T. K. Colossal increase in electric current and high rectification ratio in a photoconducting, self-cleaning, and luminescent schottky barrier nmof diode. The Journal of Physical Chemistry C 2017, 121 (42), 23803-23810. (20) Wang, C.; Kim, J.; Tang, J.; Kim, M.; Lim, H.; Malgras, V.; You, J.; Xu, Q.; Li, J.; Yamauchi, Y. New strategies for novel MOF-derived carbon materials based on nanoarchitectures. Chem 2020, 6 (1), 19-40. (21) Campagnol, N.; Souza, E. R.; De Vos, D. E.; Binnemans, K.; Fransaer, J. Luminescent terbium-containing metal–organic framework films: new approaches for the electrochemical synthesis and application as detectors for explosives. Chem. Commun. 2014, 50 (83), 12545-12547. (22) Li, W.-J.; Liu, J.; Sun, Z.-H.; Liu, T.-F.; Lü, J.; Gao, S.-Y.; He, C.; Cao, R.; Luo, J.-H. Integration of metal-organic frameworks into an electrochemical dielectric thin film for electronic applications. Nat. Commun. 2016, 7 (1), 1-8. (23) Bera, K. P.; Kamal, S.; Inamdar, A. I.; Sainbileg, B.; Lin, H.-I.; Liao, Y.-M.; Ghosh, R.; Chang, T.-J.; Lee, Y.-G.; Cheng-Fu, H. Intrinsic ultralow-threshold laser action from rationally molecular design of metal–organic framework materials. ACS Appl. Mater. Interfaces. 2020, 12 (32), 36485-36495. (24) Kamal, S.; Bera, K. P.; Usman, M.; Sainbileg, B.; Mendiratta, S.; Pathak, A.; Inamdar, A. I.; Hung, C.-H.; Hayashi, M.; Chen, Y.-F. Phosphor-Free Electrically Driven White Light Emission from Nanometer-Thick Barium–Organic Framework Films. ACS Applied Nano Materials 2021, 4 (3), 2395-2403. (25) Bera, K. P.; Bera, K. P.; Haider, G.; Usman, M.; Roy, P. K.; Lin, H.-I.; Liao, Y.-M.; Lu, K.-L.; Chen, Y.-F. Trapped Photons Induced Ultra-high External Quantum Efficiency and Photoresponsivity with Millisecond Response in Hybrid Graphene/Metal-Organic Framework Broadband Wearable Photodetectors. In APS March Meeting Abstracts, 2019; Vol. 2019, p K50. 001. (26) Cui, B.-B.; Mao, Z.; Chen, Y.; Zhong, Y.-W.; Yu, G.; Zhan, C.; Yao, J. Tuning of resistive memory switching in electropolymerized metallopolymeric films. Chem. Sci. 2015, 6 (2), 1308-1315. (27) Tan, C.; Liu, Z.; Huang, W.; Zhang, H. Non-volatile resistive memory devices based on solution-processed ultrathin two-dimensional nanomaterials. Chem. Soc. Rev. 2015, 44 (9), 2615-2628. (28) Lee, M.; Lee, W.; Choi, S.; Jo, J. W.; Kim, J.; Park, S. K.; Kim, Y. H. Brain‐inspired photonic neuromorphic devices using photodynamic amorphous oxide semiconductors and their persistent photoconductivity. Adv. Mater. 2017, 29 (28), 1700951. (29) van de Burgt, Y.; Lubberman, E.; Fuller, E. J.; Keene, S. T.; Faria, G. C.; Agarwal, S.; Marinella, M. J.; Talin, A. A.; Salleo, A. A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing. Nature materials 2017, 16 (4), 414-418. (30) Han, L. J.; Zheng, D.; Chen, S. G.; Zheng, H. G.; Ma, J. A Highly Solvent‐Stable Metal–Organic Framework Nanosheet: Morphology Control, Exfoliation, and Luminescent Property. Small 2018, 14 (17), 1703873. (31) Perego, J.; Villa, I.; Pedrini, A.; Padovani, E.; Crapanzano, R.; Vedda, A.; Dujardin, C.; Bezuidenhout, C. X.; Bracco, S.; Sozzani, P. Composite fast scintillators based on high-Z fluorescent metal–organic framework nanocrystals. Nat. Photon 2021, 15 (5), 393-400. (32) Han, Z.-B.; Li, B.-Y.; Ji, J.-W.; Du, Y.-E.; An, H.-Y.; Zeng, M.-H. A 3D chiral porous In (III) coordination polymer with PtS topological net. Dalton Transactions 2011, 40 (36), 9154-9158. (33) Piskunov, A. V.; Maleeva, A. V.; Fukin, G. K.; Baranov, E. V.; Bogomyakov, A. S.; Cherkasov, V. K.; Abakumov, G. A. Synthesis and molecular structure of indium complexes based on 3, 6-di-tert-butyl-o-benzoquinone. Looking for indium (I) o-semiquinolate. Dalton Transactions 2011, 40 (3), 718-725. (34) Zou, L.; Feng, D.; Liu, T.-F.; Chen, Y.-P.; Yuan, S.; Wang, K.; Wang, X.; Fordham, S.; Zhou, H.-C. A versatile synthetic route for the preparation of titanium metal–organic frameworks. Chem. Sci. 2016, 7 (2), 1063-1069. (35) Song, F.; Li, W.; Sun, Y. Metal–organic frameworks and their derivatives for photocatalytic water splitting. Inorganics 2017, 5 (3), 40. (36) Zhang, X.; Zhang, S.; Tang, Y.; Huang, X.; Pang, H. Recent advances and challenges of metal–organic framework/graphene-based composites. Composites Part B: Engineering 2022, 230, 109532. (37) Lee, W. H.; Park, J.; Kim, Y.; Kim, K. S.; Hong, B. H.; Cho, K. Control of Graphene Field‐Effect Transistors by Interfacial Hydrophobic Self‐Assembled Monolayers. Adv. Mater. 2011, 23 (30), 3460-3464. (38) Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. Large-area synthesis of high-quality and uniform graphene films on copper foils. science 2009, 324 (5932), 1312-1314. (39) Zhang, Q.; Zhang, C.; Cao, L.; Wang, Z.; An, B.; Lin, Z.; Huang, R.; Zhang, Z.; Wang, C.; Lin, W. Förster Energy Transport in Metal–Organic Frameworks Is Beyond Step-by-Step Hopping. JACS 2016, 138 (16), 5308-5315. (40) Mahato, P.; Monguzzi, A.; Yanai, N.; Yamada, T.; Kimizuka, N. Fast and long-range triplet exciton diffusion in metal–organic frameworks for photon upconversion at ultralow excitation power. Nature materials 2015, 14 (9), 924-930. (41) Milichko, V. A.; Makarov, S. V.; Yulin, A. V.; Vinogradov, A. V.; Krasilin, A. A.; Ushakova, E.; Dzyuba, V. P.; Hey‐Hawkins, E.; Pidko, E. A.; Belov, P. A. van der Waals Metal‐Organic Framework as an Excitonic Material for Advanced Photonics. Adv. Mater. 2017, 29 (12), 1606034. (42) Lee, S.; Kim, S.; Yoo, H. Contribution of Polymers to Electronic Memory Devices and Applications. Polymers 2021, 13 (21), 3774. (43) Lee, J. H.; Wu, C.; Sung, S.; An, H.; Kim, T. W. Highly flexible and stable resistive switching devices based on WS2 nanosheets: poly (methylmethacrylate) nanocomposites. Scientific reports 2019, 9 (1), 1-8. (44) Ramaswamy, P.; Wong, N. E.; Shimizu, G. K. MOFs as proton conductors–challenges and opportunities. Chem. Soc. Rev. 2014, 43 (16), 5913-5932. (45) Pachfule, P.; Shinde, D.; Majumder, M.; Xu, Q. Fabrication of carbon nanorods and graphene nanoribbons from a metal–organic framework. Nat. Chem. 2016, 8 (7), 718-724. (46) Aubrey, M. L.; Wiers, B. M.; Andrews, S. C.; Sakurai, T.; Reyes-Lillo, S. E.; Hamed, S. M.; Yu, C.-J.; Darago, L. E.; Mason, J. A.; Baeg, J.-O. Electron delocalization and charge mobility as a function of reduction in a metal–organic framework. Nat. Mater. 2018, 17 (7), 625-632. (47) Liou, Y.-R.; Lin, H. Y.; Shen, T. L.; Cai, S. Y.; Wu, Y. H.; Liao, Y. M.; Lin, H. I.; Chen, T. P.; Lin, T. Y.; Chen, Y. F. Integration of Nanoscale and Macroscale Graphene Heterostructures for Flexible and Multilevel Nonvolatile Photoelectronic Memory. ACS Applied Nano Materials 2019, 3 (1), 608-616. (48) Ríos, C.; Stegmaier, M.; Hosseini, P.; Wang, D.; Scherer, T.; Wright, C. D.; Bhaskaran, H.; Pernice, W. H. Integrated all-photonic non-volatile multi-level memory. Nat. Photon 2015, 9 (11), 725-732. (49) Yang, H.; Yang, Q.; He, L.; Wu, X.; Gao, C.; Zhang, X.; Shan, L.; Chen, H.; Guo, T. Flexible multi-level quasi-volatile memory based on organic vertical transistor. Nano Research 2022, 15 (1), 386-394. (50) Carroli, M.; Dixon, A. G.; Herder, M.; Pavlica, E.; Hecht, S.; Bratina, G.; Orgiu, E.; Samorì, P. Multiresponsive nonvolatile memories based on optically switchable ferroelectric organic field‐effect transistors. Adv. Mater. 2021, 33 (14), 2007965. (51) Das, B.; Samanta, M.; Sarkar, P.; Ghorai, U. K.; Mallik, A.; Chattopadhyay, K. K. Copper (II) Phthalocyanine (CuPc) Based Optoelectronic Memory Device with Multilevel Resistive Switching for Neuromorphic Application. Advanced Electronic Materials 2021, 7 (4), 2001079. Chapter 4 4.7 References (1) Sparks, W. B.; Germer, T. A.; Sparks, R. M. Classical polarimetry with a twist: a compact, geometric approach. PASP 2019, 131 (1001), 075002. (2) Experimental demonstration of memory-enhanced quantum communication. Nature 2020, 580 (7801), 60-64. (3) Zhang, C.; Wang, X.; Qiu, L. Circularly polarized photodetectors based on chiral materials: a review. Front. Chem. 2021, 9, 711488. (4) Xue, Y.-P.; Cao, C.-H.; Zheng, Y.-G. Enzymatic asymmetric synthesis of chiral amino acids. Chem. Soc. Rev. 2018, 47 (4), 1516-1561. (5) Kou, X.; Shao, Q.; Ye, C.; Yang, G.; Zhang, W. Asymmetric Aza-Wacker-type cyclization of N-Ts hydrazine-tethered tetrasubstituted olefins: synthesis of pyrazolines bearing one quaternary or two vicinal stereocenters. JACS 2018, 140 (24), 7587-7597. (6) Wang, L.; Li, Q. Photochromism into nanosystems: towards lighting up the future nanoworld. Chem. Soc. Rev. 2018, 47 (3), 1044-1097. (7) Pop, F.; Zigon, N.; Avarvari, N. Main-group-based electro-and photoactive chiral materials. Chem. Rev. 2019, 119 (14), 8435-8478. (8) Zinna, F.; Albano, G.; Taddeucci, A.; Colli, T.; Aronica, L. A.; Pescitelli, G.; Di Bari, L. Emergent nonreciprocal circularly polarized emission from an organic thin film. Adv. Mater. 2020, 32 (37), 2002575. (9) MacKenzie, L. E.; Pal, R. Circularly polarized lanthanide luminescence for advanced security inks. Nat. Rev. Chem. 2021, 5 (2), 109-124. (10) He, C.; Feng, Z.; Shan, S.; Wang, M.; Chen, X.; Zou, G. Highly enantioselective photo-polymerization enhanced by chiral nanoparticles and in situ photopatterning of chirality. Nat. Commun. 2020, 11 (1), 1-9. (11) Ma, S.; Ahn, J.; Moon, J. Chiral Perovskites for Next‐Generation Photonics: From Chirality Transfer to Chiroptical Activity. Adv. Mater. 2021, 33 (47), 2005760. (12) Schulz, M.; Balzer, F.; Scheunemann, D.; Arteaga, O.; Lützen, A.; Meskers, S. C.; Schiek, M. Chiral excitonic organic photodiodes for direct detection of circular polarized light. Adv. Funct. Mater. 2019, 29 (16), 1900684. (13) Gong, W.; Zhang, W.; Son, F. A.; Yang, K.; Chen, Z.; Chen, X.; Jiang, J.; Liu, Y.; Farha, O. K.; Cui, Y. Topological strain-induced regioselective linker elimination in a chiral Zr (IV)-based metal-organic framework. Chem 2021, 7 (1), 190-201. (14) Wu, D.; Zhou, K.; Tian, J.; Liu, C.; Tian, J.; Jiang, F.; Yuan, D.; Zhang, J.; Chen, Q.; Hong, M. Induction of chirality in a metal–organic framework built from achiral precursors. Angew. Chem. 2021, 133 (6), 3124-3131. (15) Jiang, H.; Zhang, W.; Kang, X.; Cao, Z.; Chen, X.; Liu, Y.; Cui, Y. Topology-based functionalization of robust chiral Zr-based metal–organic frameworks for catalytic enantioselective hydrogenation. JACS 2020, 142 (21), 9642-9652. (16) Li, X.; Wu, J.; He, C.; Meng, Q.; Duan, C. Asymmetric catalysis within the chiral confined space of metal–organic architectures. Small 2019, 15 (32), 1804770. (17) Shang, W.; Zhu, X.; Liang, T.; Du, C.; Hu, L.; Li, T.; Liu, M. Chiral Reticular Self‐Assembly of Achiral AIEgen into Optically Pure Metal–Organic Frameworks (MOFs) with Dual Mechano‐Switchable Circularly Polarized Luminescence. Angew. Chem. Int. Ed. 2020, 59 (31), 12811-12816. (18) Sharifzadeh, Z.; Berijani, K.; Morsali, A. Chiral metal–organic frameworks based on asymmetric synthetic strategies and applications. Coord. Chem. Rev. 2021, 445, 214083. (19) Shang, X.; Song, I.; Jung, G. Y.; Choi, W.; Ohtsu, H.; Lee, J. H.; Ahn, J.; Koo, J. Y.; Kawano, M.; Kwak, S. K. Micro-/nano-sized multifunctional heterochiral metal–organic frameworks for high-performance visible–blind UV photodetectors. J. Mater. Chem. C 2021, 9 (23), 7310-7318. (20) Mustaqeem, M.; Lin, J.-Y.; Kamal, S.; Thakran, A.; Lu, G.-Z.; Naikoo, G.; Chou, P.-T.; Lu, K.-L.; Chen, Y.-F. Optically Encodable and Erasable Multilevel Nonvolatile Flexible Memory Device Based on Metal–Organic Frameworks. ACS Appl. Mater. Interfaces. 2022. (21) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77 (18), 3865. (22) Wang, H.-P.; Yin, S.-Y.; Pan, M.; Wu, K.; Chen, L.; Zhu, Y.-X.; Hou, Y.-J. Circular dichroism enhancement by the coordination of different metal ions with a pair of chiral tripodal ligands. Inorg. Chem. Commun. 2015, 54, 92-95. (23) Zou, L.; Feng, D.; Liu, T.-F.; Chen, Y.-P.; Yuan, S.; Wang, K.; Wang, X.; Fordham, S.; Zhou, H.-C. A versatile synthetic route for the preparation of titanium metal–organic frameworks. Chem. Sci. 2016, 7 (2), 1063-1069. (24) Song, F.; Li, W.; Sun, Y. Metal–organic frameworks and their derivatives for photocatalytic water splitting. Inorganics 2017, 5 (3), 40. (25) Zhao, T.; Han, J.; Jin, X.; Liu, Y.; Liu, M.; Duan, P. Enhanced circularly polarized luminescence from reorganized chiral emitters on the skeleton of a zeolitic imidazolate framework. Angew. Chem. 2019, 131 (15), 5032-5036. (26) Chen, S.-M.; Chang, L.-M.; Yang, X.-K.; Luo, T.; Xu, H.; Gu, Z.-G.; Zhang, J. Liquid-Phase Epitaxial Growth of Azapyrene-Based Chiral Metal–Organic Framework Thin Films for Circularly Polarized Luminescence. ACS Appl. Mater. Interfaces. 2019, 11 (34), 31421-31426. (27) Zhao, T.; Han, J.; Jin, X.; Zhou, M.; Liu, Y.; Duan, P.; Liu, M. Dual-mode induction of tunable circularly polarized luminescence from chiral metal-organic frameworks. Research 2020, 2020. (28) Zhang, C.; Yan, Z. P.; Dong, X. Y.; Han, Z.; Li, S.; Fu, T.; Zhu, Y. Y.; Zheng, Y. X.; Niu, Y. Y.; Zang, S. Q. Enantiomeric MOF crystals using helical channels as palettes with bright white circularly polarized luminescence. Adv. Mater. 2020, 32 (38), 2002914. (29) Hu, L.; Li, K.; Shang, W.; Zhu, X.; Liu, M. Emerging Cubic Chirality in γCD‐MOF for Fabricating Circularly Polarized Luminescent Crystalline Materials and the Size Effect. Angew. Chem. 2020, 132 (12), 4983-4988. (30) Satozono, H. Measurement of Circular Dichroism Spectra without Control of a Phase Modulator using Retardation Domain Analysis. Molecules 2019, 24 (7), 1418. (31) Wang, X.-Z.; Sun, M.-Y.; Huang, Z.; Xie, M.; Huang, R.; Lu, H.; Zhao, Z.; Zhou, X.-P.; Li, D. Turn-On Circularly Polarized Luminescence in Metal–Organic Frameworks. Advanced Optical Materials 2021, 9 (23), 2002096. (32) Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. Large-area synthesis of high-quality and uniform graphene films on copper foils. science 2009, 324 (5932), 1312-1314. (33) Chen, C.; Gao, L.; Gao, W.; Ge, C.; Du, X.; Li, Z.; Yang, Y.; Niu, G.; Tang, J. Circularly polarized light detection using chiral hybrid perovskite. Nat. Commun. 2019, 10 (1), 1-7. (34) Appelhans, L. N.; Hughes, L.; McKenzie, B.; Rodriguez, M.; Griego, J.; Briscoe, J.; Moorman, M.; Frederick, E.; Wright, J. B. Facile microwave synthesis of zirconium metal-organic framework thin films on gold and silicon and application to sensor functionalization. Microporous Mesoporous Mater. 2021, 323, 111133. (35) Ji, J.; Liu, B.; Huang, H.; Wang, X.; Yan, L.; Qu, S.; Liu, X.; Jiang, H.; Duan, M.; Li, Y. Nondestructive passivation of the TiO 2 electron transport layer in perovskite solar cells by the PEIE-2D MOF interfacial modified layer. J. Mater. Chem. C 2021, 9 (22), 7057-7064. (36) Kim, H.; Kim, R. M.; Namgung, S. D.; Cho, N. H.; Son, J. B.; Bang, K.; Choi, M.; Kim, S. K.; Nam, K. T.; Lee, J. W. Ultrasensitive Near‐Infrared Circularly Polarized Light Detection Using 3D Perovskite Embedded with Chiral Plasmonic Nanoparticles. Advanced Science 2022, 9 (5), 2104598. (37) Wang, L.; Xue, Y.; Cui, M.; Huang, Y.; Xu, H.; Qin, C.; Yang, J.; Dai, H.; Yuan, M. A Chiral Reduced‐Dimension Perovskite for an Efficient Flexible Circularly Polarized Light Photodetector. Angew. Chem. 2020, 132 (16), 6504-6512. (38) Zhu, D.; Jiang, W.; Ma, Z.; Feng, J.; Zhan, X.; Lu, C.; Liu, J.; Liu, J.; Hu, Y.; Wang, D.; et al. Organic donor-acceptor heterojunctions for high performance circularly polarized light detection. Nat. Commun. 2022, 13 (1), 3454. Chapter 5 5.7 References (1) Yang, X.; van der Wal, C. H.; van Wees, B. J. Detecting chirality in two-terminal electronic nanodevices. Nano Lett. 2020, 20 (8), 6148-6154. (2) Lu, H.; Wang, J.; Xiao, C.; Pan, X.; Chen, X.; Brunecky, R.; Berry, J. J.; Zhu, K.; Beard, M. C.; Vardeny, Z. V. Spin-dependent charge transport through 2D chiral hybrid lead-iodide perovskites. Sci. Adv. 2019, 5 (12), eaay0571. (3) Livache, C.; Kim, W. D.; Jin, H.; Kozlov, O. V.; Fedin, I.; Klimov, V. I. High-efficiency photoemission from magnetically doped quantum dots driven by multi-step spin-exchange Auger ionization. Nat. Photon 2022, 16 (6), 433-440. (4) Huang, Y.; Polojärvi, V.; Hiura, S.; Höjer, P.; Aho, A.; Isoaho, R.; Hakkarainen, T.; Guina, M.; Sato, S.; Takayama, J.; et al. Room-temperature electron spin polarization exceeding 90% in an opto-spintronic semiconductor nanostructure via remote spin filtering. Nat. Photon 2021, 15 (6), 475-482. (5) Zhao, B.; Gao, X.; Pan, K.; Deng, J. Chiral helical polymer/perovskite hybrid nanofibers with intense circularly polarized luminescence. ACS nano 2021, 15 (4), 7463-7471. (6) Gu, L.; Ye, W.; Liang, X.; Lv, A.; Ma, H.; Singh, M.; Jia, W.; Shen, Z.; Guo, Y.; Gao, Y. Circularly Polarized Organic Room Temperature Phosphorescence from Amorphous Copolymers. JACS 2021, 143 (44), 18527-18535. (7) Liu, R.; Feng, Z.; Cheng, C.; Li, H.; Liu, J.; Wei, J.; Yang, Z. Active Regulation of Supramolecular Chirality through Integration of CdSe/CdS Nanorods for Strong and Tunable Circular Polarized Luminescence. JACS 2022, 144 (5), 2333-2342. (8) Gao, W. B.; Imamoglu, A.; Bernien, H.; Hanson, R. Coherent manipulation, measurement and entanglement of individual solid-state spins using optical fields. Nat. Photon 2015, 9 (6), 363-373. (9) Zhan, G.; Zhang, J.; Zhang, L.; Ou, Z.; Yang, H.; Qian, Y.; Zhang, X.; Xing, Z.; Zhang, L.; Li, C. Stimulating and Manipulating Robust Circularly Polarized Photoluminescence in Achiral Hybrid Perovskites. Nano Lett. 2022. (10) Schulz, M.; Balzer, F.; Scheunemann, D.; Arteaga, O.; Lützen, A.; Meskers, S. C.; Schiek, M. Chiral excitonic organic photodiodes for direct detection of circular polarized light. Adv. Funct. Mater. 2019, 29 (16), 1900684. (11) Kou, X.; Shao, Q.; Ye, C.; Yang, G.; Zhang, W. Asymmetric Aza-Wacker-type cyclization of N-Ts hydrazine-tethered tetrasubstituted olefins: synthesis of pyrazolines bearing one quaternary or two vicinal stereocenters. JACS 2018, 140 (24), 7587-7597. (12) Xue, Y.-P.; Cao, C.-H.; Zheng, Y.-G. Enzymatic asymmetric synthesis of chiral amino acids. Chem. Soc. Rev. 2018, 47 (4), 1516-1561. (13) Zinna, F.; Albano, G.; Taddeucci, A.; Colli, T.; Aronica, L. A.; Pescitelli, G.; Di Bari, L. Emergent nonreciprocal circularly polarized emission from an organic thin film. Adv. Mater. 2020, 32 (37), 2002575. (14) MacKenzie, L. E.; Pal, R. Circularly polarized lanthanide luminescence for advanced security inks. Nat. Rev. Chem. 2021, 5 (2), 109-124. (15) He, C.; Feng, Z.; Shan, S.; Wang, M.; Chen, X.; Zou, G. Highly enantioselective photo-polymerization enhanced by chiral nanoparticles and in situ photopatterning of chirality. Nat. Commun. 2020, 11 (1), 1-9. (16) Lin, C. Y.; Zhang, D.; Zhao, Z.; Xia, Z. Covalent organic framework electrocatalysts for clean energy conversion. Adv. Mater. 2018, 30 (5), 1703646. (17) Zhong, W.; Sa, R.; Li, L.; He, Y.; Li, L.; Bi, J.; Zhuang, Z.; Yu, Y.; Zou, Z. A covalent organic framework bearing single Ni sites as a synergistic photocatalyst for selective photoreduction of CO2 to CO. JACS 2019, 141 (18), 7615-7621. (18) Chen, R.; Shi, J. L.; Ma, Y.; Lin, G.; Lang, X.; Wang, C. Designed Synthesis of a 2D Porphyrin‐Based sp2 Carbon‐Conjugated Covalent Organic Framework for Heterogeneous Photocatalysis. Angew. Chem. Int. Ed. 2019, 58 (19), 6430-6434. (19) Chen, H.; Gu, Z.-G.; Zhang, J. Chiral-Induced Ultrathin Covalent Organic Frameworks Nanosheets with Tunable Circularly Polarized Luminescence. JACS 2022. (20) Gong, W.; Zhang, W.; Son, F. A.; Yang, K.; Chen, Z.; Chen, X.; Jiang, J.; Liu, Y.; Farha, O. K.; Cui, Y. Topological strain-induced regioselective linker elimination in a chiral Zr (IV)-based metal-organic framework. Chem 2021, 7 (1), 190-201. (21) Wu, D.; Zhou, K.; Tian, J.; Liu, C.; Tian, J.; Jiang, F.; Yuan, D.; Zhang, J.; Chen, Q.; Hong, M. Induction of chirality in a metal–organic framework built from achiral precursors. Angew. Chem. 2021, 133 (6), 3124-3131. (22) Jiang, H.; Zhang, W.; Kang, X.; Cao, Z.; Chen, X.; Liu, Y.; Cui, Y. Topology-based functionalization of robust chiral Zr-based metal–organic frameworks for catalytic enantioselective hydrogenation. JACS 2020, 142 (21), 9642-9652. (23) Zhang, C.; Wang, X.; Qiu, L. Circularly polarized photodetectors based on chiral materials: a review. Front. Chem. 2021, 9, 711488. (24) Experimental demonstration of memory-enhanced quantum communication. Nature 2020, 580 (7801), 60-64. (25) Deng, Y.; Peng, F.; Lu, Y.; Zhu, X.; Jin, W.; Qiu, J.; Dong, J.; Hao, Y.; Di, D.; Gao, Y.; et al. Solution-processed green and blue quantum-dot light-emitting diodes with eliminated charge leakage. Nat. Photon 2022, 16 (7), 505-511. (26) Naaman, R.; Paltiel, Y.; Waldeck, D. H. Chiral molecules and the electron spin. Nat. Rev. Chem. 2019, 3 (4), 250-260. (27) Naaman, R.; Paltiel, Y.; Waldeck, D. H. Chiral molecules and the spin selectivity effect. J. Phys. Chem. Lett. 2020, 11 (9), 3660-3666. (28) Kim, Y.-H.; Zhai, Y.; Lu, H.; Pan, X.; Xiao, C.; Gaulding, E. A.; Harvey, S. P.; Berry, J. J.; Vardeny, Z. V.; Luther, J. M. Chiral-induced spin selectivity enables a room-temperature spin light-emitting diode. Science 2021, 371 (6534), 1129-1133. (29) Wu, Y.; Wu, X.; Zhong, Z.; Zhou, J.; Chen, J.; Guo, J.; Song, A.; Li, X.; Wu, Z.; Kang, J. Room-temperature spin injection and optical polarization in nitride-based blue and ultra-violet spin light-emitting diodes. Applied Physics Express 2020, 13 (12), 123001. (30) Itskos, G.; Harbord, E.; Clowes, S.; Clarke, E.; Cohen, L.; Murray, R.; Van Dorpe, P.; Van Roy, W. Oblique Hanle measurements of InAs∕ GaAs quantum dot spin-light emitting diodes. Appl. Phys. Lett. 2006, 88 (2), 022113. (31) Etou, K.; Hiura, S.; Park, S.; Sakamoto, K.; Takayama, J.; Subagyo, A.; Sueoka, K.; Murayama, A. Room-temperature spin-transport properties in an In 0.5 Ga 0.5 As quantum dot spin-polarized light-emitting diode. Phys. Rev. Appl. 2021, 16 (1), 014034. (32) Li, C.; Kioseoglou, G.; Van’t Erve, O.; Ware, M.; Gammon, D.; Stroud, R.; Jonker, B.; Mallory, R.; Yasar, M.; Petrou, A. Electrical spin pumping of quantum dots at room temperature. Appl. Phys. Lett. 2005, 86 (13), 132503. (33) Chye, Y.; White, M.; Johnston-Halperin, E.; Gerardot, B.; Awschalom, D.; Petroff, P. Spin injection from (Ga, Mn) As into InAs quantum dots. Phys. Rev. B 2002, 66 (20), 201301. (34) Fiederling, R.; Keim, M.; Reuscher, G. a.; Ossau, W.; Schmidt, G.; Waag, A.; Molenkamp, L. Injection and detection of a spin-polarized current in a light-emitting diode. Nature 1999, 402 (6763), 787-790. (35) Lin, J.-Y.; Hsu, F.-C.; Chang, C.-Y.; Chen, Y.-F. Self-assembled polar hole-transport monolayer for high-performance perovskite photodetectors. J. Mater. Chem. C 2021, 9 (15), 5190-5197. (36) Zou, L.; Feng, D.; Liu, T.-F.; Chen, Y.-P.; Yuan, S.; Wang, K.; Wang, X.; Fordham, S.; Zhou, H.-C. A versatile synthetic route for the preparation of titanium metal–organic frameworks. Chem. Sci. 2016, 7 (2), 1063-1069. (37) Song, F.; Li, W.; Sun, Y. Metal–organic frameworks and their derivatives for photocatalytic water splitting. Inorganics 2017, 5 (3), 40. (38) Wang, H.-P.; Yin, S.-Y.; Pan, M.; Wu, K.; Chen, L.; Zhu, Y.-X.; Hou, Y.-J. Circular dichroism enhancement by the coordination of different metal ions with a pair of chiral tripodal ligands. Inorg. Chem. Commun. 2015, 54, 92-95. (39) Chen, N.; Li, M.-X.; Yang, P.; He, X.; Shao, M.; Zhu, S.-R. Chiral coordination polymers with SHG-active and luminescence: an unusual homochiral 3D MOF constructed from achiral components. Crystal growth & design 2013, 13 (6), 2650-2660. (40) Yuan, S.; Deng, Y.-K.; Xuan, W.-M.; Wang, X.-P.; Wang, S.-N.; Dou, J.-M.; Sun, D. Spontaneous chiral resolution of a 3D (3, 12)-connected MOF with an unprecedented ttt topology consisting of cubic [Cd 4 (μ 3-OH) 4] clusters and propeller-like ligands. CrystEngComm 2014, 16 (19), 3829-3833. (41) Gil-Hernández, B.; Maclaren, J. K.; Höppe, H. A.; Pasan, J.; Sanchiz, J.; Janiak, C. Homochiral lanthanoid (iii) mesoxalate metal–organic frameworks: synthesis, crystal growth, chirality, magnetic and luminescent properties. CrystEngComm 2012, 14 (8), 2635-2644. (42) Zhao, T.; Han, J.; Jin, X.; Liu, Y.; Liu, M.; Duan, P. Enhanced circularly polarized luminescence from reorganized chiral emitters on the skeleton of a zeolitic imidazolate framework. Angew. Chem. 2019, 131 (15), 5032-5036. (43) Chen, S.-M.; Chang, L.-M.; Yang, X.-K.; Luo, T.; Xu, H.; Gu, Z.-G.; Zhang, J. Liquid-Phase Epitaxial Growth of Azapyrene-Based Chiral Metal–Organic Framework Thin Films for Circularly Polarized Luminescence. ACS Appl. Mater. Interfaces. 2019, 11 (34), 31421-31426. (44) Zhao, T.; Han, J.; Jin, X.; Zhou, M.; Liu, Y.; Duan, P.; Liu, M. Dual-mode induction of tunable circularly polarized luminescence from chiral metal-organic frameworks. Research 2020, 2020. (45) Zhang, C.; Yan, Z. P.; Dong, X. Y.; Han, Z.; Li, S.; Fu, T.; Zhu, Y. Y.; Zheng, Y. X.; Niu, Y. Y.; Zang, S. Q. Enantiomeric MOF crystals using helical channels as palettes with bright white circularly polarized luminescence. Adv. Mater. 2020, 32 (38), 2002914. (46) Hu, L.; Li, K.; Shang, W.; Zhu, X.; Liu, M. Emerging Cubic Chirality in γCD‐MOF for Fabricating Circularly Polarized Luminescent Crystalline Materials and the Size Effect. Angew. Chem. 2020, 132 (12), 4983-4988. (47) Ye, C.; Jiang, J.; Zou, S.; Mi, W.; Xiao, Y. Core–Shell Three-Dimensional Perovskite Nanocrystals with Chiral-Induced Spin Selectivity for Room-Temperature Spin Light-Emitting Diodes. JACS 2022. (48) Zhang, X.; Zhang, Y.; Zhang, H.; Quan, Y.; Li, Y.; Cheng, Y.; Ye, S. High brightness circularly polarized organic light-emitting diodes based on nondoped aggregation-induced emission (AIE)-active chiral binaphthyl emitters. Org. Lett. 2018, 21 (2), 439-443. (49) Yang, X.; van der Wal, C. H.; van Wees, B. J. Spin-dependent electron transmission model for chiral molecules in mesoscopic devices. Phys. Rev. B 2019, 99 (2), 024418. (50) Giba, A. E.; Gao, X.; Stoffel, M.; Devaux, X.; Xu, B.; Marie, X.; Renucci, P.; Jaffrès, H.; George, J.-M.; Cong, G. Spin Injection and Relaxation in p-Doped (In, Ga) As/Ga As Quantum-Dot Spin Light-Emitting Diodes at Zero Magnetic Field. Phys. Rev. Appl. 2020, 14 (3), 034017. (51) Žutić, I.; Fabian, J.; Sarma, S. D. Spintronics: Fundamentals and applications. Rev. Mod. Phys. 2004, 76 (2), 323. (52) Jiang, Z.-H.; Lin, H. Y.; Chen, Y. F. An electrical and infrared controllable color emission quantum dot light-emitting diode. AIP Advances 2022, 12 (8), 085013. (53) Baikie, I. D.; Grain, A. C.; Sutherland, J.; Law, J. Dual Mode Kelvin Probe: Featuring Ambient Pressure Photoemission Spectroscopy and Contact Potential Difference. Energy Procedia 2014, 60, 48-56. (54) Shen, T.-L.; Hu, H.-W.; Lin, W.-J.; Liao, Y.-M.; Chen, T.-P.; Liao, Y.-K.; Lin, T.-Y.; Chen, Y.-F. Coherent Förster resonance energy transfer: A new paradigm for electrically driven quantum dot random lasers. Sci. Adv. 2020, 6 (41), eaba1705. Chapter 6 6.7 References (1) Lang, X.; Chen, X.; Zhao, J. Heterogeneous visible light photocatalysis for selective organic transformations. Chem. Soc. Rev. 2014, 43 (1), 473-486. (2) Trinh, D. T. T.; Channei, D.; Chansaenpak, K.; Khanitchaidecha, W.; Nakaruk, A. Photocatalytic degradation of organic dye over bismuth vanadate–silicon dioxide–graphene oxide nanocomposite under visible light irradiation. Journal of the Australian Ceramic Society 2020, 56 (4), 1237-1241. (3) Wang, Y.; Ding, K.; Xu, R.; Yu, D.; Wang, W.; Gao, P.; Liu, B. Fabrication of BiVO4/BiPO4/GO composite photocatalytic material for the visible light-driven degradation. Journal of Cleaner Production 2020, 247, 119108. (4) Kandy, M. M.; Gaikar, V. G. Photocatalytic reduction of CO2 using CdS nanorods on porous anodic alumina support. Mater. Res. Bull. 2018, 102, 440-449. (5) Yang, J.; Guo, Y.; Jiang, R.; Qin, F.; Zhang, H.; Lu, W.; Wang, J.; Yu, J. C. High-Efficiency “Working-in-Tandem” Nitrogen Photofixation Achieved by Assembling Plasmonic Gold Nanocrystals on Ultrathin Titania Nanosheets. JACS 2018, 140 (27), 8497-8508. (6) Lim, S. Y.; Law, C. S.; Liu, L.; Markovic, M.; Hedrich, C.; Blick, R. H.; Abell, A. D.; Zierold, R.; Santos, A. Electrochemical engineering of nanoporous materials for photocatalysis: fundamentals, advances, and perspectives. Catalysts 2019, 9 (12), 988. (7) Qu, Y.; Duan, X. Progress, challenge and perspective of heterogeneous photocatalysts. Chem. Soc. Rev. 2013, 42 (7), 2568-2580. (8) Lee, H.; Park, T.-H.; Jang, D.-J. Preparation of anatase TiO 2 nanotube arrays dominated by highly reactive facets via anodization for high photocatalytic performances. New J. Chem. 2016, 40 (10), 8737-8744. (9) Lim, S. Y.; Law, C. S.; Markovic, M.; Kirby, J. K.; Abell, A. D.; Santos, A. Engineering the Slow Photon Effect in Photoactive Nanoporous Anodic Alumina Gradient-Index Filters for Photocatalysis. ACS Appl. Mater. Interfaces. 2018, 10 (28), 24124-24136. (10) Lim, S. Y.; Law, C. S.; Markovic, M.; Marsal, L. F.; Voelcker, N. H.; Abell, A. D.; Santos, A. Rational Management of Photons for Enhanced Photocatalysis in Structurally-Colored Nanoporous Anodic Alumina Photonic Crystals. ACS Applied Energy Materials 2019, 2 (2), 1169-1184. (11) Liu, L.; Lim, S. Y.; Law, C. S.; Jin, B.; Abell, A. D.; Ni, G.; Santos, A. Light-confining semiconductor nanoporous anodic alumina optical microcavities for photocatalysis. Journal of Materials Chemistry A 2019, 7 (39), 22514-22529. (12) Lim, S. Y.; Law, C. S.; Liu, L.; Markovic, M.; Abell, A. D.; Santos, A. Integrating surface plasmon resonance and slow photon effects in nanoporous anodic alumina photonic crystals for photocatalysis. Catalysis Science & Technology 2019, 9 (12), 3158-3176. (13) Zhou, X.; Liu, N.; Schmuki, P. Photocatalysis with TiO2 Nanotubes: “Colorful” Reactivity and Designing Site-Specific Photocatalytic Centers into TiO2 Nanotubes. ACS Catalysis 2017, 7 (5), 3210-3235. (14) Chiarello, G. L.; Zuliani, A.; Ceresoli, D.; Martinazzo, R.; Selli, E. Exploiting the Photonic Crystal Properties of TiO2 Nanotube Arrays To Enhance Photocatalytic Hydrogen Production. ACS Catalysis 2016, 6 (2), 1345-1353. (15) Malik, A. S.; Liu, T.; Rittiruam, M.; Saelee, T.; Da Silva, J. L. F.; Praserthdam, S.; Praserthdam, P. On a high photocatalytic activity of high-noble alloys Au–Ag/TiO2 catalysts during oxygen evolution reaction of water oxidation. Scientific Reports 2022, 12 (1), 2604. (16) Zhang, W.; Li, X.; Liu, S.; Qiu, J.; An, J.; Yao, J.; Zuo, S.; Zhang, B.; Xia, H.; Li, C. Photocatalytic Oxidation of 5-Hydroxymethylfurfural Over Interfacial-Enhanced Ag/TiO2 Under Visible Light Irradiation. ChemSusChem 2022, 15 (13), e202102158. (17) Jin, Y.; Tang, W.; Wang, J.; Chen, Z.; Ren, F.; Sun, Z.; Wang, F.; Ren, P. High photocatalytic activity of spent coffee grounds derived activated carbon-supported Ag/TiO2 catalyst for degradation of organic dyes and antibiotics. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022, 655, 130316. (18) Xia, H.; Zhu, P.; Han, C. Photocatalytic Oxidation of 5-Hydroxymethylfurfural to Furandicarboxylic Acid Over the Au-Ag/Tio2 Catalysts Under Visible Light Irradiation. Available at SSRN 4255516. (19) Zheng, Z.; Wang, T.; Han, F.; Yang, Q.; Li, B. Synthesis of Ni modified Au@ CdS core–shell nanostructures for enhancing photocatalytic coproduction of hydrogen and benzaldehyde under visible light. J. Colloid Interface Sci. 2022, 606, 47-56. (20) Song, X.; Wang, X.; Dong, W.; Qu, Q.; Wang, H.; Yang, F. Solar light-responsive Ag/CdS/TNTs (TiO2 Nanotubes) photocatalysts for enhanced CO2 photoreduction and hydrogen evolution. Inorg. Chem. Commun. 2022, 110228. (21) Singh, A.; Ahmed, A.; Sharma, A.; Sharma, C.; Paul, S.; Khosla, A.; Gupta, V.; Arya, S. Promising photocatalytic degradation of methyl orange dye via sol-gel synthesized Ag–CdS@ Pr-TiO2 core/shell nanoparticles. Physica B: Condensed Matter 2021, 616, 413121. (22) Xiong, G.; Shen, S.; Xiao, S.; Cai, C.; Zhang, P.; Tang, Z.; Li, J.; Yang, J. Well-defined Z-scheme Na2Ti3O7/Ag/CdS multidimensional heterojunctions with enhanced H2 production from seawater under visible light. Int. J. Hydrogen Energy 2022, 47 (71), 30503-30516. (23) Naikoo, G. A.; Dar, R. A.; Thomas, M.; Sheikh, M. U. D.; Khan, F. Hierarchically porous metallic silver monoliths: facile synthesis, characterization and its evaluation as an electrode material for supercapacitors. J. Mater. Sci. - Mater. Electron. 2015, 26 (4), 2403-2410. (24) Ahmad, N.; Jeffrey Kuo, C.-F.; Mustaqeem, M.; Hussien, M. K.; Chen, K.-H. Improved photocatalytic activity of novel NiAl2O4/g-C3N4 binary composite for photodegradation of 2,4-dinitrophenol and CO2 reduction via gas phase adsorption. Materials Today Physics 2023, 31, 100965. (25) Bin Mobarak, M.; Hossain, M. S.; Chowdhury, F.; Ahmed, S. Synthesis and characterization of CuO nanoparticles utilizing waste fish scale and exploitation of XRD peak profile analysis for approximating the structural parameters. Arabian Journal of Chemistry 2022, 15 (10), 104117. (26) Titkov, A. A.; Borisenko, T. A.; Logutenko, O. A. Glucose-assisted polyol synthesis of silver nanoplates and nanoprisms in the presence of oxyethylated carboxylic acid. Chimica Techno Acta 2022, 9 (3), 20229309. (27) Khan, H. M.; Mustaqeem, M.; Chen, Y.-F.; Junaid, M.; Saleh, T. A.; Akram, M. N.; Rehman, A. u.; Lateef, N. Tuning of structural and dielectric properties of X type hexaferrite through Co and Zn variation. J. Alloys Compd. 2022, 909, 164529. (28) Rangaraj, V. M.; Yoo, J.-I.; Song, J.-K.; Mittal, V. MOF-derived 3D MnO2@graphene/CNT and Ag@graphene/CNT hybrid electrode materials for dual-ion selective pseudocapacitive deionization. Desalination 2023, 550, 116369. (29) Sabbouh, M.; Nikitina, A.; Rogacheva, E.; Nebalueva, A.; Shilovskikh, V.; Sadovnichii, R.; Koroleva, A.; Nikolaev, K.; Kraeva, L.; Ulasevich, S.; et al. Sonochemical fabrication of gradient antibacterial materials based on Cu-Zn alloy. Ultrason. Sonochem. 2023, 92, 106247. (30) Vindhya, P. S.; Kavitha, V. T. A comprehensive study on photocatalytic, antimicrobial, antioxidant and cytotoxicity effects of biosynthesized pure and Ni doped CuO nanoparticles. Inorg. Chem. Commun. 2023, 150, 110472. (31) Aadil, M.; Kousar, T.; Hussain, M.; Somaily, H. H.; Abdulla, A. K.; Muhammad, E. R.; A.Al-Abbad, E.; Salam, M. A.; M.Albukhari, S.; Baamer, D. F.; et al. Generation of mesoporous n-p-n (ZnO–CuO–CeO2) heterojunction for highly efficient photodegradation of micro-organic pollutants. Ceram. Int. 2023, 49 (3), 4846-4854. (32) Wang, M.; Jin, C.; Kang, J.; Liu, J.; Tang, Y.; Li, Z.; Li, S. CuO/g-C3N4 2D/2D heterojunction photocatalysts as efficient peroxymonosulfate activators under visible light for oxytetracycline degradation: Characterization, efficiency and mechanism. Chem. Eng. J. 2021, 416, 128118. (33) Ahmad, N.; Kuo, C.-F. J.; Mustaqeem, M. Synthesis of novel CuNb2O6/g-C3N4 binary photocatalyst towards efficient visible light reduction of Cr (VI) and dyes degradation for environmental remediation. Chemosphere 2022, 298, 134153. (34) Truong, T. K.; Nguyen, T. Q.; Phuong La, H. P.; Le, H. V.; Van Man, T.; Cao, T. M.; Van Pham, V. Insight into the degradation of p-nitrophenol by visible-light-induced activation of peroxymonosulfate over Ag/ZnO heterojunction. Chemosphere 2021, 268, 129291. (35) Zhang, N.; Han, C.; Xu, Y.-J.; Foley Iv, J. J.; Zhang, D.; Codrington, J.; Gray, S. K.; Sun, Y. Near-field dielectric scattering promotes optical absorption by platinum nanoparticles. Nat. Photon 2016, 10 (7), 473-482. (36) Sambur, J. B.; Chen, T.-Y.; Choudhary, E.; Chen, G.; Nissen, E. J.; Thomas, E. M.; Zou, N.; Chen, P. Sub-particle reaction and photocurrent mapping to optimize catalyst-modified photoanodes. Nature 2016, 530 (7588), 77-80. (37) Guo, X.; Pan, G.; Fang, L.; Liu, Y.; Rui, Z. Z-Scheme CuOx/Ag/TiO2 Heterojunction as Promising Photoinduced Anticorrosion and Antifouling Integrated Coating in Seawater. Molecules 2023, 28 (1), 456. (38) Qin, H.; Zhang, Y.; He, S.; Guan, Z.; Shi, Y.; Xie, X.; Xia, D.; Li, D.; Xu, H. Increasing the migration and separation efficiencies of photogenerated carriers in CQDs/BiOCl through the point discharge effect. Appl. Surf. Sci. 2021, 562, 150214. (39) Zhou, X. T.; Liu, X. H.; Huang, X. J.; Ji, H. B. TiO2 nanotube arrays sensitized by copper (II) porphyrins with efficient interfacial charge transfer for the photocatalytic degradation of 4-nitrophenol. J Hazard Mater 2022, 422, 126869. (40) Zhang, G.; Yang, J.; Huang, Z.; Pan, G.; Xie, B.; Ni, Z.; Xia, S. Construction dual vacancies to regulate the energy band structure of ZnIn2S4 for enhanced visible light-driven photodegradation of 4-NP. J Hazard Mater 2023, 441, 129916. (41) Xiao, W.-D.; Xiao, L.-P.; Xiao, W.-Z.; Wang, Q.; Zhai, S.-R.; Sun, R.-C. The new identity of cellulose pulp: A green silver nanoparticles support for highly efficient catalytic hydrogenation of 4-nitrophenol. Journal of Cleaner Production 2022, 355. (42) Al-Malwi, S. D.; Al-Ammari, R. H.; Alshehri, A.; Narasimharao, K. Influence of Synthesis Conditions on Physicochemical and Photocatalytic Properties of Ag Containing Nanomaterials. Catalysts 2022, 12 (10). (43) Kumar, D. R.; Ranjith, K. S.; Haldorai, Y.; Kandasami, A.; Rajendra Kumar, R. T. Visible light-assisted degradation of 4-nitrophenol and methylene blue using low energy carbon ion-implanted ZnO nanorod arrays: Effect on mechanistic insights and stability. Chemosphere 2022, 287 (Pt 3), 132283. (44) Wu, Y.; Hao, W.; Li, X.; Qin, L.; Zhang, T.; Kang, S.-Z. An efficient integrated catalyst for the reduction of 4-nitrophenol in a continuous flow system: Ag nanoparticles loaded graphene nanosheets immobilized on Ti meshes. Diamond and Related Materials 2022, 126. (45) Dinari, M.; Dadkhah, F. Visible light photodegradation of 4‐nitrophenol by new high‐performance and easy recoverable Fe 3O 4 /Ag 2O‐LDH hybrid photocatalysts. Applied Organometallic Chemistry 2021, 35 (10). (46) Roshdy, A. A.; Mady, A. H.; Khalil, M. M. H.; Abo-El-Enein, S. A.; Elfadly, A. M.; Lee, Y.-I.; Yehia, F. Z. Novel polyaniline/tungsten trioxide@metal–organic framework nanocomposites for enhancing photodegradation of 4-nitrophenol. Environmental Technology & Innovation 2021, 22. (47) Duan, Y.; Gou, M.-L.; Guo, Y.; Cai, J.; Song, W.; Liu, Z.; Zhou, E. In situ hydrothermal synthesis of TiO2–RGO nanocomposites for 4-nitrophenol degradation under sunlight irradiation. Journal of Materials Research 2021, 36 (4), 906-915. (48) Matos, R.; Nunes, M. S.; Kuźniarska‐Biernacka, I.; Rocha, M.; Guedes, A.; Estrada, A. C.; Lopes, J. L.; Trindade, T.; Freire, C. Graphene@Metal Sulfide/Oxide Nanocomposites as Novel Photo‐Fenton‐like Catalysts for 4‐Nitrophenol Degradation. European Journal of Inorganic Chemistry 2021, 2021 (47), 4915-4928. (49) Murugadoss, G.; Kandhasamy, N.; Kumar, M. R.; Alanazi, A. K.; Khan, F.; Salhi, B.; Yadav, H. M. Role of the dopant (silver) inclusion on before and after core metal-oxide reaction: Application on textile dyes removal. Inorg. Chem. Commun. 2022, 137, 109186. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89477 | - |
| dc.description.abstract | 本論文致力於有機-無機混合異質結構(如金屬有機框架(MOF))在光電子器件中各個方面的應用。近年來,有機-無機混合材料(如MOFs)的研究因相對類似材料更具有吸引力而得到革命性的進展。這些特點包括規則的孔徑大小、特定的比表面積和可調控的多孔結構。科學家對
MOFs特別感興趣,因為它們可以用於開發不同的先進光電子、生物化學、能源儲存和電子納米器件。在本研究中,利用MOFs的特點,成功展示了高性能的光電子納米器件,如非揮發性記憶體、自旋光電探測器和高靈敏度的自旋發光二極體。 我們的研究工作可以總結如下: 1. 設計、製備和研究基於金屬有機框架的光學編碼和可擦除多級非揮發性柔性記憶體器件。 2. 設計、製備和研究基於手性金屬有機框架的高靈敏自旋極化柔性光電探測器。 3. 設計、製備和研究基於量子點/手性金屬有機框架異質結構的溶液處理和室溫自旋發光二極體。 4. 易於溶液加工的半導體/金屬雜化納米多孔材料;它們的高光氧化還原催化能力。 我們成功製備金屬有機框架(MOFs),這種系統由金屬和有機連接子組成。我們成功展示了基於銦基MOF薄膜組合物的柔性光電子非揮發性記憶體(NVM),該記憶體具有小於0.1 V的低偏壓、高遷移率的石墨烯層作為導電通道,以及存儲超過192個(6位存儲)不同階層的記憶狀態、超過1000次彎曲循環的機械穩定性和長達10000秒的時間穩定度。手性金屬有機框架(CMOFs)是一類新興的手性混合材料,由於其結構多樣性和靈活性、有序納米孔、成本效益和獨特的手性特徵而引起了人們的興趣。我們開發了基於無手性組成單元[(9,10-adc)]的CMOF [Sr(9,10-adc)(DMAc)2]n,用於製備具有超高探測用於製備具有超高探測度(D*高達1.83×1012 jones)、各向異性因子(gIph)高達0.38、光響應度(Rph)和光增益(η)值高達6.0×105(A/W)和1.8×106的自旋極化柔性探測器,優於所有已發表的異手性MOF探測器。我們還提出了一種替代方法,可以在不使用鐵磁接觸或磁場的情況下,在量子點(QDs)/手性金屬有機框架異質結界上實現了室溫自旋極化發光二極體。自旋極化注入層由自組裝單分子層(SAM)/手性MOF ([Sr(9,10-adc)(DMAc)2]n)薄膜組成,產生具有自旋定向的自旋極化空穴,決定圓極化電致發光(CP-EL)的極化和強度。自旋極化發光二極體以12.24%的效率發射CP-EL,為傳統QLED產生新功能提供了優秀的替代方案。我們的方法預計對於生成尚未實現的自旋光電子器件非常有幫助。基於MOFs構建的這些創新設備在光子器件的研究中具有顯著的貢獻。我們還開發了納米多孔(CuO-Ag)光氧化還原催化材料。結果表明,將銀載入CuO多孔結構可以提高CuO-Ag多孔結構的BET比表面積(48.369 m2/g)和孔徑(36.436 nm)。同時,歸功於協同效應,改善的表面積和孔隙度可以進一步顯著提高光催化效率(即對RhB和4-NP的降解率達到約99%)。我們利用高表面積和更大孔隙度的納米多孔材料作為加強活性的先進材料,為光氧化還原催化應用提供了簡單的指南。 | zh_TW |
| dc.description.abstract | This thesis is dedicated to various aspects of organic-inorganic hybrid heterostructures (like Metal Organic Framework (MOF)) regarding their applications in optoelectronics devices.
Research on organic-inorganic hybrid materials (like MOFs)) has been revolutionized in the last few years because of its attractive features compared to similar materials. These features are consistent pore size, defined surface area, and tuneable porous structures. MOFs have become particularly interesting to scientists for developing different advanced optoelectronics, biochemical, energy storage, and electronic nanodevices. In the present research work using the advantageous features of MOFs, high-performance nanodevices for optoelectronics like non-volatile memory, spin photodetector, and highly sensitive spin LEDs have been demonstrated. Our investigations are summarized into the following approaches: 1. To design, fabricate and study optically encodable and erasable multilevel non-volatile flexible memory devices based on metal-organic framework. 2. To design, fabricate and study chiral metal-organic framework based spin-polarized flexible photodetector with ultrahigh sensitivity. 3. To design, fabricate and study solution-processed and room-temperature spin light-emitting diode based on quantum dots/chiral metal-organic framework heterostructure. 4. Facile Solution-Processed Semiconductor/Metal Hybrid Nanoporous Materials; Their Highly Photoredox Catalytic Power. The Metal Organic Frameworks (MOFs) system comprising metal and organic linkers was successfully fabricated. We successfully demonstrated a low bias of less than 0.1 V and a high-mobility graphene layer as a conducting channel for flexible optoelectronic non-volatile memory (NVM) based on a composite thin film of Indium-based MOF, with features such as memory states with 192 (6-bit storage) distinct levels, mechanical stability of more than 1000 bending cycles, and stable retention for more than 10000 s. Chiral metal-organic frameworks (CMOFs), a new family of chiral hybrid materials, have piqued the interest of researchers due to their structural variety and flexibility, order nanopores, cost-effectiveness, and distinct chirality properties. We have developed CMOF [Sr(9,10-adc)(DMAc)2]n based on achiral building blocks [(9,10-adc)] to fabricate spin-polarized flexible detectors that give a detectivity (D*) as high as 1.83 × 1012 jones, anisotropy factor (gIph) is up to 0.38, photoresponsivity (Rph) and photogain (η) values of CMOFs reach up to 6.0 × 105 (A/W) and 1.8 × 106, respectively superior to all reported heterochiral MOF-based detectors. Additionally, we provided a different strategy and developed spin-polarized LEDs based on chiral metal-organic framework heterojunction and quantum dots (QDs) at room temperature without using ferromagnetic connections or magnetic fields. The spin-polarized injected layer was made of self-assembled monolayer (SAM)/Chiral-MOF ([Sr(9,10-adc)(DMAc)2]n) film, which developed spin-polarized holes with spin orientation, impacting the polarization and strength of circularly polarized electroluminescence (CP-EL). The spin-QLED emitted CP-EL at a 12.24% efficiency, providing an ideal alternative for generating new functionality for conventional QLEDs. Our approach is expected to be very valuable, allowing us to provide a universal mechanism for generating unrealized spin optoelectronic devices. These innovatively constructed devices based on MOFs significantly contribute to the ongoing study of photonic devices. We have developed nanoporous (CuO-Ag) photoredox catalysis material. The results indicate that the loading of Ag onto the CuO nanoporous improves the BET-specific surface area (48.369 m2/g) with pore size (36.436nm) of CuO-Ag nanoporous. Meanwhile, the improved surface area and porosity can further significantly enhance the photocatalytic efficiency (i.e., ≈99% degradation of RhB and 4-NP), owing to the synergy effect. Our strategy using nanoporous and high surface area with greater porosity as an advanced nanoporous material with improved activity offers a facile guideline for targeting photoredox catalysis applications. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-07T17:10:55Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-09-07T17:10:55Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Table of Contents
NTU Ph.D. Dissertation Oral Defense Approval Form i 摘要 ii Abstract iv Acknowledgments vii Dedicated ix Representative Publications x Chapter 1: Introduction 1 1.1 Overview of Inorganic Materials 1 1.2 Graphene 2 1.3 Graphene Oxide (GO) 3 1.4 Reduced Graphene Oxide (rGO) 4 1.5 Overview of Organic Materials 5 1.6 Metal-Organic Frameworks (MOFs) 6 1.7 Chiral Metal-Organic Frameworks (CMOFs) 8 1.8 Organic-Inorganic Heterostructures 9 1.9 Motivation 11 1.10 References 13 Chapter 2: Material Synthesis and Experimental Techniques 18 2.1 Synthesis of Metal-Organic Frameworks (MOFs) 18 2.2 Synthesis of Chiral Metal-Organic Frameworks (CMOFs) 19 2.3 Synthesis of SAM and ZnO Nanoparticles 19 2.4 Synthesis of Single Layer Graphene (SLG) Via Chemical Vapor Deposition 20 2.5 Thermal Evaporation Technique for the Deposition of Electrodes 22 2.6 Spin Coating Technique 23 2.8 Scanning Electron Microscopy (SEM) 24 2.9 Photoluminescence (PL) Spectroscopy 25 2.10 References 26 Chapter 3: Optically Encodable and Erasable Multilevel Non-Volatile Flexible Memory Device Based on Metal-Organic Framework 28 3.1 Introduction 28 3.2 Experimentation Section 31 3.2.1 Synthesis of In-MOF 31 3.2.2 Synthesis of MOF-rGO Nanocomposite 31 3.2.3 Growth of SLG 32 3.3 Device Fabrication 33 3.3.1 Non-Volatile Memories on SiO2 Substrate 33 3.3.2 Non-Volatile Memories on Flexible (PET) substrate 34 3.3.3 Optoelectronic Characterization 34 3.4 Results and Discussion 34 3.5 Conclusions 48 3.6 References 50 Chapter 4: Chiral Metal-Organic Framework Based Spin-Polarized Flexible Photodetector with Ultrahigh Sensitivity 57 4.1 Introduction 57 4.2 Experimental Section 60 4.2.1 Synthesis of [Sr(9,10-adc)(DMAc)2]n 60 4.2.2 Growth of SLG 60 4.3 Device Fabrication 61 4.3.1 Spin Photodetector on SiO2 Substrate 61 4.3.2 Spin Photodetector on Flexible (PET) Substrate 61 4.4 Characterization 61 4.4.1 Ab initio Electronic Structure Calculation 62 4.5 RESULTS AND DISCUSSION 62 4.6 Conclusions 79 4.7 References 81 Chapter 5: Solution-Processed and Room-Temperature Spin Light-Emitting Diode Based on Quantum Dots/Chiral Metal-Organic Framework Heterostructure 86 5.1 Introduction 86 5.2 Experimental Section 89 5.2.1 Materials 89 5.2.3 Synthesis of SAM and ZnO Materials 90 5.3 Device Fabrication Spin-QLEDs 90 5.4 Characterization 90 5.5 Results and Discussion 91 5.6 Conclusions 108 5.7 References 110 Chapter 6: Facile Solution-Processed Semiconductor/Metal Hybrid Nanoporous Materials; Their Highly Photoredox Catalytic Power 117 6.1 Introduction 117 6.2 Experimental Section 120 6.2.1 Materials 120 6.2.2 Synthesis of Photocatalyst Ag, CuO and CuO-Ag Nanoporous 120 6.3 Characterization 121 6.4 Photoactivity Testing 121 6.5 Results and Discussion 122 6.6 Conclusions 137 6.7 References 139 Chapter 7: Conclusion & Future Perspective 146 7.1 Conclusions 146 7.2 Future Perspective 149 Appendix A 150 Honors & Awards 150 Appendix B 151 Publications List 151 Appendix C 154 Invited Talks 154 Workshops & Poster Presentations 154 List of Figures Figure 1.1. Overview anddistribution of the corresponding elemental 2D materials in the periodictable.( Adopted from RSC publishing) 2 Figure 1.2: (a) Graphene Crystal Structure (b) Covalent bonding in graphene, with in-plane and out-of-plane σ- and π-orbitals produced by atomic orbital hybridization (Adopted From Chem, Cell Press) 2 Figure 1.3: Advanced significance of the GO over the last two decades. ( Adopted from Nature publishing group) 4 Figure 1.4: Atomic structure diagrams. PG to GO and fully reduced graphene oxide (trGO). (Adopted from Nature publishing group) 5 Figure 1.5: Key components for organic, flexible electronics development are illustrated schematically (Adopted from Wiley publishing). 6 Figure 1.6: Metal salt and Lingand to Synthesis MOF 8 Figure 1.7: Chiral Metal-Organic Frameworks (CMOFs) and their Applications ( Adopted from ACS publishing). 9 Figure 1.8: Organic-Inorganic heterostructures Materilas application(Adopted from Wiley Publishing) 11 Figure 2. 1: Synthesis of In-MOF……………………………………………………. 08 Figure 2.2 Synthesis scheme of Chiral MOF…………………………………………. 19 Figure 2.3 Graphene growth on copper: A Mechanism (Adopted from Wiley Publishing)…………………………………………………………………………….. 21 Figure 2.4 Experimental set up of CVD growing SLG……………………………… 22 Figure 2.5 Photograph of thermal evaporation machine……………………………... 22 Figure 2.6 Photograph of Spin Coater………………………………………………... 23 Figure 2.7 HRTEM system. Copyright @ National Taiwan University)…………….. 24 Figure 2.8. FESEM system. (Copyright @ National Taiwan University)……………. 24 Figure 2.9 Photoluminescence (PL) µ-System……………………………………….. 25 Figure 3.1. I-T characteristic of various MOF/rGO ratio 32 Figure 3.2. Schematic illustration of the different steps of the device fabrication process. 33 Figure 3.3. (a) Asymmetric unit of In-MOF (b) 3D framework in In-MOF shown along the a-axis. (c) The weak parallel-displaced π···π stacking interactions in between the neighboring odpta4- ligand in In-MOF 36 Figure 3.5 (a) UV–Vis absorption spectra of In-MOF. (b, c) Photoluminescence spectra of the In-MOF and ligand under the illumination of 374 nm laser. 37 Figure 3.6 (a) Time-resolved photoluminescence (TRPL) decay measurement for MOF (black) and MOF/rGO (blue) composite. (b) The Ids-Vg characteristic curves of the device were measured at Vds = 0.5V in dark conditions. The optical microscopy image of the respective devices is inserted in it. 38 Figure 3.7. (a) Schematic diagrams of 3D and cross-sectional views of the designed device. (b) Optical image of the fabricated non-volatile device, consisting of OTS/single-layer graphene/ MOF-rGO nanocomposite on a SiO2/Si substrate. 39 Figure 3.8. (a) Photoelectronic non-volatile memory device is depicted schematically. (b) FESEM image shows the thickness (≈ 140nm) of (MOF-rGO) nanocomposite. (c) CVD graphene Raman spectra on SiO2/p-Si substrate. (d) Photoresponse (I−T) curve of a memory device. (e) I-T characteristic of MOF under 325 nm laser. 40 Figure 3.9. (a) Photocurrent–voltage characteristics of the device under the illumination of the power density 0.165 mw/ cm2 by a 325 nm laser. (b) Transfer characteristics (IDS−VG) of graphene at VDS = 0.8 V. 42 Figure 3.10. (a) Energy band diagram, under thermal equilibrium (b) Electrons and holes are generated from MOF film under the irradiation of 325 nm laser, the electrons are trapped in the rGO and defect states, preventing the recombining of electrons and holes. (c) Under turning off the 325 nm laser, the photogenerated electrons remain in the trapped states, some causing upward shift of the Fermi level of graphene (d) Under the irradiation of 532 nm laser, the trapped electrons cause electron doping in the graphene layer. 43 Figure 3.11. Retention ability of the device write-in by the 325 nm laser (0.165 mW/cm2 for 80 s) is revealed in (a), and that of erased-out by the 532 nm laser (0.165 mW/cm2 for 80 s) is shown in (b), and the insets show the zoomed-in data. 44 Figure 3.12. (a, b) Experimental IDS–T curves, at VDS = 0.2 V and VG = −40 V, with writing for 1 s at 325 nm (0.140 mW/ cm2) and erasing for 5 s at 532 nm (0.140 mW/ cm2). 62 cycles are depicted in (a) and only 5 in (b). (c) Optically switchable devices' different levels are reproducible (d) IDS–Time curves with the device's illumination with (0.140 mW/ cm2, 532nm) every 10 s, featuring the capability to act as a multilevel memory. Curves were plotted at VG = −40 V and VDS = 0.2 V. 45 Figure 3.13. Non-volatile memory device integration onto a flexible (PET) substrate. (a) Schematic Structure of the flexible device (b) Switching performance of flexible memory device under the 325 nm laser of 0.148 mW/cm2 for 20 s and the 532 nm laser of 0.148 mW/cm2 for 5 s. (c) IDS–T curve displays small irradiation steps at 532 nm, featuring the ability to perform as a multilevel memory (5 to 20 s incremental irradiation steps) (d) Bending cycles of the flexible devices (after 10 min irradiation at 325 nm and 532 nm ). Each cycle comprised 5 s bending at a bending radius of 5.0 mm, followed by 5 s rest. 46 Figure 3.14 (a) Optical images of various bending Radii. (b) Systematic representation of various Radii (c) Performance of the device under different bending Radii (after 10 min irradiation at 325 nm and 532 nm). Each cycle comprised 5 s of bending at a bending radius of 5.0 mm, 7mm, 10mm, 14.5mm, and 25mm followed by 5 s of rest. 47 Figure 4.1. (a) Coordination environment of the Sr metal centre in 1. (b) 3D structure of compound 1(c) adc2– ligand bridged between metal-oxygen (M–O) chains 63 Figure 4.2: (a) Field Emission Scanning Electron microscopy (FESEM) image of CMOF crystals. (b) Energy dispersive spectroscopy (EDS) spectra. (c) Elemental mapping images of CMOF. 65 Figure 4.3. (a) shows the as-synthesized and simulated PXRD patterns for CMOF. (b) Thermogravimetric analysis curve for CMOF as a function of temperature. (c) SHG spectra of CMOF crystals excited by a pulsed Q-switched Nd-YAG laser at 1064 nm. (d) CD spectra of CMOF. (e) UV–vis absorption spectra of CMOF and the inserted graph is a Tauc plot. (f) PL spectra of CMOF under the CPL illumination of 405 nm laser. 67 Figure 4.4: (a, b) Photoluminescence (PL) spectra of the CMOF and ligand using the illumination of 374 nm laser. (c) LD Spectra of the CMOF crystals. 68 Figure 4.5: The PL intensity at wavelength 600 nm as a function of the linear polarizer rotation angle. The angle of λ/4 wave plate is set as +45° for LCPL (blue circles) and -45° for RCPL (black squares). 69 Figure 4.6. DFT analysis of CMOF. (a) Direct band structure. (b) Electronic structure (DOS), dashed line shows the Fermi energy level. (c, d) Wave Function Squared distribution for VBM, and CBM at point Γ, respectively. 71 Figure 4.7: (a) Depicts the real and schematic images of the Si/SiO2 substrate-based device. (b) Real image of flexible devices and schematic construction. 72 Figure 4.8: The Cross-section SEM of the device 72 Figure 4.9. (a) Illustration of the schematic and experimental set-up. (b) Raman Spectra of CVD SLG. (c) I–V characteristics of the CMOF-based spin photodetector under RCP and LCP illumination at 405 nm with an intensity of 0.15 µW/cm2 and the calculated gIph. (d)The I-T cycle under LCPL and RCPL 405nm illumination with the 0.15 µW/cm2 intensity and 0.1 V bias. (e) The response time (on/off) of the device. (f, g, h) Photoresponsivity, detectivity, and photogain were calculated under the illumination of 405 nm at 0.1 V bias. The black and blue spheres resemble the experimental data, while the solid red line indicates the theoretical plot with the best fitting of the experimental data. 75 Figure 4.10. (a) GIWAX pattern, (b) (red line) CMOF Film "Out-of-plane" ; (black line) CMOF Film "in-plane". (c) TRPL spectra of CMOF. The PL 𝜏 are calculated via biexponential fitting. 77 Figure 4.11. (a) The illustration of a flexible spin photodetector based on CMOF. (b) I–V characteristics of the flexible spin photodetector under the illumination of RCP and LCP at 405 nm with an intensity of 0.15 µW/cm2 and the calculated gIph. (c,d,e) Photoresponsivity, photogain, and detectivity were calculated under the illumination of 405 nm at 0.1 V bias. (f) Bending cycles under various bending curvatures and gIph. 78 Figure 4.12: Systematic representation of bending under various radii. 79 Figure 5.1: (a) Coordination environment around the central metal (Sr) in chiral-MOF. (b) 3D structure of chiral-MOF. 92 Figure 5.2: . (a) Simulated and synthesized PXRD patterns of chiral-MOF. (b) TA curve for chiral-MOF as a function of temperature. 93 The UV absorption spectra of chiral-MOF (Figure 5.3a) exhibit a broad UV characteristic with strong UV absorption peaks by π- π* inter-ligand transitions. The absorption peaks in the visible range are due to charge transfer between ligands and metals at transitions between intermetallic and metal.82, 83 The chiral-MOF and ligand emission spectra are depicted in Figure 5.3b; which describes the broadband emission. 93 Figure 5.3: (a) UV-Vis. Spectra of the chiral-MOF. (b) PL spectra of the chiral-MOF and ligand. 94 Figure 5.4: (a) CD spectra of the chiral-MOF. (b) Spectra of the left-handed and right-handed CPL of the chiral-MOF. 95 Figure 5.7: Spin-LEDs external quantum efficiency (EQE) based on chiral-MOF. 97 Figure 5.8: (a) Schematic illustration of spin-polarized charge injection and CP-EL emission in ITO/SAM/Chiral-MOF/QD/ZnO/Ag. (b) SEM image of the FIB cross-section of our device. (c) EL spectrum and operating device image (inset) of spin-LEDs based on ITO/SAM/Chiral-MOF/QD/ZnO/Ag. 98 Figure 5.9: (a) Spectrum of left-handed and right-handed CP-EL of spin-QLED. (b) CIE (x, y) coordinated corresponding to the PL of spin-QLED. 100 Figure 5.10: (a) Architecture of the LED without chiral-MOF layer. (b) Current-voltage (I–V) curve of ITO/SAM/QD/ZnO/Ag. (c) CPL-EL of the ITO/SAM/QD/ZnO/Ag, demonstrating no difference between RCP-EL and LCP-EL. 101 Figure 5.11: Reliability test for spin-QLED based chiral-MOF/QDs heterostructure. (a-b) Demonstrating our device possesses highly stable electroluminescence with circularly polarized light performance. With the increasing operation time (2 hour), the CPL-EL shows a negligible change after 7 days (without a magnetic field). Exhibition of high brightness with EQE 20.95% that is bright enough for CPL applications, as evident from the high CPL-EL efficiency (shown inside the graph), the black curve (LCP-EL), and the red curve (RCP-EL) spectrum, the x-axis is the wavelength (nm), and the y-axis is the EL intensity. 102 Figure 5.12: Charge and spin dynamics (a) Schematic of the optical orientation of excitons by the right-handed and left-handed circularly polarized pump. The pump (σ+) (black) has angular momentum M= +1 and creates a mj polarization, but the pump (σ -) (red) does the opposite. The probe σ+ (blue) pulse is used to detect the change in spin polarization (b) TA spectra of spin-QLED under pumped σ+ and pumped σ-, excited by a laser with a wavelength of 400 nm. (c) The spin-coherence lifetime of spin-QLED (chiral-MOF/QDs). (d) Schematic representation of the band alignment of the spin-QLED, including ITO/SAM/ Chiral-MOF, QDs (Active Layer)/ ZnO/ Ag under an external bias. 105 Figure 5.14: (a, b) Spin-coherence lifetime measured under various excitation carriers of the spin-LED at 474 nm and 623 nm wavelength. 107 Figure 5.15: Time-resolved PL of QDs under excitation of 374 nm. 107 Figure 6. 10: (a) Crystal Structures of various nanoporous samples, XRD patterns of Ag, CuO and CuO-Ag with corresponding JCPDS cards. C (b) Variation in lattice parameters (a) and unit cell volume (V). (c) Variation in particle size (D) Number of unit cells (n) and volume of particles (ν). (d) CuO and Cubic Ag structures' orientations. 123 Figure 6.11: (a) Morphology and chemical composition of Ag, CuO and CuO-Ag nanoporous. (a, b, c) FESEM images (scale bar, 10 um), (d) High energy-dispersive X-ray (EDX) spectrum, (e, f, g) TEM images (scale bar, 50 nm), (h) HRTEM image of CuO-Ag nanoporous (scale bar, 5 nm) insight SAED Pattern of CuO-Ag. (i, j, k) Size distribution histograms of Ag, CuO and CuO-Ag nanoporous materials. 125 Figure 6.12: (a-d) The energy-dispersive spectrometry elemental mapping of the as-synthesized Ag, CuO and CuO-Ag nanoporous materials. 126 Figure 6.13: High-resolution X-ray photoelectron spectroscopy (XPS) spectra (a) XPS survey spectrum CuO-Ag nanoporous materials. (b) Ag 3d, (c) Cu 2p, (d) O 1 s, (e) UV-vis diffuse reflectance spectrum (DRS) spectrum, (f) Photoluminescence (PL) spectra of CuO and CuO-Ag nanoporous materials. 128 Figure 6.14: (a) UV absorption spectra of RhB solution by the CuO-Ag nanoporous photocatalyst at various times. (b) The changes in the photodegradation performance of the Ag, CuO and CuO-Ag nanoporous materials for RhB. (c) Kinetics of RhB degradation performance of the photocatalyst. 129 Figure 6.15: Photocatalytic activity and underlying mechanism: Photocatalytic degradation of (a) RhB over Ag, CuO and CuO-Ag nanoporous materials under visible light irradiation (λ > 420 nm) for 80 minutes; (b) 4-NP over Ag, CuO and CuO-Ag nanoporous materials under visible light for 100 minutes; (c) rate constant (k) values of 4-NP with Ag, CuO and CuO-Ag nanoporous; (d) recycling photocatalytic degradation of 4-NP over CuO-Ag under visible light irradiation; (e) percentage recycling degradation of 4-NP; (f) transient photocurrent densities of Ag, CuO and CuO-Ag nanoporous; (g) Electrochemical impedance spectroscopy (EIS) Nyquist plots of Ag, CuO and CuO-Ag nanoporous materials; (h) scheme illustrating the photogenerated electron transport pathways between Ag and CuO nanoporous materials (the yellow arrow represents the photoexcitation process of electron-hole pairs; e and h in the black cycles correspond to the photogenerated electron and hole, respectively); also reactions involved. 132 Figure 6.16: (a) UV absorption spectra of 4-NP solution by the CuO-Ag nanoporous photocatalyst at various times. (b) The changes in the Ag, CuO and CuO-Ag nanoporous photodegradation performance for 4-NP. (c) Kinetics of 4-NP degradation performance of the photocatalyst. 132 Figure 6.17: XRD pattern of fresh and RhB, 4-NP used samples of CuO-Ag nanoporous material. 134 Figure 6.18: Nitrogen adsorption-desorption Isotherm of (a) Ag nanoporous material (insert pore distribution), (b) CuO nanoporous material (insert pore distribution), (c) CuO-Ag nanoporous material (insert pore distribution). 135 Figure 6.19: (a) Controlled experiments of photocatalytic degradation of 4-NP over CuO-Ag in the presence of ETDA (scavenger for holes), IPA (scavenger for hydroxyl radicals), and BQ (scavenger for superoxide radicals) under visible light irradiation. (b) EPR spectra recorded in CuO-Ag of DMPO-•OH and (c) EPR signals CuO-Ag of DMPO-•O2−. (d) simulated EPR spectra of CuO-Ag of DMPO-•OH and DMPO-•O2−. 137 List of Tables Table 3.1. A comparison of HRS-LRS ratio with other reported organic devices 48 Table 4.1: Crystal Data and Structure Refinement for 2181760. 64 Table 4.2: Summary of various devices' performance for the investigated in this study. 75 Table 5.1: Comparison of PCP-EL and CP-EL conditions of our device with the reported spin-LEDs. 100 Table 6.1: Structural and lattice parameters of the Ag, CuO and CuO-Ag nanoporous materials. 123 Table 6.2: The weight and atomic percentage of the Ag, CuO and CuO-Ag nanoporous materials. 125 Table 6.3: Comparison of the photocatalytic performance of our CuO-Ag nanoporous materials with reported materials towards photo-reduction of 4-NP under Visible Light. 133 Table 6.4. Specific surface area (SBET), pore diameter (nm), and pore volume (cm3g-1) of bare Ag, CuO and CuO-Ag nanoporous materials. 135 List of Schemes Scheme 3.1: Schematic illustration of Non-Volatile memory based on MOF-rGO….. 30 Scheme 3.2: Synthesis of In-based MOF……………………………………………... 31 Scheme 4.1 : Synthesis of chiral MOF……………………………………………….. 60 Scheme 4.2: Fabrication steps of the spin photodetector………………………………. 73 Scheme 5.1: Synthesis of chiral-MOF……………………………………………….. 89 Scheme 6.1: Schematic illustration of Synthesis CuO-Ag nanoporous Material…… 120 | - |
| dc.language.iso | en | - |
| dc.subject | 光氧化還原催化 | zh_TW |
| dc.subject | 金屬有機框架 (MOF) | zh_TW |
| dc.subject | 非伏爾特存儲器 | zh_TW |
| dc.subject | 自旋發光二極管 (Spin-LED) | zh_TW |
| dc.subject | 手性材料 | zh_TW |
| dc.subject | 柔性自旋檢測器 | zh_TW |
| dc.subject | Non-Voltilte Memory | en |
| dc.subject | Metal-Organic Frameworks (MOFs) | en |
| dc.subject | Photoredox Catalysis | en |
| dc.subject | Flexible Spin Detector | en |
| dc.subject | Chiral Materials | en |
| dc.subject | Spin Light Emitting Diode (Spin-LED) | en |
| dc.title | 新型有機-無機雜化異質結構的物理與應用 | zh_TW |
| dc.title | Physics and Application of Novel Organic-Inorganic Hybrid Heterostructures | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.coadvisor | 周必泰 | zh_TW |
| dc.contributor.coadvisor | Pi-Tai Chou | en |
| dc.contributor.oralexamcommittee | 林宮玄;朱治偉;沈志霖 | zh_TW |
| dc.contributor.oralexamcommittee | Kung-Hsuan Lin;Chih Wei Chu;Ji-Lin Shen | en |
| dc.subject.keyword | 金屬有機框架 (MOF),非伏爾特存儲器,自旋發光二極管 (Spin-LED),手性材料,柔性自旋檢測器,光氧化還原催化, | zh_TW |
| dc.subject.keyword | Metal-Organic Frameworks (MOFs),Non-Voltilte Memory,Spin Light Emitting Diode (Spin-LED),Chiral Materials,Flexible Spin Detector,Photoredox Catalysis, | en |
| dc.relation.page | 155 | - |
| dc.identifier.doi | 10.6342/NTU202301491 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-07-14 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 化學系 | - |
| dc.date.embargo-lift | 2024-12-31 | - |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 17.76 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
