Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89425
Title: 使用具資料特徵位置感知的資料分布動態預測器進行概念漂移預測
Concept Drift Prediction with Location-aware Dynamic Predictor
Authors: 林語萱
Yu-Hsuan Lin
Advisor: 林守德
Shou-De Lin
Keyword: 概念漂移,概念漂移預測,資料流學習,深度學習,注意力機制,
Concept Drift,Concept Drift Prediction,Data Stream Learning,Deep Learning,Attention Mechanism,
Publication Year : 2023
Degree: 碩士
Abstract: 在許多實際應用中,資料以資料流的形式隨時間收集並用於訓練機器學習模型。然而,在動態變化的真實環境中,資料分布常常發生變化,這種現象被稱為概念漂移。為了應對概念漂移,先前的研究主要集中在適應模型到最新的概念上。此外,在許多情況下,存在預測驅動概念漂移的潛在因素並預測未來概念的可能性。先前的研究已經處理了針對迴歸任務的真實世界概念漂移預測和針對分類任務的漸進式概念漂移預測。然而,針對分類任務的真實世界概念漂移預測的研究仍然有限。本文提出了一種新穎的方法,名為"具資料特徵位置感知的資料分布動態預測器(LA-DP)",旨在解決分類任務的真實世界概念漂移預測。LA-DP利用資料實例的特徵位置資訊與歷史資料分布趨勢來預測未來的資料分布。它通過採用編碼器-解碼器架構以及使用注意力機制來連接兩個模塊,展現出資料特徵位置感知的能力。我們還提出了一個框架,利用LA-DP預測的未來資料分布來生成未來的分類器。我們通過廣泛的實驗驗證了LA-DP相較於最先進方法的有效性。
In numerous real-world applications, streaming data is collected over time, and it is a common occurrence for the data distribution to undergo changes in nonstationary real-world environments. This phenomenon, referred to as concept drift, presents substantial challenges. Previous research has primarily concentrated on adapting models to the most recent concept to address concept drift. Additionally, there is often an opportunity to forecast the underlying factors driving concept drift and predict future concepts in many cases. Previous research has tackled concept drift prediction for regression tasks with real-world drift and classification tasks with incremental actual drift. However, research targeting real-world drift prediction for classification tasks is limited. In this paper, we propose the Location-aware Dynamic Predictor (LA-DP), a novel approach designed for real-world concept drift prediction for classification tasks. LA-DP leverages the location information and historical data distributions of data instances to predict future data distribution. It exhibits location-aware capability by incorporating an encoder-decoder architecture and employing the attention mechanism to establish connections between the two modules. We also develop a framework that utilizes LA-DP predictions to generate future classifiers. The effectiveness of LA-DP is demonstrated through extensive empirical experiments.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89425
DOI: 10.6342/NTU202301790
Fulltext Rights: 同意授權(限校園內公開)
metadata.dc.date.embargo-lift: 2025-01-01
Appears in Collections:資訊工程學系

Files in This Item:
File SizeFormat 
ntu-111-2.pdf
Access limited in NTU ip range
6.09 MBAdobe PDFView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved