請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89407完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 潘敏雄 | zh_TW |
| dc.contributor.advisor | Min-Hsiung Pan | en |
| dc.contributor.author | 林謙 | zh_TW |
| dc.contributor.author | Chien Lin | en |
| dc.date.accessioned | 2023-09-07T16:52:51Z | - |
| dc.date.available | 2025-08-14 | - |
| dc.date.copyright | 2023-09-11 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-08 | - |
| dc.identifier.citation | Abadie, C., Lalande, J., & Tcherkez, G. (2022). Exact mass GC-MS analysis: protocol, database, advantages and application to plant metabolic profiling. Plant Cell Environ., 45(10), 3171-3183.
Abdelmageed, M. E., Shehatou, G. S., Abdelsalam, R. A., Suddek, G. M., & Salem, H. A. (2019). Cinnamaldehyde ameliorates STZ-induced rat diabetes through modulation of IRS1/PI3K/AKT2 pathway and AGEs/RAGE interaction. Naunyn-Schmiedeb. Arch. Pharmacol., 392(2), 243-258. Agodi, A., Maugeri, A., Kunzova, S., Sochor, O., Bauerova, H., Kiacova, N., Barchitta, M., & Vinciguerra, M. (2018). Association of dietary patterns with metabolic syndrome: results from the Kardiovize Brno 2030 study. Nutrients, 10(7), 898. Aguilar Diaz De Leon, J., & Borges, C. R. (2020). Evaluation of oxidative stress in biological samples using the thiobarbituric acid reactive substances assay. J. Vis. Exp.(159), 10.3791/61122. Ahima, R. S. (2008). Revisiting leptin's role in obesity and weight loss. J. Clin. Invest., 118(7), 2380-2383. Ahmed, B., Sultana, R., & Greene, M. W. (2021). Adipose tissue and insulin resistance in obese. Biomed. Pharmacother., 137, 111315. Ahmed, N. (2005). Advanced glycation endproducts—role in pathology of diabetic complications. Diabetes Res. Clin. Pract., 67(1), 3-21. Akbarian, F., Rahmani, M., Tavalaee, M., Abedpoor, N., Taki, M., Ghaedi, K., & Nasr-Esfahani, M. H. (2021). Effect of different high-fat and advanced glycation end-products diets in obesity and diabetes-prone C57BL/6 mice on sperm function. Int. J. Fertil. Steril., 15(3), 226-233. Alam, M. M., Meerza, D., & Naseem, I. (2014). Protective effect of quercetin on hyperglycemia, oxidative stress and DNA damage in alloxan induced type 2 diabetic mice. Life Sci., 109(1), 8-14. Alamir, I., Niquet-Leridon, C., Jacolot, P., Rodriguez, C., Orosco, M., Anton, P. M., & Tessier, F. J. (2013). Digestibility of extruded proteins and metabolic transit of Nε-carboxymethyllysine in rats. Amino Acids, 44(6), 1441-1449. Andrikopoulos, S., Blair, A. R., Deluca, N., Fam, B. C., & Proietto, J. (2008). Evaluating the glucose tolerance test in mice. Am. J. Physiol. Endocrinol. Metab., 295(6), E1323-1332. Anuradha, C. V. (2009). Aminoacid support in the prevention of diabetes and diabetic complications. Curr. Protein Pept. Sci., 10(1), 8-17. Armougom, F., Henry, M., Vialettes, B., Raccah, D., & Raoult, D. (2009). Monitoring bacterial community of human gut microbiota reveals an increase in Lactobacillus in obese patients and Methanogens in anorexic patients. PLoS One, 4(9), e7125. Arts, I. C., & Hollman, P. C. (2005). Polyphenols and disease risk in epidemiologic studies. Am. J. Clin. Nutr., 81(1), 317S-325S. Arumugam, M., Raes, J., Pelletier, E., Le Paslier, D., Yamada, T., Mende, D. R., Fernandes, G. R., Tap, J., Bruls, T., Batto, J. M., Bertalan, M., Borruel, N., Casellas, F., Fernandez, L., Gautier, L., Hansen, T., Hattori, M., Hayashi, T., Kleerebezem, M., Kurokawa, K., et al. (2011). Enterotypes of the human gut microbiome. Nature, 473(7346), 174-180. Asnicar, F., Berry, S. E., Valdes, A. M., Nguyen, L. H., Piccinno, G., Drew, D. A., Leeming, E., Gibson, R., Le Roy, C., Khatib, H. A., Francis, L., Mazidi, M., Mompeo, O., Valles-Colomer, M., Tett, A., Beghini, F., Dubois, L., Bazzani, D., Thomas, A. M., Mirzayi, C., et al. (2021). Microbiome connections with host metabolism and habitual diet from 1,098 deeply phenotyped individuals. Nat. Med., 27(2), 321-332. Aso, Y., Inukai, T., Tayama, K., & Takemura, Y. (2000). Serum concentrations of advanced glycation endproducts are associated with the development of atherosclerosis as well as diabetic microangiopathy in patients with type 2 diabetes. Acta Diabetol., 37(2), 87-92. Ayala, A., Muñoz, M. F., & Argüelles, S. (2014). Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative Med. Cell. Longev., 2014, 360438. Bégay, V., Cirovic, B., Barker, A. J., Klopfleisch, R., Hart, D. W., Bennett, N. C., & Lewin, G. R. (2021). Immune competence and spleen size scale with colony status in the naked mole-rat. Open Biol., 12(4), 210292. Bagheri, P., Khalili, D., Seif, M., & Rezaianzadeh, A. (2021). Dynamic behavior of metabolic syndrome progression: a comprehensive systematic review on recent discoveries. BMC Endocr. Disord., 21(1), 1-14. Bai, Y. F., Wang, S. W., Wang, X. X., Weng, Y. Y., Fan, X. Y., Sheng, H., Zhu, X. T., Lou, L. J., & Zhang, F. (2019). The flavonoid-rich Quzhou Fructus Aurantii extract modulates gut microbiota and prevents obesity in high-fat diet-fed mice. Nutr. Diabetes, 9(1), 30. Bao, J., He, M. Y., Liu, Y. W., Lu, Y. J., Hong, Y. Q., Luo, H. H., Ren, Z., Zhao, S. C., & Jiang, Y. (2015). AGE/RAGE/Akt pathway contributes to prostate cancer cell proliferation by promoting Rb phosphorylation and degradation. Am. J. Cancer Res., 5(5), 1741-1750. Barcenilla, A., Pryde, S. E., Martin, J. C., Duncan, S. H., Stewart, C. S., Henderson, C., & Flint, H. J. (2000). Phylogenetic relationships of butyrate-producing bacteria from the human gut. Appl. Environ. Microbiol., 66(4), 1654-1661. Baye, E., Kiriakova, V., Uribarri, J., Moran, L. J., & De Courten, B. (2017). Consumption of diets with low advanced glycation end products improves cardiometabolic parameters: Meta-analysis of randomised controlled trials. Sci Rep, 7(1), 1-9. Bergman, E. (1990). Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol. Rev., 70(2), 567-590. Beyan, H., Riese, H., Hawa, M. I., Beretta, G., Davidson, H. W., Hutton, J. C., Burger, H., Schlosser, M., Snieder, H., & Boehm, B. O. (2012). Glycotoxin and autoantibodies are additive environmentally determined predictors of type 1 diabetes: a twin and population study. Diabetes, 61(5), 1192-1198. Bharti, S. K., Krishnan, S., Kumar, A., & Kumar, A. (2018). Antidiabetic phytoconstituents and their mode of action on metabolic pathways. Ther. Adv. Endocrinol. Metab., 9(3), 81-100. Bhattacherjee, A., & Datta, A. (2015). Mechanism of antiglycating properties of syringic and chlorogenic acids in in vitro glycation system. Food Res. Int., 77, 540-548. Bhuiyan, M. N. I., Mitsuhashi, S., Sigetomi, K., & Ubukata, M. (2017). Quercetin inhibits advanced glycation end product formation via chelating metal ions, trapping methylglyoxal, and trapping reactive oxygen species. Biosci. Biotechnol. Biochem., 81(5), 882-890. Bierhaus, A., Humpert, P. M., Morcos, M., Wendt, T., Chavakis, T., Arnold, B., Stern, D. M., & Nawroth, P. P. (2005). Understanding RAGE, the receptor for advanced glycation end products. J. Mol. Med., 83(11), 876-886. Bierhaus, A., & Nawroth, P. P. (2009). Multiple levels of regulation determine the role of the receptor for AGE (RAGE) as common soil in inflammation, immune responses and diabetes mellitus and its complications. Diabetologia, 52(11), 2251-2263. Binder, H. J. (2010). Role of colonic short-chain fatty acid transport in diarrhea. Annu. Rev. Physiol., 72, 297-313. Birlouez-Aragon, I., Saavedra, G., Tessier, F. J., Galinier, A., Ait-Ameur, L., Lacoste, F., Niamba, C. N., Alt, N., Somoza, V., & Lecerf, J. M. (2010). A diet based on high-heat-treated foods promotes risk factors for diabetes mellitus and cardiovascular diseases. Am. J. Clin. Nutr., 91(5), 1220-1226. Björntorp, P. (1990). "Portal" adipose tissue as a generator of risk factors for cardiovascular disease and diabetes. Arteriosclerosis, 10(4), 493-496. Blüher, M., Michael, M. D., Peroni, O. D., Ueki, K., Carter, N., Kahn, B. B., & Kahn, C. R. (2002). Adipose tissue selective insulin receptor knockout protects against obesity and obesity-related glucose intolerance. Dev. Cell, 3(1), 25-38. Bohlender, J. M., Franke, S., Stein, G., & Wolf, G. (2005). Advanced glycation end products and the kidney. Am. J. Physiol.-Renal Physiol., 289(4), F645-F659. Brett, J., Schmidt, A. M., Yan, S. D., Zou, Y. S., Weidman, E., Pinsky, D., Nowygrod, R., Neeper, M., Przysiecki, C., & Shaw, A. (1993). Survey of the distribution of a newly characterized receptor for advanced glycation end products in tissues. Am. J. Pathol., 143(6), 1699-1712. Brown, J. M., & Hazen, S. L. (2018). Microbial modulation of cardiovascular disease. Nat. Rev. Microbiol., 16(3), 171-181. Brownlee, M. (2001). Biochemistry and molecular cell biology of diabetic complications. Nature, 414(6865), 813-820. Bulku, E., Zinkovsky, D., Patel, P., Javia, V., Lahoti, T., Khodos, I., Stohs, S. J., & Ray, S. D. (2010). A novel dietary supplement containing multiple phytochemicals and vitamins elevates hepatorenal and cardiac antioxidant enzymes in the absence of significant serum chemistry and genomic changes. Oxidative Med. Cell. Longev., 3(2), 129-144. Cahn, F., Burd, J., Ignotz, K., & Mishra, S. (2014). Measurement of lens autofluorescence can distinguish subjects with diabetes from those without. J. Diabetes Sci. Technol., 8(1), 43-49. Cai, W., Ramdas, M., Zhu, L., Chen, X., Striker, G. E., & Vlassara, H. (2012). Oral advanced glycation end products (AGEs) promote insulin resistance and diabetes by depleting the antioxidant defenses AGE receptor-1 and sirtuin 1. Proc. Natl. Acad. Sci. U. S. A., 109(39), 15888-15893. Cai, Y., Luo, Q., Sun, M., & Corke, H. (2004). Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci., 74(17), 2157-2184. Calani, L., Dall’Asta, M., Derlindati, E., Scazzina, F., Bruni, R., & Del Rio, D. (2012). Colonic metabolism of polyphenols from coffee, green tea, and hazelnut skins. J. Clin. Gastroenterol., 46, S95-S99. Cani, P. D. (2019). Severe obesity and gut microbiota: does bariatric surgery really reset the system? Gut, 68(1), 5-6. Cani, P. D., Bibiloni, R., Knauf, C., Waget, A., Neyrinck, A. M., Delzenne, N. M., & Burcelin, R. (2008). Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes, 57(6), 1470-1481. Cao, W., Chin, Y., Chen, X., Mi, Y., Xue, C., Wang, Y., & Tang, Q. (2020). The role of gut microbiota in the resistance to obesity in mice fed a high fat diet. Int. J. Food Sci. Nutr. , 71(4), 453-463. Cao, X., Xia, Y., Zeng, M., Wang, W., He, Y., & Liu, J. (2019). Caffeic acid inhibits the formation of advanced glycation end products (AGEs) and mitigates the AGEs‐induced oxidative stress and inflammation reaction in human umbilical vein endothelial cells (HUVECs). Chem. Biodivers., 16(10), e1900174. Cefalu, W. T. (2001). Insulin resistance: cellular and clinical concepts. Exp. Biol. Med., 226(1), 13-26. Cepas, V., Collino, M., Mayo, J. C., & Sainz, R. M. (2020). Redox signaling and advanced glycation end products (AGEs) in diet-related diseases. Antioxidants, 9(2), 142. Cerf, M. E. (2013). Beta cell dysfunction and insulin resistance. Front. Endocrinol., 4, 37. Chang, Y. C., Yu, Y. H., Shew, J. Y., Lee, W. J., Hwang, J. J., Chen, Y. H., Chen, Y. R., Wei, P. C., Chuang, L. M., & Lee, W. H. (2013). Deficiency of NPGPx, an oxidative stress sensor, leads to obesity in mice and human. EMBO Mol. Med., 5(8), 1165-1179. Chen, B., Lam, K. S. L., Wang, Y., Wu, D., Lam, M. C., Shen, J., Wong, L., Hoo, R. L. C., Zhang, J., & Xu, A. (2006). Hypoxia dysregulates the production of adiponectin and plasminogen activator inhibitor-1 independent of reactive oxygen species in adipocytes. Biochem. Biophys. Res. Commun., 341(2), 549-556. Chuah, Y. K., Basir, R., Talib, H., Tie, T. H., & Nordin, N. (2013). Receptor for advanced glycation end products and its involvement in inflammatory diseases. Int. J. Inflamm., 2013, 403460. Chuang, Y. C., Wu, M. S., Wu, T. H., Su, Y. K., & Lee, Y. M. (2012). Pyridoxamine ameliorates the effects of advanced glycation end products on subtotal nephrectomy induced chronic renal failure rats. J. Funct. Food, 4(3), 679-686. Chusyd, D. E., Wang, D., Huffman, D. M., & Nagy, T. R. (2016). Relationships between rodent white adipose fat pads and human white adipose fat depots. Front. Nutr., 3, 10. Clarke, R. E., Dordevic, A. L., Tan, S. M., Ryan, L., & Coughlan, M. T. (2016). Dietary advanced glycation end products and risk factors for chronic disease: a systematic review of randomised controlled trials. Nutrients, 8(3), 125. Combs, T. P., Berg, A. H., Obici, S., Scherer, P. E., & Rossetti, L. (2001). Endogenous glucose production is inhibited by the adipose-derived protein Acrp30. J. Clin. Invest., 108(12), 1875-1881. Cook, S., & Sellin, J. (1998). Short chain fatty acids in health and disease. Aliment. Pharmacol. Ther., 12(6), 499-507. Cordova, R., Knaze, V., Viallon, V., Rust, P., Schalkwijk, C. G., Weiderpass, E., Wagner, K. H., Mayen-Chacon, A. L., Aglago, E. K., Dahm, C. C., Overvad, K., Tj ønneland, A., Halkjaer, J., Mancini, F. R., Boutron-Ruault, M. C., Fagherazzi, G., Katzke, V., Kühn, T., Schulze, M. B., Boeing, H., Gunter, M. J., Jenab, M., Skeie, G., Rylander, C., Borch, K. B., Trichopoulou, A., Karakatsani, A., Thriskos, P., Masala, G., Krogh, V., Panico, S., Tumino, R., Ricceri, F., Spijkerman, A., Boer, J., Quirós, J. R., Agudo, A., Redondo-Sánchez, D., Amiano, P., Barricarte, A., Gómez-Gómez, J-H., Ramne, S., Sonestedt, E., Johansson, I., Esberg, A., Tong, T., Aune, D., Tsilidis, K. K., & Heinz Freisling (2020). Dietary intake of advanced glycation end products (AGEs) and changes in body weight in European adults. Eur. J. Nutr., 59(7), 2893-2904. Coughlan, M. T., Thorburn, D. R., Penfold, S. A., Laskowski, A., Harcourt, B. E., Sourris, K. C., Tan, A. L., Fukami, K., Thallas-Bonke, V., & Nawroth, P. P. (2009). RAGE-induced cytosolic ROS promote mitochondrial superoxide generation in diabetes. J. Am. Soc. Nephrol., 20(4), 742-752. Coughlan, M. T., Yap, F. Y., Tong, D. C., Andrikopoulos, S., Gasser, A., Thallas-Bonke, V., Webster, D. E., Miyazaki, J., Kay, T. W., Slattery, R. M., Kaye, D. M., Drew, B. G., Kingwell, B. A., Fourlanos, S., Groop, P. H., Harrison, L. C., Knip, M., & Forbes, J. M. (2011). Advanced glycation end products are direct modulators of β-cell function. Diabetes, 60(10), 2523-2532. Crespy, V., Morand, C., Besson, C., Manach, C., Demigne, C., & Remesy, C. (2002). Quercetin, but not its glycosides, is absorbed from the rat stomach. J. Agric. Food Chem., 50(3), 618-621. Cueva, C., Gil-Sánchez, I., Ayuda-Durán, B., González-Manzano, S., González-Paramás, A. M., Santos-Buelga, C., Bartolomé, B., & Moreno-Arribas, M. V. (2017). An integrated view of the effects of wine polyphenols and their relevant metabolites on gut and host health. Molecules, 22(1), 99. Dawson, A., Holdsworth, C., & Webb, J. (1964). Absorption of short chain fatty acids in man. Proc. Soc. Exp. Biol. Med., 117(1), 97-100. de Oliveira, F. C., Coimbra, J. S. d. R., de Oliveira, E. B., Zuñiga, A. D. G., & Rojas, E. E. G. (2016). Food protein-polysaccharide conjugates obtained via the Maillard reaction: A review. Crit. Rev. Food Sci. Nutr., 56(7), 1108-1125. Delgado-Andrade, C. (2016). Carboxymethyl-lysine: thirty years of investigation in the field of AGE formation. Food Funct., 7(1), 46-57. Delgado-Andrade, C., de la Cueva, S. P., Peinado, M. J., Rufián-Henares, J. Á., Navarro, M. P., & Rubio, L. A. (2017). Modifications in bacterial groups and short chain fatty acid production in the gut of healthy adult rats after long-term consumption of dietary Maillard reaction products. Food Res. Int., 100(Pt 1), 134-142. Delgado-Andrade, C., Seiquer, I., Haro, A., Castellano, R., & Navarro, M. P. (2010). Development of the Maillard reaction in foods cooked by different techniques. Intake of Maillard-derived compounds. Food Chem., 122(1), 145-153. Delgado-Andrade, C., Tessier, F. J., Niquet-Leridon, C., Seiquer, I., & Pilar Navarro, M. (2012). Study of the urinary and faecal excretion of N ε-carboxymethyllysine in young human volunteers. Amino acids, 43(2), 595-602. Dembinska-Kiec, A., Mykkänen, O., Kiec-Wilk, B., & Mykkänen, H. (2008). Antioxidant phytochemicals against type 2 diabetes. Br. J. Nutr. , 99(E-S1), ES109-ES117. Demigné, C., Morand, C., Levrat, M. A., Besson, C., Moundras, C., & Rémésy, C. (1995). Effect of propionate on fatty acid and cholesterol synthesis and on acetate metabolism in isolated rat hepatocytes. Br. J. Nutr., 74(2), 209-219. Del Rio, D., Stewart, A. J., & Pellegrini, N. (2005). A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr. Metab. Cardiovasc. Dis., 15(4), 316-328. Dhanya, R., & Jayamurthy, P. (2020). In vitro evaluation of antidiabetic potential of hesperidin and its aglycone hesperetin under oxidative stress in skeletal muscle cell line. Cell Biochem. Funct., 38(4), 419-427. Dimitriadis, G., Mitrou, P., Lambadiari, V., Maratou, E., & Raptis, S. A. (2011). Insulin effects in muscle and adipose tissue. Diabetes Res. Clin. Pract., 93, S52-S59. Dominika, Ś., Arjan, N., Karyn, R. P., & Henryk, K. (2011). The study on the impact of glycated pea proteins on human intestinal bacteria. Int. J. Food Microbiol., 145(1), 267-272. Domínguez Avila, J. A., Rodrigo García, J., González Aguilar, G. A., & de la Rosa, L. A. (2017). The antidiabetic mechanisms of polyphenols related to increased glucagon-like peptide-1 (GLP1) and insulin signaling. Molecules, 22(6). Douglas, G. M., Maffei, V. J., Zaneveld, J. R., Yurgel, S. N., Brown, J. R., Taylor, C. M., Huttenhower, C., & Langille, M. G. I. (2020). PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol., 38(6), 685-688. Dresner, A., Laurent, D., Marcucci, M., Griffin, M. E., Dufour, S., Cline, G. W., Slezak, L. A., Andersen, D. K., Hundal, R. S., & Rothman, D. L. (1999). Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity. J. Clin. Invest., 103(2), 253-259. Duthie, G., Pedersen, M., Gardner, P., Morrice, P., Jenkinson, A., McPhail, D., & Steele, G. (1998). The effect of whisky and wine consumption on total phenol content and antioxidant capacity of plasma from healthy volunteers. Eur. J. Clin. Nutr., 52(10), 733-736. Eguchi, N., Vaziri, N. D., Dafoe, D. C., & Ichii, H. (2021). The role of oxidative stress in pancreatic β cell dysfunction in diabetes. Int. J. Mol. Sci., 22(4), 1509. Evans, C. C., LePard, K. J., Kwak, J. W., Stancukas, M. C., Laskowski, S., Dougherty, J., Moulton, L., Glawe, A., Wang, Y., & Leone, V. (2014). Exercise prevents weight gain and alters the gut microbiota in a mouse model of high fat diet-induced obesity. PLoS One, 9(3), e92193. Fasshauer, M., & Blüher, M. (2015). Adipokines in health and disease. Trends Pharmacol. Sci., 36(7), 461-470. Ferrannini, E. (2010). The stunned β cell: a brief history. Cell Metab., 11(5), 349-352. Finot, P. A., & Magnenat, E. (1981). Metabolic transit of early and advanced Maillard products. Prog. Food Nutr. Sci., 5(1-6), 193-207. Florez, J. (2008). Newly identified loci highlight beta cell dysfunction as a key cause of type 2 diabetes: where are the insulin resistance genes? Diabetologia, 51(7), 1100-1110. Foley, K. P., Zlitni, S., Denou, E., Duggan, B. M., Chan, R. W., Stearns, J. C., & Schertzer, J. D. (2018). Long term but not short term exposure to obesity related microbiota promotes host insulin resistance. Nat. Commun., 9(1), 4681. Forbes, J. M., Cooper, M. E., Oldfield, M. D., & Thomas, M. C. (2003). Role of advanced glycation end products in diabetic nephropathy. J. Am. Soc. Nephrol., 14(8 Suppl 3), S254-S258. Foster, M. T., & Pagliassotti, M. J. (2012). Metabolic alterations following visceral fat removal and expansion: Beyond anatomic location. Adipocyte, 1(4), 192-199. Fu, X., Liu, Z., Zhu, C., Mou, H., & Kong, Q. (2019). Nondigestible carbohydrates, butyrate, and butyrate-producing bacteria. Crit. Rev. Food Sci. Nutr., 59(sup1), S130-S152. Gao, Y., Bielohuby, M., Fleming, T., Grabner, G. F., Foppen, E., Bernhard, W., Guzman-Ruiz, M., Layritz, C., Legutko, B., Zinser, E., Garcia-Caceres, C., Buijs, R. M., Woods, S. C., Kalsbeek, A., Seeley, R. J., Nawroth, P. P., Bidlingmaier, M., Tschop, M. H., & Yi, C. X. (2017). Dietary sugars, not lipids, drive hypothalamic inflammation. Mol. Metab., 6(8), 897-908. Gao, Z., Yin, J., Zhang, J., Ward, R. E., Martin, R. J., Lefevre, M., Cefalu, W. T., & Ye, J. (2009). Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes, 58(7), 1509-1517. Gastaldelli, A., Gaggini, M., & DeFronzo, R. A. (2017). Role of adipose tissue insulin resistance in the natural history of type 2 diabetes: results from the San Antonio Metabolism Study. Diabetes, 66(4), 815-822. Gee, J. M., DuPont, M. S., Rhodes, M. J., & Johnson, I. T. (1998). Quercetin glucosides interact with the intestinal glucose transport pathway. Free Radic. Biol. Med., 25(1), 19-25. George, K., & Alberti, M. M. (1998). Impaired glucose tolerance: what are the clinical implications? Diabetes Res. Clin. Pract., 40, S3-S8. Geraldes, P., & King, G. L. (2010). Activation of protein kinase C isoforms and its impact on diabetic complications. Circ.Res., 106(8), 1319-1331. Goldberg, T., Cai, W., Peppa, M., Dardaine, V., Baliga, B. S., Uribarri, J., & Vlassara, H. (2004). Advanced glycoxidation end products in commonly consumed foods. J. Am. Diet. Assoc., 104(8), 1287-1291. González, I., Morales, M. A., & Rojas, A. (2020). Polyphenols and AGEs/RAGE axis. Trends and challenges. Food Res. Int., 129, 108843. Graf, B. A., Milbury, P. E., & Blumberg, J. B. (2005). Flavonols, flavones, flavanones, and human health: epidemiological evidence. J. Med. Food, 8(3), 281-290. Greaves, P. (2011). Histopathology of preclinical toxicity studies: interpretation and relevance in drug safety evaluation: Academic Press. Guimarães, E. L., Empsen, C., Geerts, A., & van Grunsven, L. A. (2010). Advanced glycation end products induce production of reactive oxygen species via the activation of NADPH oxidase in murine hepatic stellate cells. J. Hepatol., 52(3), 389-397. Guo, J. J., Hsieh, H. Y., & Hu, C. H. (2009). Chain-breaking activity of carotenes in lipid peroxidation: A theoretical study. J. Phys. Chem. B, 113(47), 15699-15708. Guo, X. D., Zhang, D. Y., Gao, X. J., Parry, J., Liu, K., Liu, B. L., & Wang, M. (2013). Quercetin and quercetin-3-O-glucuronide are equally effective in ameliorating endothelial insulin resistance through inhibition of reactive oxygen species-associated inflammation. Mol. Nutr. Food Res., 57(6), 1037-1045. Habtemariam, S. (2011). α-glucosidase inhibitory activity of kaempferol-3-O-rutinoside. Nat. Prod. Commun., 6(2), 201-203.. Hall, A. P., Elcombe, C. R., Foster, J. R., Harada, T., Kaufmann, W., Knippel, A., Küttler, K., Malarkey, D. E., Maronpot, R. R., Nishikawa, A., Nolte, T., Schulte, A., Strauss, V., & York, M. J. (2012). Liver hypertrophy: a review of adaptive (adverse and non-adverse) changes—conclusions from the 3rd international ESTP expert workshop. Toxicol. Pathol., 40(7), 971-994. Han, K., Jin, W., Mao, Z., Dong, S., Zhang, Q., Yang, Y., Chen, B., Wu, H., & Zeng, M. (2018). Microbiome and butyrate production are altered in the gut of rats fed a glycated fish protein diet. J. Funct. Food., 47, 423-433. Hanhineva, K., Törrönen, R., Bondia-Pons, I., Pekkinen, J., Kolehmainen, M., Mykkänen, H., & Poutanen, K. (2010). Impact of dietary polyphenols on carbohydrate metabolism. Int. J. Mol. Sci., 11(4), 1365-1402. He, C., Sabol, J., Mitsuhashi, T., & Vlassara, H. (1999). Dietary glycotoxins: inhibition of reactive products by aminoguanidine facilitates renal clearance and reduces tissue sequestration. Diabetes, 48(6), 1308-1315. He, C. J., Koschinsky, T., Buenting, C., & Vlassara, H. (2001). Presence of diabetic complications in type 1 diabetic patients correlates with low expression of mononuclear cell AGE-receptor-1 and elevated serum AGE. Mol. Med., 7(3), 159-168. Hellwig, M., Bunzel, D., Huch, M., Franz, C. M., Kulling, S. E., & Henle, T. (2015). Stability of individual Maillard reaction products in the presence of the human colonic microbiota. J. Agric. Food Chem., 63(30), 6723-6730. Hellwig, M., Matthes, R., Peto, A., Löbner, J., & Henle, T. (2014). N-ε-fructosyllysine and N-ε-carboxymethyllysine, but not lysinoalanine, are available for absorption after simulated gastrointestinal digestion. Amino Acids, 46(2), 289-299. Helou, C., Denis, S., Spatz, M., Marier, D., Rame, V., Alric, M., Tessier, F. J., & Gadonna-Widehem, P. (2015). Insights into bread melanoidins: fate in the upper digestive tract and impact on the gut microbiota using in vitro systems. Food Funct., 6(12), 3737-3745. Hidalgo, F. J., & Zamora, R. (2005). Interplay between the maillard reaction and lipid peroxidation in biochemical systems. Ann. N. Y. Acad. Sci., 1043(1), 319-326. Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., Morelli, L., Canani, R. B., Flint, H. J., & Salminen, S. (2014). Expert consensus document: The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 11(8), 506-514. Hofmann, S., Dong, H. J., Li, Z., Cai, W., Altomonte, J., Thung, S., Zeng, F., Fisher, E., & Vlassara, H. (2002). Improved insulin sensitivity is associated with restricted intake of dietary glycoxidation products in the db/db mouse. Diabetes, 51(7), 2082-2089. Holz, G. G. t., Leech, C. A., & Habener, J. F. (1995). Activation of a cAMP-regulated Ca(2+)-signaling pathway in pancreatic beta-cells by the insulinotropic hormone glucagon-like peptide-1. J. Biol. Chem., 270(30), 17749-17757. Horie, K., Miyata, T., Maeda, K., Miyata, S., Sugiyama, S., Sakai, H., van Ypersole de Strihou, C., Monnier, V. M., Witztum, J. L., & Kurokawa, K. (1997). Immunohistochemical colocalization of glycoxidation products and lipid peroxidation products in diabetic renal glomerular lesions. Implication for glycoxidative stress in the pathogenesis of diabetic nephropathy. J. Clin. Invest., 100(12), 2995-3004. Horie, M., Miura, T., Hirakata, S., Hosoyama, A., Sugino, S., Umeno, A., Murotomi, K., Yoshida, Y., & Koike, T. (2017). Comparative analysis of the intestinal flora in type 2 diabetes and nondiabetic mice. Exp. Anim., 66(4), 405-416. Hotta, K., Funahashi, T., Arita, Y., Takahashi, M., Matsuda, M., Okamoto, Y., Iwahashi, H., Kuriyama, H., Ouchi, N., Maeda, K., Nishida, M., Kihara, S., Sakai, N., Nakajima, T., Hasegawa, K., Muraguchi, M., Ohmoto, Y., Nakamura, T., Yamashita, S., Hanafusa, T., & Matsuzawa, Y. (2000). Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler. Thromb. Vasc. Biol., 20(6), 1595-1599. Hoy, R. C., D'Erminio, D. N., Krishnamoorthy, D., Natelson, D. M., Laudier, D. M., Illien-Jünger, S., & Iatridis, J. C. (2020). Advanced glycation end products cause RAGE-dependent annulus fibrosus collagen disruption and loss identified using in situ second harmonic generation imaging in mice intervertebral disk in vivo and in organ culture models. JOR. Spine, 3(4), e1126. Huang, F., Zhao, R., Xia, M., & Shen, G. X. (2020). Impact of cyanidin-3-glucoside on gut microbiota and relationship with metabolism and inflammation in high fat-high sucrose diet-induced insulin resistant mice. Microorganisms, 8(8), 1238. Huang, Q., Chai, W. M., Ma, Z. Y., Ou-Yang, C., Wei, Q. M., Song, S., Zou, Z. R., & Peng, Y. Y. (2019). Inhibition of α-glucosidase activity and non-enzymatic glycation by tannic acid: Inhibitory activity and molecular mechanism. Int. J. Biol. Macromol., 141, 358-368. Hung, H. C., Joshipura, K. J., Jiang, R., Hu, F. B., Hunter, D., Smith-Warner, S. A., Colditz, G. A., Rosner, B., Spiegelman, D., & Willett, W. C. (2004). Fruit and vegetable intake and risk of major chronic disease. J. Natl. Cancer Inst., 96(21), 1577-1584. Ibrahim, K. S., Bourwis, N., Dolan, S., Lang, S., Spencer, J., & Craft, J. A. (2021). Characterisation of gut microbiota of obesity and type 2 diabetes in a rodent model. Biosci. Microbiota Food Health, 40(1), 65-74. Iram, A., Alam, T., Khan, J. M., Khan, T. A., Khan, R. H., & Naeem, A. (2013). Molten globule of hemoglobin proceeds into aggregates and advanced glycated end products. PLoS One, 8(8), e72075. Kahn, S. E., Hull, R. L., & Utzschneider, K. M. (2006). Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature, 444(7121), 840-846. Kershaw, E. E., Hamm, J. K., Verhagen, L. A., Peroni, O., Katic, M., & Flier, J. S. (2006). Adipose triglyceride lipase: function, regulation by insulin, and comparison with adiponutrin. Diabetes, 55(1), 148-157. Khangholi, S., Majid, F. A. A., Berwary, N. J. A., Ahmad, F., & Abd Aziz, R. B. (2016). The mechanisms of inhibition of advanced glycation end products formation through polyphenols in hyperglycemic condition. Planta Med., 82(01/02), 32-45. Kim, K. S., & Jang, H. J. (2015). Medicinal plants qua glucagon-like peptide-1 secretagogue via intestinal nutrient sensors. Evid.-based Complement Altern. Med., 2015, 171742. Koh, L. W., Wong, L. L., Loo, Y. Y., Kasapis, S., & Huang, D. (2010). Evaluation of different teas against starch digestibility by mammalian glycosidases. J. Agric. Food Chem., 58(1), 148-154. Koschinsky, T., He, C. J., Mitsuhashi, T., Bucala, R., Liu, C., Buenting, C., Heitmann, K., & Vlassara, H. (1997). Orally absorbed reactive glycation products (glycotoxins): an environmental risk factor in diabetic nephropathy. Proc. Natl. Acad. Sci. U. S. A., 94(12), 6474-6479. Kosmopoulos, M., Drekolias, D., Zavras, P. D., Piperi, C., & Papavassiliou, A. G. (2019). Impact of advanced glycation end products (AGEs) signaling in coronary artery disease. Biochim. Biophys. Acta-Mol. Basis Dis., 1865(3), 611-619. Kunutsor, S. K., Zaccardi, F., Karppi, J., Kurl, S., & Laukkanen, J. A. (2017). Is high serum LDL/HDL cholesterol ratio an emerging risk factor for sudden cardiac death? Findings from the KIHD study. J. Atheroscler. Thromb., 24(6), 600-608. Lapolla, A., Traldi, P., & Fedele, D. (2005). Importance of measuring products of non-enzymatic glycation of proteins. Clin. Biochem., 38(2), 103-115. Larsen, N., Vogensen, F. K., Van Den Berg, F. W., Nielsen, D. S., Andreasen, A. S., Pedersen, B. K., Al-Soud, W. A., Sørensen, S. J., Hansen, L. H., & Jakobsen, M. (2010). Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One, 5(2), e9085. Le Chatelier, E., Nielsen, T., Qin, J., Prifti, E., Hildebrand, F., Falony, G., Almeida, M., Arumugam, M., Batto, J.-M., & Kennedy, S. (2013). Richness of human gut microbiome correlates with metabolic markers. Nature, 500(7464), 541-546. Le, N. A. (2014). Lipoprotein-associated oxidative stress: a new twist to the postprandial hypothesis. Int. J. Mol. Sci., 16(1), 401-419. Lee, D., Park, J. Y., Lee, S., & Kang, K. S. (2021). In vitro studies to assess the α-glucosidase inhibitory activity and insulin secretion effect of isorhamnetin 3-o-glucoside and quercetin 3-o-glucoside isolated from Salicornia herbacea. Processes, 9(3), 483. Lee, M. J., Wu, Y., & Fried, S. K. (2013). Adipose tissue heterogeneity: implication of depot differences in adipose tissue for obesity complications. Mol. Aspects Med., 34(1), 1-11. Leitzmann, C. (2016). Characteristics and health benefits of phytochemicals. Forsch. Komplement.med., 23(2), 69-74. Lenzen, S. (2008). Oxidative stress: the vulnerable β-cell. Biochem. Soc. Trans., 36(3), 343-347. Lesschaeve, I., & Noble, A. C. (2005). Polyphenols: factors influencing their sensory properties and their effects on food and beverage preferences. Am. J. Clin. Nutr., 81(1), 330S-335S. Leung, C., Herath, C. B., Jia, Z., Andrikopoulos, S., Brown, B. E., Davies, M. J., Rivera, L. R., Furness, J. B., Forbes, J. M., & Angus, P. W. (2016). Dietary advanced glycation end-products aggravate non-alcoholic fatty liver disease. World J. Gastroenterol., 22(35), 8026-8040. Ley, R. E., Bäckhed, F., Turnbaugh, P., Lozupone, C. A., Knight, R. D., & Gordon, J. I. (2005). Obesity alters gut microbial ecology. Proc. Natl. Acad. Sci. U. S. A. , 102(31), 11070-11075. Li, D., Mitsuhashi, S., & Ubukata, M. (2012). Protective effects of hesperidin derivatives and their stereoisomers against advanced glycation end-products formation. Pharm. Biol., 50(12), 1531-1535. Li, J., & Schmidt, A. M. (1997). Characterization and functional analysis of the promoter of RAGE, the receptor for advanced glycation end products. J. Biol. Chem., 272(26), 16498-16506. Li, M., Zeng, M., He, Z., Zheng, Z., Qin, F., Tao, G., Zhang, S., & Chen, J. (2015). Effects of long-term exposure to free Nε-(carboxymethyl)lysine on rats fed a high-fat diet. J. Agric. Food Chem., 63(51), 10995-11001. Li, X., Zheng, T., Sang, S., & Lv, L. (2014). Quercetin inhibits advanced glycation end product formation by trapping methylglyoxal and glyoxal. J. Agric. Food Chem., 62(50), 12152-12158. Lim, M., Park, L., Shin, G., Hong, H., Kang, I., & Park, Y. (2008). Induction of apoptosis of Beta cells of the pancreas by advanced glycation end-products, important mediators of chronic complications of diabetes mellitus. Ann. N. Y. Acad. Sci., 1150(1), 311-315. Lin, N., Zhang, H., & Su, Q. (2012). Advanced glycation end-products induce injury to pancreatic beta cells through oxidative stress. Diabetes Metab., 38(3), 250-257. Lin, R., Liu, W., Piao, M., & Zhu, H. (2017). A review of the relationship between the gut microbiota and amino acid metabolism. Amino Acids, 49(12), 2083-2090. Liu, D., Zhen, W., Yang, Z., Carter, J. D., Si, H., & Reynolds, K. A. (2006). Genistein acutely stimulates insulin secretion in pancreatic β-cells through a cAMP-dependent protein kinase pathway. Diabetes, 55(4), 1043-1050. Liu, T. H., Wang, J., Zhang, C. Y., Zhao, L., Sheng, Y. Y., Tao, G. S., & Xue, Y. Z. (2023). Gut microbial characteristical comparison reveals potential anti-aging function of Dubosiella newyorkensis in mice. Front. Endocrinol., 14, 1133167. Liu, Y., He, X. Q., Huang, X., Ding, L., Xu, L., Shen, Y. T., Zhang, F., Zhu, M. B., Xu, B. H., & Qi, Z. Q. (2013). Resveratrol protects mouse oocytes from methylglyoxal-induced oxidative damage. PLoS One, 8(10), e77960. Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M., & Kroemer, G. (2013). The hallmarks of aging. Cell, 153(6), 1194-1217. Loubet Filho, P. S., Baseggio, A. M., Vuolo, M. M., Reguengo, L. M., Telles Biasoto, A. C., Correa, L. C., Junior, S. B., Alves Cagnon, V. H., Betim Cazarin, C. B., & Maróstica Júnior, M. R. (2022). Gut microbiota modulation by jabuticaba peel and its effect on glucose metabolism via inflammatory signaling. Curr. Res. Nutr. Food Sci., 5, 382-391. Luevano-Contreras, C., & Chapman-Novakofski, K. (2010). Dietary advanced glycation end products and aging. Nutrients, 2(12), 1247-1265. Lv, L., Shao, X., Chen, H., Ho, C. T., & Sang, S. (2011). Genistein inhibits advanced glycation end product formation by trapping methylglyoxal. Chem. Res. Toxicol., 24(4), 579-586. Ma, G., & Chen, Y. (2020). Polyphenol supplementation benefits human health via gut microbiota: A systematic review via meta-analysis. J. Funct. Food., 66, 103829. Macfarlane, S., & Macfarlane, G. T. (2003). Regulation of short-chain fatty acid production. Proc. Nutr. Soc., 62(1), 67-72. Maeda, N., Shimomura, I., Kishida, K., Nishizawa, H., Matsuda, M., Nagaretani, H., Furuyama, N., Kondo, H., Takahashi, M., & Arita, Y. (2002). Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nat. Med., 8(7), 731-737. Manach, C., Scalbert, A., Morand, C., Rémésy, C., & Jiménez, L. (2004). Polyphenols: food sources and bioavailability. Am. J. Clin. Nutr., 79(5), 727-747. Manach, C., Williamson, G., Morand, C., Scalbert, A., & Rémésy, C. (2005). Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am. J. Clin. Nutr., 81(1), 230S-242S. Manning, B. D., & Toker, A. (2017). AKT/PKB signaling: navigating the network. Cell, 169(3), 381-405. Marungruang, N., Fåk, F., & Tareke, E. (2016). Heat-treated high-fat diet modifies gut microbiota and metabolic markers in apoe−/− mice. Nutr. Metab., 13(22), 1-11. Marín, L., Miguélez, E. M., Villar, C. J., & Lombó, F. (2015). Bioavailability of dietary polyphenols and gut microbiota metabolism: antimicrobial properties. Biomed Res. Int., 2015, 905215. Maslowski, K. M., Vieira, A. T., Ng, A., Kranich, J., Sierro, F., Yu, D., Schilter, H. C., Rolph, M. S., Mackay, F., & Artis, D. (2009). Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature, 461(7268), 1282-1286. Matsuda, M., & Shimomura, I. (2014). Roles of adiponectin and oxidative stress in obesity-associated metabolic and cardiovascular diseases. Rev. Endocr. Metab. Disord., 15(1), 1-10. Mayta-Apaza, A. C., Pottgen, E., De Bodt, J., Papp, N., Marasini, D., Howard, L., Abranko, L., Van de Wiele, T., Lee, S. O., & Carbonero, F. (2018). Impact of tart cherries polyphenols on the human gut microbiota and phenolic metabolites in vitro and in vivo. J. Nutr. Biochem., 59, 160-172. Menge, B. A., Schrader, H., Ritter, P. R., Ellrichmann, M., Uhl, W., Schmidt, W. E., & Meier, J. J. (2010). Selective amino acid deficiency in patients with impaired glucose tolerance and type 2 diabetes. Regul. Pept., 160(1), 75-80. McBurney, M. I., Davis, C., Fraser, C. M., Schneeman, B. O., Huttenhower, C., Verbeke, K., Walter, J., & Latulippe, M. E. (2019). Establishing what constitutes a healthy human gut microbiome: state of the science, regulatory considerations, and future directions. J. Nutr., 149(11), 1882-1895. McCarthy, M. I. (2010). Genomics, type 2 diabetes, and obesity. N. Engl. J. Med., 363(24), 2339-2350. Mesías, M., Navarro, M., Martínez-Saez, N., Ullate, M., Del Castillo, M., & Morales, F. (2014). Antiglycative and carbonyl trapping properties of the water soluble fraction of coffee silverskin. Food Res. Int., 62, 1120-1126. Miliauskas, G., Venskutonis, P., & Van Beek, T. (2004). Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food Chem., 85(2), 231-237. Molan, A. L., Liu, Z., & Plimmer, G. (2014). Evaluation of the effect of blackcurrant products on gut microbiota and on markers of risk for colon cancer in humans. Phytother. Res., 28(3), 416-422. Molinaro, A., Bel Lassen, P., Henricsson, M., Wu, H., Adriouch, S., Belda, E., Chakaroun, R., Nielsen, T., Bergh, P.-O., & Rouault, C. (2020). Imidazole propionate is increased in diabetes and associated with dietary patterns and altered microbial ecology. Nat. Commun., 11(1), 5881. Monagas, M., Urpi-Sarda, M., Sánchez-Patán, F., Llorach, R., Garrido, I., Gómez-Cordovés, C., Andres-Lacueva, C., & Bartolomé, B. (2010). Insights into the metabolism and microbial biotransformation of dietary flavan-3-ols and the bioactivity of their metabolites. Food Funct., 1(3), 233-253. Monickaraj, F., Aravind, S., Nandhini, P., Prabu, P., Sathishkumar, C., Mohan, V., & Balasubramanyam, M. (2013). Accelerated fat cell aging links oxidative stress and insulin resistance in adipocytes. J. Biosci., 38(1), 113-122. Monnier, Vincent M. (2005). Bacterial enzymes that can deglycate glucose- and fructose-modified lysine. Biochem. J., 392(Pt 2):e1-3. Moreno-Fernández, S., Garcés-Rimón, M., Vera, G., Astier, J., Landrier, J. F., & Miguel, M. (2018). High fat/high glucose diet induces metabolic syndrome in an experimental rat model. Nutrients, 10(10), 1502. Munoz-Tamayo, R., Laroche, B., Walter, E., Doré, J., Duncan, S. H., Flint, H. J., & Leclerc, M. (2011). Kinetic modelling of lactate utilization and butyrate production by key human colonic bacterial species. FEMS Microbiol. Ecol., 76(3), 615-624. Navarro, M., & Morales, F. J. (2015). Mechanism of reactive carbonyl species trapping by hydroxytyrosol under simulated physiological conditions. Food Chem., 175, 92-99. Nazarian-Samani, Z., Sewell, R. D., Lorigooini, Z., & Rafieian-Kopaei, M. (2018). Medicinal plants with multiple effects on diabetes mellitus and its complications: a systematic review. Curr. Diabetes Rep., 18(10), 1-13. Nedić, O., Rattan, S., Grune, T., & Trougakos, I. (2013). Molecular effects of advanced glycation end products on cell signalling pathways, ageing and pathophysiology. Free Radic. Res., 47(sup1), 28-38. Neeper, M., Schmidt, A. M., Brett, J., Yan, S. D., Wang, F., Pan, Y. C., Elliston, K., Stern, D., & Shaw, A. (1992). Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. J. Biol. Chem., 267(21), 14998-15004. Neuhofer, A., Zeyda, M., Mascher, D., Itariu, B. K., Murano, I., Leitner, L., Hochbrugger, E. E., Fraisl, P., Cinti, S., Serhan, C. N., & Stulnig, T. M. (2013). Impaired local production of proresolving lipid mediators in obesity and 17-HDHA as a potential treatment for obesity-associated inflammation. Diabetes, 62(6), 1945-1956. Nie, C., Xie, X., Liu, H., Yuan, X., Ma, Q., Tu, A., Zhang, M., Chen, Z., & Li, J. (2023). Galactooligosaccharides ameliorate dietary advanced glycation end product-induced intestinal barrier damage in C57BL/6 mice by modulation of the intestinal microbiome. Food Funct., 14(2), 845-856. Nowotny, K., Jung, T., Höhn, A., Weber, D., & Grune, T. (2015). Advanced glycation end products and oxidative stress in type 2 diabetes mellitus. Biomolecules, 5(1), 194-222. Obanda, D. N., Hernandez, A., Ribnicky, D., Yu, Y., Zhang, X. H., Wang, Z. Q., & Cefalu, W. T. (2012). Bioactives of Artemisia dracunculus L. mitigate the role of ceramides in attenuating insulin signaling in rat skeletal muscle cells. Diabetes, 61(3), 597-605. Qiu, X., Macchietto, M. G., Liu, X., Lu, Y., Ma, Y., Guo, H., Saqui-Salces, M., Bernlohr, D. A., Chen, C., & Shen, S. (2021). Identification of gut microbiota and microbial metabolites regulated by an antimicrobial peptide lipocalin 2 in high fat diet-induced obesity. Int. J. Obes., 45(1), 143-154. Ormazabal, V., Nair, S., Elfeky, O., Aguayo, C., Salomon, C., & Zuñiga, F. A. (2018). Association between insulin resistance and the development of cardiovascular disease. Cardiovasc. Diabetol., 17(1), 122. Ota, A., & Ulrih, N. P. (2017). An overview of herbal products and secondary metabolites used for management of type two diabetes. Front. Pharmacol., 8, 436. Ott, C., Jacobs, K., Haucke, E., Santos, A. N., Grune, T., & Simm, A. (2014). Role of advanced glycation end products in cellular signaling. Redox Biol., 2, 411-429. Pérez, C., Lucas, F., & Sclafani, A. (1998). Increased flavor acceptance and preference conditioned by the postingestive actions of glucose. Physiology & Behavior, 64(4), 483-492. Palsamy, P., & Subramanian, S. (2009). Modulatory effects of resveratrol on attenuating the key enzymes activities of carbohydrate metabolism in streptozotocin–nicotinamide-induced diabetic rats. Chem.-Biol. Interact., 179(2-3), 356-362. Pang, J., Xi, C., Huang, X., Cui, J., Gong, H., & Zhang, T. (2016). Effects of excess energy intake on glucose and lipid metabolism in C57BL/6 mice. PLoS One, 11(1), e0146675. Park, J. C., & Im, S. H. (2020). Of men in mice: the development and application of a humanized gnotobiotic mouse model for microbiome therapeutics. Exp. Mol. Med., 52(9), 1383-1396. Patel, M. I., Gupta, A., & Dey, C. S. (2011). Potentiation of neuronal insulin signaling and glucose uptake by resveratrol: the involvement of AMPK. Pharmacol. Rep., 63(5), 1162-1168. Perron, N. R., & Brumaghim, J. L. (2009). A review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell Biochem. Biophys., 53(2), 75-100. Petrie, J. R., Pearson, E. R., & Sutherland, C. (2011). Implications of genome wide association studies for the understanding of type 2 diabetes pathophysiology. Biochem. Pharmacol., 81(4), 471-477. Pietta, P. G. (2000). Flavonoids as antioxidants. J. Nat. Prod., 63(7), 1035-1042. Poulsen, M. W., Hedegaard, R. V., Andersen, J. M., de Courten, B., Bügel, S., Nielsen, J., Skibsted, L. H., & Dragsted, L. O. (2013). Advanced glycation endproducts in food and their effects on health. Food Chem. Toxicol., 60, 10-37. Prasad, A., Bekker, P., & Tsimikas, S. (2012). Advanced glycation end products and diabetic cardiovascular disease. Cardiol. Rev., 20(4), 177-183. Prasad, K., Dhar, I., & Caspar-Bell, G. (2014). Role of advanced glycation end products and its receptors in the pathogenesis of cigarette smoke-induced cardiovascular disease. Int. J. Angiol., 24(2), 75-80. Qu, W., Nie, C., Zhao, J., Ou, X., Zhang, Y., Yang, S., Bai, X., Wang, Y., Wang, J., & Li, J. (2018). Microbiome–metabolomics analysis of the impacts of long-term dietary advanced-Glycation-end-product consumption on C57BL/6 mouse fecal microbiota and metabolites. J. Agric. Food Chem., 66(33), 8864-8875. Qu, W., Yuan, X., Zhao, J., Zhang, Y., Hu, J., Wang, J., & Li, J. (2017). Dietary advanced glycation end products modify gut microbial composition and partially increase colon permeability in rats. Mol. Nutr. Food Res., 61(10), 1700118. Rader, D. J., & deGoma, E. M. (2012). Approach to the patient with extremely low HDL-cholesterol. J. Clin. Endocrinol. Metab., 97(10), 3399-3407. Ramasamy, R., Yan, S. F., & Schmidt, A. M. (2009). RAGE: therapeutic target and biomarker of the inflammatory response-the evidence mounts. J. Leukoc. Biol., 86(3), 505-512. Ramasamy, R., Yan, S. F., & Schmidt, A. M. (2012). The diverse ligand repertoire of the receptor for advanced glycation endproducts and pathways to the complications of diabetes. Vasc. Pharmacol., 57(5-6), 160-167. Ramasubbu, K., & Devi Rajeswari, V. (2023). Impairment of insulin signaling pathway PI3K/Akt/mTOR and insulin resistance induced AGEs on diabetes mellitus and neurodegenerative diseases: a perspective review. Mol. Cell. Biochem., 478(6), 1307-1324. Rao, S. S., Disraeli, P., & McGregor, T. (2004). Impaired glucose tolerance and impaired fasting glucose. Am. Fam. Physician, 69(8), 1961-1968. Rechkemmer, G., Rönnau, K., & Engelhardt, W. (1988). Fermentation of polysaccharides and absorption of short chain fatty acids in the mammalian hindgut. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol., 90(4), 563-568. Reddy, S., Bichler, J., Wells-Knecht, K. J., Thorpe, S. R., & Baynes, J. W. (1995). N epsilon-(carboxymethyl)lysine is a dominant advanced glycation end product (AGE) antigen in tissue proteins. Biochemistry, 34(34), 10872-10878. Rice-Evans, C. A., Miller, N. J., & Paganga, G. (1996). Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med., 20(7), 933-956. Riehl, A., Németh, J., Angel, P., & Hess, J. (2009). The receptor RAGE: bridging inflammation and cancer. Cell Commun. Signal., 7(1), 1-7. Rinninella, E., Raoul, P., Cintoni, M., Franceschi, F., Miggiano, G. A. D., Gasbarrini, A., & Mele, M. C. (2019). What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms, 7(1), 14. Roediger, W. (1982). Utilization of nutrients by isolated epithelial cells of the rat colon. Gastroenterology, 83(2), 424-429. Roncero-Ramos, I., Delgado-Andrade, C., Tessier, F. J., Niquet-Léridon, C., Strauch, C., Monnier, V. M., & Navarro, M. P. (2013). Metabolic transit of Nε-carboxymethyl-lysine after consumption of AGEs from bread crust. Food Funct., 4(7), 1032-1039. Roy, C. C., Kien, C. L., Bouthillier, L., & Levy, E. (2006). Short‐chain fatty acids: ready for prime time? Nutr. Clin. Pract., 21(4), 351-366. Ruppin, H., Bar-Meir, S., Soergel, K. H., Wood, C. M., & Schmitt Jr, M. G. (1980). Absorption of short-chain fatty acids by the colon. Gastroenterology, 78(6), 1500-1507. Sadowska-Bartosz, I., Galiniak, S., & Bartosz, G. (2014). Kinetics of glycoxidation of bovine serum albumin by glucose, fructose and ribose and its prevention by food components. Molecules, 19(11), 18828-18849. Sahi, A. K., Verma, P., Varshney, N., Gundu, S., & Mahto, S. K. (2022). Revisiting methodologies for in vitro preparations of advanced glycation end products. Appl. Biochem. Biotechnol., 194(6), 2831-2855. Saisho, Y. (2015). β-cell dysfunction: Its critical role in prevention and management of type 2 diabetes. World J. Diabetes, 6(1), 109-124. Salzman, N. H., de Jong, H., Paterson, Y., Harmsen, H. J. M., Welling, G. W., & Bos, N. A. (2002). Analysis of 16S libraries of mouse gastrointestinal microflora reveals a large new group of mouse intestinal bacteria. Microbiology, 148(Pt 11), 3651-3660. Sandu, O., Song, K., Cai, W., Zheng, F., Uribarri, J., & Vlassara, H. (2005). Insulin resistance and type 2 diabetes in high-fat-fed mice are linked to high glycotoxin intake. Diabetes, 54(8), 2314-2319. Santhiravel, S., Bekhit, A. E. A., Mendis, E., Jacobs, J. L., Dunshea, F. R., Rajapakse, N., & Ponnampalam, E. N. (2022). The impact of plant phytochemicals on the gut microbiota of humans for a balanced life. Int. J. Mol. Sci., 23(15). Scheppach, W. (1994). Effects of short chain fatty acids on gut morphology and function. Gut, 35(1 Suppl), S35-S38. Scherer, P. E. (2006). Adipose tissue: from lipid storage compartment to endocrine organ. Diabetes, 55(6), 1537-1545. Schleicher, E. D., Wagner, E., & Nerlich, A. G. (1997). Increased accumulation of the glycoxidation product N(epsilon)-(carboxymethyl)lysine in human tissues in diabetes and aging. J. Clin. Invest., 99(3), 457-468. Schmidt, T. S. B., Raes, J., & Bork, P. (2018). The human gut microbiome: from association to modulation. Cell, 172(6), 1198-1215. Seedorf, H., Griffin, N. W., Ridaura, V. K., Reyes, A., Cheng, J., Rey, F. E., Smith, M. I., Simon, G. M., Scheffrahn, R. H., Woebken, D., Spormann, A. M., Van Treuren, W., Ursell, L. K., Pirrung, M., Robbins-Pianka, A., Cantarel, B. L., Lombard, V., Henrissat, B., Knight, R., & Gordon, J. I. (2014). Bacteria from diverse habitats colonize and compete in the mouse gut. Cell, 159(2), 253-266. Sefi, M., Fetoui, H., Lachkar, N., Tahraoui, A., Lyoussi, B., Boudawara, T., & Zeghal, N. (2011). Centaurium erythrea (Gentianaceae) leaf extract alleviates streptozotocin-induced oxidative stress and β-cell damage in rat pancreas. J. Ethnopharmacol., 135(2), 243-250. Seidell, J. C., Pérusse, L., Després, J. P., & Bouchard, C. (2001). Waist and hip circumferences have independent and opposite effects on cardiovascular disease risk factors: the Quebec family study. Am. J. Clin. Nutr., 74(3), 315-321. Sellers, R. S., Mortan, D., Michael, B., Roome, N., Johnson, J. K., Yano, B. L., Perry, R., & Schafer, K. (2007). Society of toxicologic pathology position paper: organ weight recommendations for toxicology studies. Toxicol. Pathol., 35(5), 751-755. Sena, C. M., Matafome, P., Crisóstomo, J., Rodrigues, L., Fernandes, R., Pereira, P., & Seiça, R. M. (2012). Methylglyoxal promotes oxidative stress and endothelial dysfunction. Pharmacol. Res. , 65(5), 497-506. Sergi, D., Boulestin, H., Campbell, F. M., & Williams, L. M. (2021). The role of dietary advanced glycation end products in metabolic dysfunction. Mol. Nutr. Food. Res., 65(1), 1900934. Shankar, V., Homer, D., Rigsbee, L., Khamis, H. J., Michail, S., Raymer, M., Reo, N. V., & Paliy, O. (2015). The networks of human gut microbe–metabolite associations are different between health and irritable bowel syndrome. ISME J., 9(8), 1899-1903. Shen, Y., Xu, Z., & Sheng, Z. (2017). Ability of resveratrol to inhibit advanced glycation end product formation and carbohydrate-hydrolyzing enzyme activity, and to conjugate methylglyoxal. Food Chem., 216, 153-160. Shu, T., Zhu, Y., Wang, H., Lin, Y., Ma, Z., & Han, X. (2011). AGEs decrease insulin synthesis in pancreatic β-cell by repressing Pdx-1 protein expression at the post-translational level. PLoS One, 6(4), e18782. Singh, R., Barden, A., Mori, T., & Beilin, L. (2001). Advanced glycation end-products: a review. Diabetologia, 44(2), 129-146. Singh, V. P., Bali, A., Singh, N., & Jaggi, A. S. (2014). Advanced glycation end products and diabetic complications. Korean J. Physiol. Pharmacol., 18(1), 1-14. Sircana, A., Framarin, L., Leone, N., Berrutti, M., Castellino, F., Parente, R., De Michieli, F., Paschetta, E., & Musso, G. (2018). Altered gut microbiota in type 2 diabetes: just a coincidence? Curr. Diabetes Rep., 18, 1-11. Smith, U., & Kahn, B. B. (2016). Adipose tissue regulates insulin sensitivity: role of adipogenesis, de novo lipogenesis and novel lipids. J. Intern. Med., 280(5), 465-475. Song, Q., Liu, J., Dong, L., Wang, X., & Zhang, X. (2021). Novel advances in inhibiting advanced glycation end product formation using natural compounds. Biomed. Pharmacother., 140, 111750. Soppert, J., Lehrke, M., Marx, N., Jankowski, J., & Noels, H. (2020). Lipoproteins and lipids in cardiovascular disease: from mechanistic insights to therapeutic targeting. Adv. Drug Deliv. Rev., 159, 4-33. Stacewicz-Sapuntzakis, M., & Bowen, P. E. (2005). Role of lycopene and tomato products in prostate health. Biochim. Biophys. Acta-Mol. Basis Dis., 1740(2), 202-205. Steinmetz, K. A., & Potter, J. D. (1996). Vegetables, fruit, and cancer prevention: a review. J. Am. Diet. Assoc., 96(10), 1027-1039. Stinghen, A. E. M., Massy, Z. A., Vlassara, H., Striker, G. E., & Boullier, A. (2016). Uremic toxicity of advanced glycation end products in CKD. J. Am. Soc. Nephrol., 27(2), 354-370. Stoffers, D. (2004). The development of beta-cell mass: recent progress and potential role of GLP-1. Horm. Metab. Res., 36(11/12), 811-821. Sun, P., Zhu, H., Li, X., Shi, W., Guo, Y., Du, X., Zhang, L., Su, L., & Qin, C. (2022). Comparative metagenomics and metabolomes reveals abnormal metabolism activity is associated with gut microbiota in Alzheimer's disease mice. Int. J. Mol. Sci., 23(19), 11560. Talchai, C., Xuan, S., Lin, H. V., Sussel, L., & Accili, D. (2012). Pancreatic β cell dedifferentiation as a mechanism of diabetic β cell failure. Cell, 150(6), 1223-1234. Tao, L., Gao, E., Jiao, X., Yuan, Y., Li, S., Christopher, T. A., Lopez, B. L., Koch, W., Chan, L., Goldstein, B. J., & Ma, X. L. (2007). Adiponectin cardioprotection after myocardial ischemia/reperfusion involves the reduction of oxidative/nitrative stress. Circulation, 115(11), 1408-1416. Tauscher, S., Nakagawa, H., Völker, K., Werner, F., Krebes, L., Potapenko, T., Doose, S., Birkenfeld, A. L., Baba, H. A., & Kuhn, M. (2018). β Cell-specific deletion of guanylyl cyclase A, the receptor for atrial natriuretic peptide, accelerates obesity-induced glucose intolerance in mice. Cardiovasc. Diabetol., 17(1), 103. Teissier, T., Quersin, V., Gnemmi, V., Daroux, M., Howsam, M., Delguste, F., Lemoine, C., Fradin, C., Schmidt, A. M., Cauffiez, C., Brousseau, T., Glowacki, F., Tessier, F. J., Boulanger, E., & Frimat, M. (2019). Knockout of receptor for advanced glycation end-products attenuates age-related renal lesions. Aging Cell, 18(2), e12850. Tessier, F. J. (2010). The Maillard reaction in the human body. The main discoveries and factors that affect glycation. Pathol.Biol., 58(3), 214-219. Tessier, F. J., Niquet‐Léridon, C., Jacolot, P., Jouquand, C., Genin, M., Schmidt, A. M., Grossin, N., & Boulanger, E. (2016). Quantitative assessment of organ distribution of dietary protein‐bound 13C‐labeled Nɛ‐carboxymethyllysine after a chronic oral exposure in mice. Mol. Nutr. Food Res., 60(11), 2446-2456. Todesco, T., Rao, A. V., Bosello, O., & Jenkins, D. (1991). Propionate lowers blood glucose and alters lipid metabolism in healthy subjects. Am. J. Clin. Nutr., 54(5), 860-865. Totlani, V. M., & Peterson, D. G. (2006). Epicatechin carbonyl-trapping reactions in aqueous Maillard systems: Identification and structural elucidation. J. Agric. Food Chem., 54(19), 7311-7318. Tsao, R. (2010). Chemistry and biochemistry of dietary polyphenols. Nutrients, 2(12), 1231-1246. Tzounis, X., Rodriguez-Mateos, A., Vulevic, J., Gibson, G. R., Kwik-Uribe, C., & Spencer, J. P. (2011). Prebiotic evaluation of cocoa-derived flavanols in healthy humans by using a randomized, controlled, double-blind, crossover intervention study. Am. J. Clin. Nutr., 93(1), 62-72. Um, J. H., Park, S. J., Kang, H., Yang, S., Foretz, M., McBurney, M. W., Kim, M. K., Viollet, B., & Chung, J. H. (2010). AMP-activated protein kinase–deficient mice are resistant to the metabolic effects of resveratrol. Diabetes, 59(3), 554-563. Unuofin, J. O., & Lebelo, S. L. (2020). Antioxidant effects and mechanisms of medicinal plants and their bioactive compounds for the prevention and treatment of type 2 diabetes: an updated review. Oxidative Med. Cell. Longev., 2020, 1356893. Uribarri, J., Cai, W., Woodward, M., Tripp, E., Goldberg, L., Pyzik, R., Yee, K., Tansman, L., Chen, X., & Mani, V. (2015). Elevated serum advanced glycation endproducts in obese indicate risk for the metabolic syndrome: a link between healthy and unhealthy obesity? J. Clin. Endocrinol. Metab., 100(5), 1957-1966. Uribarri, J., Woodruff, S., Goodman, S., Cai, W., Chen, X., Pyzik, R., Yong, A., Striker, G. E., & Vlassara, H. (2010). Advanced glycation end products in foods and a practical guide to their reduction in the diet. J. Am. Diet. Assoc., 110(6), 911-916.e912. Utzschneider, K. M., Kratz, M., Damman, C. J., & Hullar, M. (2016). Mechanisms linking the gut microbiome and glucose metabolism. J. Clin. Endocrinol. Metab., 101(4), 1445-1454. van Son, J., Serlie, M. J., Ståhlman, M., Bäckhed, F., Nieuwdorp, M., & Aron-Wisnewsky, J. (2021). Plasma imidazole propionate is positively correlated with blood pressure in overweight and obese humans. Nutrients, 13(8), 2706. Vangipurapu, J., Stancáková, A., Smith, U., Kuusisto, J., & Laakso, M. (2019). Nine amino acids are associated with decreased insulin secretion and elevated glucose levels in a 7.4-year follow-up study of 5,181 Finnish men. Diabetes, 68(6), 1353-1358. Vessal, M., Hemmati, M., & Vasei, M. (2003). Antidiabetic effects of quercetin in streptozocin-induced diabetic rats. Comp. Biochem. Physiol. C-Toxicol. Pharmacol., 135(3), 357-364. Vinolo, M. A., Rodrigues, H. G., Nachbar, R. T., & Curi, R. (2011). Regulation of inflammation by short chain fatty acids. Nutrients, 3(10), 858-876. Vlassara, H., Cai, W., Crandall, J., Goldberg, T., Oberstein, R., Dardaine, V., Peppa, M., & Rayfield, E. J. (2002). Inflammatory mediators are induced by dietary glycotoxins, a major risk factor for diabetic angiopathy. Proc. Natl. Acad. Sci. U. S. A., 99(24), 15596-15601. Vlassopoulos, A., Lean, M., & Combet, E. (2015). Inhibition of protein glycation by phenolic acids: physiological relevance and implication of protein-phenolic interactions. Proc. Nutr. Soc., 74(OCE1). Volpe, C. M. O., Villar-Delfino, P. H., Dos Anjos, P. M. F., & Nogueira-Machado, J. A. (2018). Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death Dis., 9(2), 119. Wang, J., Cai, W., Yu, J., Liu, H., He, S., Zhu, L., & Xu, J. (2022). Dietary advanced glycation end products shift the gut microbiota composition and induce insulin resistance in mice. Diabetes Metab. Syndr. Obes., 15, 427-437. Weber, K. S., Strassburger, K., Pacini, G., Nowotny, B., Müssig, K., Szendroedi, J., Herder, C., & Roden, M. (2017). Circulating adiponectin concentration is inversely associated with glucose tolerance and insulin secretion in people with newly diagnosed diabetes. Diabet. Med., 34(2), 239-244. Wedick, N. M., Pan, A., Cassidy, A., Rimm, E. B., Sampson, L., Rosner, B., Willett, W., Hu, F. B., Sun, Q., & van Dam, R. M. (2012). Dietary flavonoid intakes and risk of type 2 diabetes in US men and women. Am. J. Clin. Nutr., 95(4), 925-933. Wikoff, W. R., Anfora, A. T., Liu, J., Schultz, P. G., Lesley, S. A., Peters, E. C., & Siuzdak, G. (2009). Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc. Natl. Acad. Sci. U. S. A., 106(10), 3698-3703. Wu, G. D., Chen, J., Hoffmann, C., Bittinger, K., Chen, Y. Y., Keilbaugh, S. A., Bewtra, M., Knights, D., Walters, W. A., Knight, R., Sinha, R., Gilroy, E., Gupta, K., Baldassano, R., Nessel, L., Li, H., Bushman, F. D., & Lewis, J. D. (2011). Linking long-term dietary patterns with gut microbial enterotypes. Science, 334(6052), 105-108. Wu, L., Tang, Z., Chen, H., Ren, Z., Ding, Q., Liang, K., & Sun, Z. (2021). Mutual interaction between gut microbiota and protein/amino acid metabolism for host mucosal immunity and health. Anim. Nutr., 7(1), 11-16. Xie, J., Méndez, J. D., Méndez-Valenzuela, V., & Aguilar-Hernández, M. M. (2013). Cellular signalling of the receptor for advanced glycation end products (RAGE). Cell. Signal., 25(11), 2185-2197. Yamauchi, T., Kamon, J., Minokoshi, Y., Ito, Y., Waki, H., Uchida, S., Yamashita, S., Noda, M., Kita, S., Ueki, K., Eto, K., Akanuma, Y., Froguel, P., Foufelle, F., Ferre, P., Carling, D., Kimura, S., Nagai, R., Kahn, B. B., & Kadowaki, T. (2002). Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat. Med., 8(11), 1288-1295. Yang, C., Deng, Q., Xu, J., Wang, X., Hu, C., Tang, H., & Huang, F. (2019). Sinapic acid and resveratrol alleviate oxidative stress with modulation of gut microbiota in high-fat diet-fed rats. Food Res. Int., 116, 1202-1211. Yang, S., Fransson, U., Fagerhus, L., Holst, L. S., Hohmeier, H. E., Renström, E., & Mulder, H. (2004). Enhanced cAMP protein kinase A signaling determines improved insulin secretion in a clonal insulin-producing beta-cell line (INS-1 832/13). Mol. Endocrinol., 18(9), 2312-2320. Yang, Y., Wu, H., Dong, S., Jin, W., Han, K., Ren, Y., & Zeng, M. (2018). Glycation of fish protein impacts its fermentation metabolites and gut microbiota during in vitro human colonic fermentation. Food Res. Int., 113, 189-196. Ye, J. (2013). Mechanisms of insulin resistance in obesity. Front. Med., 7(1), 14-24. Yoshikawa, H., Tajiri, Y., Sako, Y., Hashimoto, T., Umeda, F., & Nawata, H. (2001). Effects of free fatty acids on β-cell functions: a possible involvement of peroxisome proliferator-activated receptors α or pancreatic/duodenal homeobox. Metab. Clin. Exp., 50(5), 613-618. Young, J. F., Nielsen, S. E., Haraldsdóttir, J., Daneshvar, B., Lauridsen, S. T., Knuthsen, P., Crozier, A., Sandström, B., & Dragsted, L. O. (1999). Effect of fruit juice intake on urinary quercetin excretion and biomarkers of antioxidative status. Am. J. Clin. Nutr., 69(1), 87-94. Youssef, N., Sheik, C. S., Krumholz, L. R., Najar, F. Z., Roe, B. A., & Elshahed, M. S. (2009). Comparison of species richness estimates obtained using nearly complete fragments and simulated pyrosequencing-generated fragments in 16S rRNA gene-based environmental surveys. Appl. Environ. Microbiol., 75(16), 5227-5236. Yu, F., Han, W., Zhan, G., Li, S., Jiang, X., Wang, L., Xiang, S., Zhu, B., Yang, L., Luo, A., Hua, F., & Yang, C. (2019). Abnormal gut microbiota composition contributes to the development of type 2 diabetes mellitus in db/db mice. Aging (Albany NY), 11(22), 10454-10467. Yue, P., Jin, H., Xu, S., Aillaud, M., Deng, A. C., Azuma, J., Kundu, R. K., Reaven, G. M., Quertermous, T., & Tsao, P. S. (2011). Apelin decreases lipolysis via Gq, Gi, and AMPK-dependent mechanisms. Endocrinology, 152(1), 59-68. Zhang, H., & Tsao, R. (2016). Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Curr. Opin. Food Sci., 8, 33-42. Zhang, H. J., Chen, C., Ding, L., Shi, H. H., Wang, C. C., Xue, C. H., Zhang, T. T., & Wang, Y. M. (2020). Sea cucumbers-derived sterol sulfate alleviates insulin resistance and inflammation in high-fat-high-fructose diet-induced obese mice. Pharmacol. Res., 160, 105191. Zhang, M., Kho, A. L., Anilkumar, N., Chibber, R., Pagano, P. J., Shah, A. M., & Cave, A. C. (2006). Glycated proteins stimulate reactive oxygen species production in cardiac myocytes: involvement of Nox2 (gp91phox)-containing NADPH oxidase. Circulation, 113(9), 1235-1243. Zhang, Q., Wang, Y., & Fu, L. (2020). Dietary advanced glycation end‐products: perspectives linking food processing with health implications. Compr. Rev. Food. Sci. Food Saf., 19(5), 2559-2587. Zhang, S. Q., Tian, D., Hu, C. Y., & Meng, Y. H. (2022). Chlorogenic acid ameliorates high-fat and high-fructose diet-induced cognitive impairment via mediating the microbiota–gut–brain axis. J. Agric. Food Chem., 70(8), 2600-2615. Zhang, X., Shen, D., Fang, Z., Jie, Z., Qiu, X., Zhang, C., Chen, Y., & Ji, L. (2013). Human gut microbiota changes reveal the progression of glucose intolerance. PLoS One, 8(8), e71108. Zhang, Z., & Li, D. (2018). Thermal processing of food reduces gut microbiota diversity of the host and triggers adaptation of the microbiota: evidence from two vertebrates. Microbiome, 6(1), 1-14. Zhao, L., Zhang, Q., Ma, W., Tian, F., Shen, H., & Zhou, M. (2017). A combination of quercetin and resveratrol reduces obesity in high-fat diet-fed rats by modulation of gut microbiota. Food Funct., 8(12), 4644-4656. Zhao, R., Huang, F., & Shen, G. X. (2021). Dose-responses relationship in glucose lowering and gut dysbiosis to Saskatoon berry powder supplementation in high fat-high sucrose diet-induced insulin resistant mice. Microorganisms, 9(8), 1553. Zhao, Y., Wang, P., & Sang, S. (2019). Dietary genistein inhibits methylglyoxal-induced advanced glycation end product formation in mice fed a high-fat diet. J. Nutr., 149(5), 776-787. Zheng, Y., Li, X. K., Wang, Y., & Cai, L. (2008). The role of zinc, copper and iron in the pathogenesis of diabetes and diabetic complications: therapeutic effects by chelators. Hemoglobin, 32(1-2), 135-145. Zhou, L., Wang, W., Huang, J., Ding, Y., Pan, Z., Zhao, Y., Zhang, R., Hu, B., & Zeng, X. (2016). In vitro extraction and fermentation of polyphenols from grape seeds (Vitis vinifera) by human intestinal microbiota. Food Funct., 7(4), 1959-1967. Zhu, X., Wu, C., Qiu, S., Yuan, X., & Li, L. (2017). Effects of resveratrol on glucose control and insulin sensitivity in subjects with type 2 diabetes: systematic review and meta-analysis. Nutr. Metab., 14(1), 1-10. Zhu, Y., Shu, T., Lin, Y., Wang, H., Yang, J., Shi, Y., & Han, X. (2011). Inhibition of the receptor for advanced glycation end products (RAGE) protects pancreatic β-cells. Biochem. Biophys. Res. Commun., 404(1), 159-165. Zmora, N., Suez, J., & Elinav, E. (2019). You are what you eat: diet, health and the gut microbiota. Nat. Rev. Gastroenterol. Hepatol., 16(1), 35-56. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89407 | - |
| dc.description.abstract | 食源性糖化終產物 (dietary advanced glycation end products, dAGEs) 主要存在於高溫加工食品中,因此西方飲食為 dAGEs 最主要之來源。近年來,西方飲食日益盛行,其特點為富含高油脂和添加糖的過度加工食品。動物研究結果顯示,飼料經高溫加熱產生之 dAGEs 會加劇高脂高糖飲食誘導之代謝紊亂,且 dAGEs 進入體內與其受體 receptor for advanced glycation end products (RAGE) 作用,會導致糖尿病、血脂異常與其它慢性代謝疾病,同時也會影響腸道菌相及其代謝物。植化素已被證實有益於調節宿主之腸道菌相,且體外研究發現植化素具有抑制 dAGEs 作用之潛力,然而植化素在生物體內改善 dAGEs 造成之代謝紊亂的功效仍未知。因此,本研究藉由高溫加熱飼料合併高脂和高果糖飲食模擬西化飲食中多重因子對健康之交互影響,並介入富含植化素之多重植物萃取物樣品 supersterol (SS),藉此闡明 dAGEs 是否會加劇高脂高果糖飲食誘導之代謝紊亂及其潛在機制,同時評估 SS 對 dAGEs 影響之改善作用及其對腸道微生物組成與代謝紊亂間的影響。實驗結果顯示,高溫烘烤會大幅增加飼料中 dAGEs 含量。dAGEs 可能藉由降低脂聯素濃度和增加葡萄糖耐受不良,而導致胰島素濃度降低,並可觀察到脂肪組織異常增加脂解作用。同時,dAGEs 進入小鼠體內可能透過與 RAGE 作用來減少下游蛋白質 glucose transporter 2 (GLUT2) 表現,進而降低肝臟的葡萄糖吸收,影響葡萄糖耐受性。腸道菌相分析結果顯示 Muribaculaceae 及 Clostridium 分別與葡萄糖耐受不良呈負相關及正相關,而 dAGEs 降低 Muribaculaceae 並增加 Clostridium 之相對豐度,且顯著增加胺基酸從頭合成代謝路徑。SS 介入可改善高溫加熱合併高脂及高果糖飲食誘導小鼠之葡萄糖耐受不良及異常脂解。就血糖調控機制而言,SS 具有改善肝臟 GLUT2 蛋白質表現之趨勢,進而可能促進肝臟對血糖之調節,以改善葡萄糖耐受不良。此外 SS 能夠調節小鼠因 dAGEs 而改變之腸道菌相組成及胺基酸從頭合成代謝路徑。顯示 SS 可能透過調節腸道菌相組成及胺基酸代謝物生成,以改善 dAGEs 導致之血糖代謝紊亂。 | zh_TW |
| dc.description.abstract | Dietary advanced glycation end products (dAGEs) are mainly found in high-temperature processed foods. Therefore, Western diets are considered the main sources of dAGEs. In recent years, the Western diet has grown in popularity and is characterized by highly processed foods high in fat and added sugar. Animal studies have shown that dAGEs can exacerbate metabolic disorders resulting from a diet high in fat and sugar. Moreover, after dAGEs enter circulation, they would interact with receptor for advanced glycation end products (RAGE), leading to diabetes, dyslipidemia, and other chronic metabolic disorders. Meanwhile, the composition of the gut microbiota and their metabolites are profoundly influenced by dAGEs. Phytochemicals have been proven to be beneficial in modulating the gut microbiota of the host. Notably, in vitro studies have highlighted that several phytochemicals possess the potential to alleviate the harmful effects of dAGEs. However, their impact in vivo and their effects on the gut microbiota and its metabolites have yet to be explored. Therefore, this study aimed to elucidate if dAGEs would accelerate the metabolism disorders caused by high-fat and high-fructose diet and the potential mechanisms involved. Furthermore, to investigate the effects of supersterol (SS), a multi-plant extract containing various phytochemicals, on the detrimental consequences of dAGEs and its implications for the correlation between gut microbiota compositions and metabolism disorders. C57BL/6 mice were fed a dAGEs-enriched high-fat and high-fructose diet to mimic the modern Western diet. The findings revealed that the amount of dAGEs in the diet significantly increased after high-heat baking. dAGEs reduced adiponectin concentrations and increased glucose intolerance, thereby reducing insulin concentrations. Interestingly, dAGEs abnormally increased lipolysis in adipose tissue. Furthermore, dAGEs would enter the circulation and reduce the expression of the glucose transporter 2 (GLUT2) by interacting with RAGE, therefore reducing the glucose uptake by the liver and resulting in glucose tolerance. The results of gut microbiota analysis showed that Muribaculaceae and Clostridium were respectively negatively and positively correlated with glucose intolerance. dAGEs decreased the relative abundance of Muribaculaceae and increased that of Clostridium. Notably, dAGEs significantly increased the amino acid biosynthesis pathway. The intervention of SS can attenuate glucose intolerance and abnormal lipolysis in mice induced by a dAGEs-enriched high-fat and high-fructose diet. In terms of the glucose metabolism regulation mechanism, SS tends to improve the expression of GLUT2 protein in the liver, which may promote the regulation of glucose metabolism in the liver to alleviate glucose intolerance. In addition, SS can regulate the gut microbiota composition and amino acid biosynthesis pathway induced by a dAGEs-enriched diet. In conclusion, SS may improve the glucose metabolism disorder caused by dAGEs by regulating the composition of gut microbiota and the production of amino acid metabolites. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-07T16:52:51Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-09-07T16:52:51Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iv Abstract v 目錄 vii 附圖目錄 xi 附表目錄 xii 圖目錄 xiii 表目錄 xv 縮寫表 xvi 第一章、 文獻回顧 1 第一節、 食源性糖化終產物 (Dietary advanced glycation end products, dAGEs) 1 (一)、 食源性糖化終產物之形成和來源 1 (二)、 食源性糖化終產物形成之因素 3 (三)、 食源性糖化終產物之吸收與代謝 3 (四)、 糖化終產物在疾病中扮演之角色 4 第二節、 葡萄糖代謝異常 (Glucose metabolism disorders) 5 (一)、 胰島素阻抗 5 (二)、 胰腺 β 細胞受損 5 (三)、 葡萄糖耐受不良 5 第三節、 AGEs 受體 (Receptors for advanced glycosylation, RAGE) 6 (一)、 RAGE 介紹 6 (二)、 RAGE 訊息傳遞路徑 7 第四節、 腸道菌 (Gut microbiota) 8 (一)、 飲食、腸道菌和疾病的交互作用 8 (二)、 AGEs 對於腸道菌之影響 11 (三)、 多酚化合物對於腸道菌群之調節 11 第五節、 植化素 (Phytochemicals) 12 (一)、 多重植物萃取物 12 (二)、 多酚化合物 13 (三)、 多酚化合物對 AGEs 的抑制作用 15 (四)、 多酚化合物對於血糖之調控及已知分子機制 17 第二章、 研究目的與實驗架構 20 第一節、 研究目的 20 第二節、 實驗架構 20 第三章、 材料與方法 22 第一節、 實驗材料 22 (一)、 儀器設備 22 (二)、 藥品試劑 23 (三)、 商業化試劑盒 24 (四)、 抗體 24 (五)、 樣品來源 25 第二節、 糖化終產物含量分析 25 (一)、 儀器設備 25 (二)、 藥品與試劑 26 (三)、 實驗方法 27 第三節、 動物實驗 (in vivo) 方法 28 (一)、 動物品系與飼養環境 28 (二)、 動物實驗組別設計 29 (三)、 食源性糖化終產物誘導模式 30 (四)、 飼料及果糖溶液配製 30 (五)、 動物犧牲 31 (六)、 血清生化數值分析 32 (七)、 口服葡萄糖耐受性試驗 32 (八)、 血清胰島素 (insulin) 含量測定 33 (九)、 血清脂聯素 (adiponectin) 含量測定 34 (十)、 肝臟 MDA 含量測定 35 (十一)、 組織均質及蛋白質萃取 37 (十二)、 蛋白質定量 38 (十三)、 西方墨點法 (western blot) 38 (十四)、 糞便糖化終產物含量測定 42 (十五)、 16S rDNA 基因定序及分析 (16S rDNA gene sequencing and analysis) 42 (十六)、 短鏈脂肪酸分析 44 (十七)、 統計分析 46 第四章、 結果與討論 47 第一節、 AGEs 含量分析 47 (一)、 高溫加熱後飼料中 dAGEs 含量 47 (二)、 小鼠糞便中 AGEs 含量 47 第二節、 評估 dAGEs 和 SS 對高溫加熱合併高脂高果糖飲食誘導代謝異常小鼠之生理影響 51 (一)、 dAGEs 和 SS 對小鼠體重之影響 51 (二)、 dAGEs 和 SS 對小鼠攝食及飲水量之影響 55 (三)、 dAGEs 和 SS 對小鼠臟器及組織之影響 58 (四)、 dAGEs 和 SS 對小鼠血清生化數值之影響 63 第三節、 評估 dAGEs 和 SS 對高溫加熱合併高脂高果糖飲食誘導 65 代謝異常小鼠之血糖調控影響 65 (一)、 dAGEs 和 SS 對小鼠血糖調控之影響 65 (二)、 dAGEs 和 SS 對小鼠血清胰島素之影響 66 第四節、 探討 dAGEs 和 SS 對高溫加熱合併高脂高果糖飲食誘導代謝異常小鼠之調控機制 69 (一)、 dAGEs 和 SS 對小鼠血清脂聯素濃度之影響 69 (二)、 dAGEs 和 SS 對小鼠氧化壓力之影響 69 (三)、 dAGEs 和 SS 對小鼠肝臟中 AGE 受體及其下游血糖調節相關蛋白之影響 73 (四)、 dAGEs 和 SS 對小鼠性腺脂肪中脂解相關蛋白之影響 74 第五節、 探討 dAGEs 和 SS 對高溫加熱合併高脂高果糖飲食誘導代謝異常小鼠之腸道菌相 77 (一)、 dAGEs 和 SS 對小鼠腸道菌相 beta 多樣性指數之影響 77 (二)、 dAGEs 和 SS 對小鼠腸道菌相組成之影響 79 (三)、 dAGEs 和 SS 對小鼠腸道菌物種的差異 82 (四)、 腸道菌相與環境因子相關性分析結果 85 第六節、 探討 dAGEs 和 SS 對高溫加熱合併高脂高果糖飲食誘導代謝異常小鼠之代謝改變 88 (一)、 dAGEs 和 SS 對小鼠腸道菌群功能性預測之影響 88 (二)、 dAGEs 和 SS 對小鼠糞便之短鏈脂肪酸含量影響 90 第五章、 結論 93 參考文獻 95 附錄 125 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 多重植物萃取物 | zh_TW |
| dc.subject | 食源性糖化終產物 | zh_TW |
| dc.subject | 高脂高果糖飲食 | zh_TW |
| dc.subject | 代謝紊亂 | zh_TW |
| dc.subject | 腸道菌相 | zh_TW |
| dc.subject | metabolic disorders | en |
| dc.subject | high-fat and high-fructose diet | en |
| dc.subject | dietary advanced glycation end products | en |
| dc.subject | multi-plant extract | en |
| dc.subject | gut microbiota | en |
| dc.title | 飲食天然物對於食源性糖化終產物加劇高脂高果糖飲食誘導之代謝紊亂的改善效果 | zh_TW |
| dc.title | Effect of dietary natural product on alleviating dietary advanced glycation end products exacerbated metabolism disorders caused by high-fat and high-fructose diet | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 何元順;張嘉哲;洪偉倫;魏嘉徵 | zh_TW |
| dc.contributor.oralexamcommittee | Yuan-Soon Ho;Chia-Che Chang;Wei-Lun Hung;Chia-Cheng Wei | en |
| dc.subject.keyword | 食源性糖化終產物,高脂高果糖飲食,代謝紊亂,腸道菌相,多重植物萃取物, | zh_TW |
| dc.subject.keyword | dietary advanced glycation end products,high-fat and high-fructose diet,metabolic disorders,gut microbiota,multi-plant extract, | en |
| dc.relation.page | 125 | - |
| dc.identifier.doi | 10.6342/NTU202303076 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-08-09 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 食品科技研究所 | - |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 4.88 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
