請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8900完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 呂學一 | |
| dc.contributor.author | Chih-Chung Cheng | en |
| dc.contributor.author | 鄭智中 | zh_TW |
| dc.date.accessioned | 2021-05-20T20:03:41Z | - |
| dc.date.available | 2009-08-21 | |
| dc.date.available | 2021-05-20T20:03:41Z | - |
| dc.date.copyright | 2009-08-21 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-08-18 | |
| dc.identifier.citation | [1] A. V. Aho, Y. Sagiv, T. G. Szymanski, and J. D. Ullman. Inferring a tree from lowest common ancestors with an application to the optimization of relational expressions. SIAM Journal on Computing, 10(3):405–421, 1981.
[2] V. Berry and C. Semple. Fast computation of supertrees for compatible phylogenies with nested taxa. Systematic Biology, 55(2):270–288, 2006. [3] O. R. P. Bininda-Emonds, M. Cardillo, K. E. Jones, R. D. E. MacPhee, R. M. D. Beck, R. Grenyer, S. A. Price, R. A. Vos, J. L. Gittleman, and A. Purvis. The delayed rise of present-day mammals. Nature, 446(7135):507–512, 2007. [4] M. Bordewich, G. Evans, and C. Semple. Extending the limits of supertree methods. Annals of Combinatorics, 10(1):31–51, 2006. [5] D. Bryant, C. Semple, and M. Steel. Supertree methods for ancestral divergence dates and other applications. In Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life, pages 129–150. Kluwer Academic Publishers, 2004. [6] D. Bryant and M. Steel. Extension operations on sets of leaf-labelled trees. Advances in Applied Mathematics, 16(4):425–453, 1995. [7] M. Constantinescu and D. Sankoff. An efficient algorithm for supertrees. Journal of Classification, 12(1):101–112, 1995. [8] P. Daniel and C. Semple. Supertree algorithms for nested taxa. In Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life, pages 151–172. Kluwer Academic Publishers, 2004. [9] P. Daniel and C. Semple. A class of general supertree methods for nested taxa. SIAM Journal on Discrete Mathematics, 19(2):463–480, 2005. [10] S. Even and Y. Shiloach. An on-line edge-deletion problem. Journal of the ACM, 28:1–4, 1981. [11] T. Griebel, M. Brinkmeyer, and S. Bocker. EPoS: a modular software framework for phylogenetic analysis. Bioinformatics, 24(20):2399–2400, 2008. [12] M. R. Henzinger, V. King, and T. Warnow. Constructing a tree from homeomorphic subtrees, with applications to computational evolutionary biology. Algorithmica, 24(1):1–13, 1999. [13] J. Holm, K. de Lichtenberg, and M. Thorup. Poly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity. Journal of the ACM, 48(4):723–760, 2001. [14] M. P. Ng and N. C. Wormald. Reconstruction of rooted trees from subtrees. Discrete Applied Mathematics, 69(1–2):19–31, 1996. [15] R. D. M. Page. Modified mincut supertree. In Proceedings of the 2nd International Workshop on Algorithms in Bioinformatics, Lecture Notes in Computer Science 2452, pages 537–551, 2002. [16] C. Semple, P. Daniel, W. Hordijk, R. D. Page, and M. Steel. Supertree algorithms for ancestral divergence dates and nested taxa. Bioinformatics, 20(15):2355–2360, 2004. [17] C. Semple and M. Steel. A supertree method for rooted trees. Discrete Applied Mathematics, 105(1–3):147–158, 2000. [18] C. Semple and M. Steel. Phylogenetics. Oxford University Press, 2003. [19] M. Steel. The complexity of reconstructing trees from qualitative characters and subtrees. Journal of Classification, 9(1):91–116, 1992. [20] M. Steel, A. W. M. Dress, and S. Bocker. Simple but fundamental limitations on supertree and consensus tree methods. Systematic Biology, 49(2):3630–368, 2000. [21] M. Thorup. Near-optimal fully-dynamic graph connectivity. In Proceedings of the 32nd Annual ACM Symposium on Theory of Computing, pages 343–350, 2000. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8900 | - |
| dc.description.abstract | 在演化生物學中,尋找超樹是個重要的主題。一棵半標籤樹T 是一個有以下特性的樹:(1) 每個T 的頂點可以有零到多個標籤;(2) 每個標籤在T 裡只出現一次;(3) 所有的樹葉與無分叉的頂點都至少有一個標籤。如果滿足以下性質,則稱半標籤樹T 遠祖顯示另一棵半標籤樹T ′ :(1) 如果x 在T ′ 裡是y 的祖先,則x 在T 裡仍是y 的祖先;(2) 各自來說,如果在T ′ 之中,x, y 不在從樹根到y, x 的路徑上,則各自來說x, y 在T 之
中不會在從樹根到y, x 的路徑上。一個排名半標籤樹T 是一棵在每個頂點上都有一個排名值的半標籤樹。如果u 是v 的祖先,則u 的排名會比v 的排名小。如果滿足以下條件,則稱排名半標籤樹T 保存一個相對分歧時刻div(L) < div(L′ ):lca (L) 的排名小於lca (L′ ) 的排名。其中L 及L′ 是兩個標籤集合,lca (L) 則是那些標籤所在頂點的最接近共同祖先。 我們提出一個在O(h log 2 h) 時間與O(h) 空間內找到一個排名半標籤樹的演算法,此樹遠祖顯示輸入的一組半標籤樹P 與一組相對分歧時刻D。其中h是P 中每棵樹的標籤數目總和加上D中每個相對分歧時刻中的標籤數目總和。 | zh_TW |
| dc.description.abstract | Finding supertrees is critical in evolutionary biology. A semi-labeled tree T is a rooted tree satisfies the following: (1) each node in T has zero to multiple labels, (2) each label in T appears only once, and (3) all leaves and non-branching internal nodes have at least one label. A semi-labeled tree T ancestrally displays another semi-labeled tree T ′ if the following are satisfied: (1) if x is an ancestor of y in T ′ , then x is an ancestor of y in T ; and (2) if x, y are not on the path from root to y, x in T ′ , respectively, then x, y are not on the path from root to y, x, respectively. A ranked semi-labeled tree T is a semi-labeled tree with one rank on each node, and if u is an ancestor of v, then the rank of u is smaller than the rank of v. A ranked semi-labeled tree T preserves a relative divergence date div(L) < div(L′ ) where L and L′ are two set of labels, if the rank of lca (L) is smaller than the rank of lca (L′ ) where lca (L) is the least common ancestor of the vertices which the labels l ∈ L is on. We show a O(m log2 m)-time and O(m)-space algorithm to find a ranked semi-labeled tree which ancestrally displays a set P of semi-labeled trees and preserves a set D of relative divergence dates, where m is the sum of the number of labels in each trees in P and of labels in L and L′ in each relative divergence dates in D. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-20T20:03:41Z (GMT). No. of bitstreams: 1 ntu-98-R94922110-1.pdf: 431867 bytes, checksum: 033e4ba0dd76125f11fbc8e28f51a2d5 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | Acknowledgements . . . i
Chinese Abstract . . . ii English Abstract . . . iii 1 Introduction . . . 1 1.1 Problem definition . . . 2 1.2 Related work . . . 4 1.3 Roadmap . . . 6 2 Preliminary . . . 7 2.1 Generalization of input tree . . . 7 2.2 Decremental connectivity problem . . . 8 2.3 The batch deletion problem . . . 8 3 The BUI LDPLUS Algorithm . . . 10 3.1 Terms . . . 10 3.2 A Reduction . . . 10 3.2.1 Constraint Graph . . . 10 3.2.2 The constraint graph compatibility problem . . . 11 3.2.3 The Reduction . . . 12 3.3 The Algorithm . . . 13 3.3.1 Terms . . . 13 3.3.2 Ranked Hierarchy . . . 13 3.3.3 GraphBuild Algorithm . . . 14 3.3.4 The creation of Gm . . . 15 3.3.5 The BuildPlus algorithm . . . 15 4 Restricted constraint graph . . . 16 4.1 Intermediate vertices . . . 16 4.2 Bundles . . . 17 4.2.1 Red bundles . . . 17 4.2.2 Aqua bundles . . . 23 4.2.3 Replacing the aqua edges with aqua bundles . . . 23 4.3 Proof . . . 26 5 Proof of Theorem 1.1 . . . 28 Bibliography . . . 29 | |
| dc.language.iso | en | |
| dc.title | 一個相容超樹問題的改進演算法 | zh_TW |
| dc.title | An Improved Algorithm for Compatible Supertree Problem | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 高明達,何錦文 | |
| dc.subject.keyword | 超樹,演化樹, | zh_TW |
| dc.subject.keyword | Supertree,evolutionary tree, | en |
| dc.relation.page | 31 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2009-08-18 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf | 421.75 kB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
