Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8900
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂學一
dc.contributor.authorChih-Chung Chengen
dc.contributor.author鄭智中zh_TW
dc.date.accessioned2021-05-20T20:03:41Z-
dc.date.available2009-08-21
dc.date.available2021-05-20T20:03:41Z-
dc.date.copyright2009-08-21
dc.date.issued2009
dc.date.submitted2009-08-18
dc.identifier.citation[1] A. V. Aho, Y. Sagiv, T. G. Szymanski, and J. D. Ullman. Inferring a tree from lowest common ancestors with an application to the optimization of relational expressions. SIAM Journal on Computing, 10(3):405–421, 1981.
[2] V. Berry and C. Semple. Fast computation of supertrees for compatible phylogenies with nested taxa. Systematic Biology, 55(2):270–288, 2006.
[3] O. R. P. Bininda-Emonds, M. Cardillo, K. E. Jones, R. D. E. MacPhee, R. M. D.
Beck, R. Grenyer, S. A. Price, R. A. Vos, J. L. Gittleman, and A. Purvis. The delayed rise of present-day mammals. Nature, 446(7135):507–512, 2007.
[4] M. Bordewich, G. Evans, and C. Semple. Extending the limits of supertree methods. Annals of Combinatorics, 10(1):31–51, 2006.
[5] D. Bryant, C. Semple, and M. Steel. Supertree methods for ancestral divergence dates and other applications. In Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life, pages 129–150. Kluwer Academic Publishers, 2004.
[6] D. Bryant and M. Steel. Extension operations on sets of leaf-labelled trees. Advances in Applied Mathematics, 16(4):425–453, 1995.
[7] M. Constantinescu and D. Sankoff. An efficient algorithm for supertrees. Journal of Classification, 12(1):101–112, 1995.
[8] P. Daniel and C. Semple. Supertree algorithms for nested taxa. In Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life, pages 151–172. Kluwer Academic Publishers, 2004.
[9] P. Daniel and C. Semple. A class of general supertree methods for nested taxa. SIAM Journal on Discrete Mathematics, 19(2):463–480, 2005.
[10] S. Even and Y. Shiloach. An on-line edge-deletion problem. Journal of the ACM, 28:1–4, 1981.
[11] T. Griebel, M. Brinkmeyer, and S. Bocker. EPoS: a modular software framework for phylogenetic analysis. Bioinformatics, 24(20):2399–2400, 2008.
[12] M. R. Henzinger, V. King, and T. Warnow. Constructing a tree from homeomorphic subtrees, with applications to computational evolutionary biology. Algorithmica, 24(1):1–13, 1999.
[13] J. Holm, K. de Lichtenberg, and M. Thorup. Poly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity. Journal of the ACM, 48(4):723–760, 2001.
[14] M. P. Ng and N. C. Wormald. Reconstruction of rooted trees from subtrees. Discrete Applied Mathematics, 69(1–2):19–31, 1996.
[15] R. D. M. Page. Modified mincut supertree. In Proceedings of the 2nd International Workshop on Algorithms in Bioinformatics, Lecture Notes in Computer Science 2452, pages 537–551, 2002.
[16] C. Semple, P. Daniel, W. Hordijk, R. D. Page, and M. Steel. Supertree algorithms for ancestral divergence dates and nested taxa. Bioinformatics, 20(15):2355–2360, 2004.
[17] C. Semple and M. Steel. A supertree method for rooted trees. Discrete Applied Mathematics, 105(1–3):147–158, 2000.
[18] C. Semple and M. Steel. Phylogenetics. Oxford University Press, 2003.
[19] M. Steel. The complexity of reconstructing trees from qualitative characters and subtrees. Journal of Classification, 9(1):91–116, 1992.
[20] M. Steel, A. W. M. Dress, and S. Bocker. Simple but fundamental limitations on supertree and consensus tree methods. Systematic Biology, 49(2):3630–368, 2000.
[21] M. Thorup. Near-optimal fully-dynamic graph connectivity. In Proceedings of the 32nd Annual ACM Symposium on Theory of Computing, pages 343–350, 2000.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8900-
dc.description.abstract在演化生物學中,尋找超樹是個重要的主題。一棵半標籤樹T 是一個有以下特性的樹:(1) 每個T 的頂點可以有零到多個標籤;(2) 每個標籤在T 裡只出現一次;(3) 所有的樹葉與無分叉的頂點都至少有一個標籤。如果滿足以下性質,則稱半標籤樹T 遠祖顯示另一棵半標籤樹T ′ :(1) 如果x 在T ′ 裡是y 的祖先,則x 在T 裡仍是y 的祖先;(2) 各自來說,如果在T ′ 之中,x, y 不在從樹根到y, x 的路徑上,則各自來說x, y 在T 之
中不會在從樹根到y, x 的路徑上。一個排名半標籤樹T 是一棵在每個頂點上都有一個排名值的半標籤樹。如果u 是v 的祖先,則u 的排名會比v 的排名小。如果滿足以下條件,則稱排名半標籤樹T 保存一個相對分歧時刻div(L) < div(L′ ):lca (L) 的排名小於lca (L′ ) 的排名。其中L 及L′ 是兩個標籤集合,lca (L) 則是那些標籤所在頂點的最接近共同祖先。
我們提出一個在O(h log 2 h) 時間與O(h) 空間內找到一個排名半標籤樹的演算法,此樹遠祖顯示輸入的一組半標籤樹P 與一組相對分歧時刻D。其中h是P 中每棵樹的標籤數目總和加上D中每個相對分歧時刻中的標籤數目總和。
zh_TW
dc.description.abstractFinding supertrees is critical in evolutionary biology. A semi-labeled tree T is a rooted tree satisfies the following: (1) each node in T has zero to multiple labels, (2) each label in T appears only once, and (3) all leaves and non-branching internal nodes have at least one label. A semi-labeled tree T ancestrally displays another semi-labeled tree T ′ if the following are satisfied: (1) if x is an ancestor of y in T ′ , then x is an ancestor of y in T ; and (2) if x, y are not on the path from root to y, x in T ′ , respectively, then x, y are not on the path from root to y, x, respectively. A ranked semi-labeled tree T is a semi-labeled tree with one rank on each node, and if u is an ancestor of v, then the rank of u is smaller than the rank of v. A ranked semi-labeled tree T preserves a relative divergence date div(L) < div(L′ ) where L and L′ are two set of labels, if the rank of lca (L) is smaller than the rank of lca (L′ ) where lca (L) is the least common ancestor of the vertices which the labels l ∈ L is on. We show a O(m log2 m)-time and O(m)-space algorithm to find a ranked semi-labeled tree which ancestrally displays a set P of semi-labeled trees and preserves a set D of relative divergence dates, where m is the sum of the number of labels in each trees in P and of labels in L and L′ in each relative divergence dates in D.en
dc.description.provenanceMade available in DSpace on 2021-05-20T20:03:41Z (GMT). No. of bitstreams: 1
ntu-98-R94922110-1.pdf: 431867 bytes, checksum: 033e4ba0dd76125f11fbc8e28f51a2d5 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontentsAcknowledgements . . . i
Chinese Abstract . . . ii
English Abstract . . . iii
1 Introduction . . . 1
1.1 Problem definition . . . 2
1.2 Related work . . . 4
1.3 Roadmap . . . 6
2 Preliminary . . . 7
2.1 Generalization of input tree . . . 7
2.2 Decremental connectivity problem . . . 8
2.3 The batch deletion problem . . . 8
3 The BUI LDPLUS Algorithm . . . 10
3.1 Terms . . . 10
3.2 A Reduction . . . 10
3.2.1 Constraint Graph . . . 10
3.2.2 The constraint graph compatibility problem . . . 11
3.2.3 The Reduction . . . 12
3.3 The Algorithm . . . 13
3.3.1 Terms . . . 13
3.3.2 Ranked Hierarchy . . . 13
3.3.3 GraphBuild Algorithm . . . 14
3.3.4 The creation of Gm . . . 15
3.3.5 The BuildPlus algorithm . . . 15
4 Restricted constraint graph . . . 16
4.1 Intermediate vertices . . . 16
4.2 Bundles . . . 17
4.2.1 Red bundles . . . 17
4.2.2 Aqua bundles . . . 23
4.2.3 Replacing the aqua edges with aqua bundles . . . 23
4.3 Proof . . . 26
5 Proof of Theorem 1.1 . . . 28
Bibliography . . . 29
dc.language.isoen
dc.title一個相容超樹問題的改進演算法zh_TW
dc.titleAn Improved Algorithm for Compatible Supertree Problemen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee高明達,何錦文
dc.subject.keyword超樹,演化樹,zh_TW
dc.subject.keywordSupertree,evolutionary tree,en
dc.relation.page31
dc.rights.note同意授權(全球公開)
dc.date.accepted2009-08-18
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf421.75 kBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved