I FLE A

o\,

CEES PR A S e 0
#A +35 C
Department of Computer Science and Information Engineering

o\

College of Electrical Engineering and Computer Science

National Taiwan University

Master Thesis

— 18 A8 75 A8 5} B RE A PR R L 0k
An Improved Algorithm for
Compatible Supertree Problem

SR F

Chih-Chung Cheng

FaEHIR: 8% — 4+
Advisor: Hsueh-I Lu, Ph.D.

¥ K B 9857 A
July, 2009

ERRML A BAEE > BARKRTHS - — 5 OERLGHEEAMEY : REFHILH
AL Sty ~ WBAR R CRABANER — 7 LB AT EEFFY
AET) ©

FERGBRF > RERARROGIBEZR S Z 6 o LR HNZ R AR F
R AR At L & ER CRRFOFI - EARYGBRF > LR\ TEARL
Wik - BRERREERPBERMBAAGERR AT BABR ABEL LAF 2
—F a4t o

FERBRHRGORAEZ R » HUAEZIRATHR LI > AR E B = T E AT
RAmER O RETHSFEOEL

RULEBRHERETEOR LM o« FRITREARA FW RO R > F AR
7 BP R 6 atam o AR RBRFE 0 A THARNRER D FHRANRT T AR LS
ABEGEDERBAGEFR T RGBT c LLZRBRAERBEBE—F B F
A o EF o~ B B B o —EAMRRRFLHEE > PRR—RIAAT

ERG N R §AEETHR

BEEBRRROMEM » FEMANE THEBRERER SLRE - ok T
Yo~ I o YA KRR E IR 0 ABRAG SRR G o WR
ESFA R ST BRX AR BB ERRETREGRZM - EPMEEY
ZHM - MEER -REAZR -NEER - HHERNLEERTEOHERALTHOH
By o FF S AMALTET A& B 097 KRS B > BEEBIRKR] TR F
AR AF 69 7 e dfe i o

R RERBHROGRA > &35~ Bpdb ~ SME ~ Lo dd o RMEZREAEIEN
BRIy XY ELBERGFE > RIFRT R > —ATARRNK °

FFEACAEDZEF » FREBBTE TR A o —RFARBBT T—EA AT MY
B (1) HBET TART AR KB SEAZER (2 #EAZRAT AER—KR: 3) A
BB) LTAZRRE VA —EARR o wRKLATHE - BIHFFAR RAT @4
BT A —ARFARBBT (1) o FRx BT A2y 69485% > Blo £T 2245 %y 0948 % 3 (2)
ZFARF WwRAET ZF > 2,y FEKBIRB Y, » 8958 L > A& A R,y £T X
PREERBARE Y, o 6958 L o —APE FIZRBT T—REHMEIAR L&A —1E
Pe o A8 69 F A2 Bt o o Ry Ao 8948 5% » Bly B9BEE G by 89BEL s o e RIHAUAT
etk o RIARHES A2 BT R4 —18Ae sk Al div(L) < div(L)) : lea(L) 89 HE4 1
Alea(L)) ¥ o P L AL ARMEIZKES > lea(L) B AR AR K AT 12 TA R 09 4%
WHEFIEA o

HAAR B — 18 £ O(hlog? h) BB RO(h) F M A 4K) — 18 3F 4 F 42 S0 5% ok
SRBHEA I R A — A F AR BB PR AR B D o X FLEP T ERB 2
KRB A LD A B4R H 5 EF 2] F 894% RBCE 4 A0 o

Abstract

Finding supertrees is critical in evolutionary biology. A semi-labeled tree 7 is a
rooted tree satisfies the following: (1) each node in 7 has zero to multiple labels,
(2) each label in 7 appears only once, and (3) all leaves and non-branching internal
nodes have at least one label. A semi-labeled tree 7 ancestrally displays another semi-
labeled tree 7' if the following are satisfied: (1) if = is an ancestor of y in 7', then z is an
ancestor of yy in 7; and (2) if z, y are not on the path from root to y, = in 7”, respectively,
then x, y are not on the path from root to y, =, respectively. A ranked semi-labeled tree
7 is a semi-labeled tree with one rank on each node, and if « is an ancestor of v, then
the rank of « is smaller than the rank of v. A ranked semi-labeled tree 7 preserves
a relative divergence date div(L) < div(L') where L and L’ are two set of labels, if
the rank of ica(L) is smaller than the rank of lca(L’) where Ilca(L) is the least common
ancestor of the vertices which the labels I € L is on. We show a O(m log? m)-time and
O(m)-space algorithm to find a ranked semi-labeled tree which ancestrally displays a
set P of semi-labeled trees and preserves a set D of relative divergence dates, where m
is the sum of the number of labels in each trees in P and of labels in L and L’ in each

relative divergence dates in D.

Contents

Acknowledgements
Chinese Abstract
English Abstract

1 Introduction
1.1 Problem definition
1.2 Relatedwork.

1.3 Roadmap

2 Preliminary
2.1 Generalization of inputtree
2.2 Decremental connectivity problem L

2.3 Thebatch deletionproblem,

3 The BulLDPLUS Algorithm

3.2

3.3

AReduction
321 ConstraintGraph
3.2.2 The constraint graph compatibility problem
323 TheReduction.
The Algorithm
331 Terms.
3.3.2 RankedHierarchy
3.3.3 GraphBuild Algorithm
3.34 ThecreationofG,,
3.35 TheBuildPlusalgorithm

4 Restricted constraint graph

4.1

4.2

4.3

Intermediate vertices
Bundles
421 Redbundles
422 Aquabundles

4.2.3 Replacing the agua edges withaqua bundles

5 Proof of Theorem 1.1

Bibliography

28

29

Chapter 1

Introduction

Finding supertrees is critical in evolutionary biology [3]. This paper focuses on the
following TREE COMPATIBILITY problem defined by Bordewich, Evans, and Semple [4]
which integrates smaller evolutionary trees with additional labels on internal nodes
and the relative orders of two divergence events into one evolutionary tree. A label on
an internal node of a evolutionary tree may represent a taxon at higher taxonomic level
than all its descendants [9]. The relative orders of divergence events can be collected
from fossil data or molecular dating techniques [5].

Unless specified, all the trees are rooted and directed from root to leaves, and we
use a vertex and the labels on the vertex interchangeably. The label set of a structure

S, denoted L(S), is the set of all labels in it.

For any set S, let |S| denote the cardinality of S.

1.1 Problem definition

Let 7" be a rooted tree. Each node v of T' is associated with a set L (v) of labels, where
Lz (v) is allowed to be empty. Let L1 denote the union of Ly (v) over all nodes v of T'.

We say that 7" is a semi-labeled tree if both of the following conditions hold.

e Condition C1: Ly(u) N Ly(v) = 0 holds for any two distinct nodes v and v of T..

e Condition C2: Ly (u) is not empty for each node u that has at most one child in 7T'.

By Condition C1, we can specify a node « with nonempty L1 (u) by any label in Ly (u).
For any two distinct nodes u and v of T', we say that « is an ancestor of v if u belongs

to the path of T' between v and the root of 7'. For any semi-labeled tree T', define

D(T) = {(a,b)]|a,be Ly,aisanancestorofbinT};

N(T) = {{a,b}|a,be€ Ly,aandbare unrelated in 7'}.

For any two semi-labeled trees 7" and 7", we say that 7' ancestrally displays 7" if
D(T') € D(T) and N(T") € N(T) [8]. A function r from the nodes of 7" to non-
negative integers is a rank of 7" if r(u) < r(v) holds for any nodes v and v such that «
is an ancestor of v in T' [5]. A relative divergence date on 71" is a constraint of in the form

div(L) < div(L"), where L and L' are nonempty subsets of L.

A tree T with rank function r preserves a relative divergence date div(L) < div(L’)

r(lcar(L)) < r(lcar(L")).

Given a set P of rooted semi-labeled tree and a set D of relative divergence dates,

the TREE COMPATIBILITY problem, defined in [4] seeks a ranked semi-labeled tree

div(a, b, c) < div(e, f, g)

()

(b)

Figure 1.1: A ranked semi-labeled tree in (b) ancestrally displays rooted semi-labeled

trees and preserves relative divergence dates in (a).

which ancestrally displays P and preserves D, or reports “incompatible” if no such
tree exists.

The ranked semi-labeled tree in figure 1.1b ancestrally displays all rooted semi-
labeled trees and preserves all relative divergence dates in figure 1.1a.

The best result is O(n3m?) time and O(n?m?) space with n = |L(P) U L(D)|, and
m = |P| + |D| by Bordewich, Evans, and Semple [4]. And for each relative diver-
gence dates in the form div(S) < div(S’), the size of S and S’ are limited to 2 in their

algorithm. Moreover, all compatible trees can be enumerated in the same work. [4]

In this work, we reduce the time and space complexity of TREE COMPATIBILITY

with a constraint graph based algorithm in the following time and space bound.

Theorem 1.1. Given a set P of rooted semi-labeled trees and a set D of relative divergence
dates, a ranked semi-labeled tree (7, r) which ancestrally displays P and preserves D can be

built in O(hlog? h) time with O(h) space if such tree exists, or the incompatibility can be

detected in the same bound if not. And h = ||P|| + || D|| where ||P|| =>_|L(7)| for T € P

and ||D|| = > |L(r)| forr € D.

The previous best result is O(n3m?) time and O(n?m?) space, by applying the tech-
niques in [2], it is not hard to acquire a O(n?*m? log? nm) time and O(n?m?) space al-
gorithm with n = |L(P) U L(D)|, and m = |P| + |D|. Our work further reduce the
time to O(nm log® nm) and space to O(nm). While in our notations, the previous best
result becomes O(h? log? h) time and O(h?) space with h = ||P|| + || D||.

Moreover, our result has the following additional features.

1. The ordering property. An algorithm satisfies ordering property if with the per-

mutation of input trees as new input, the output tree will be the same one. [20]

2. The renaming property. An algorithm satisfies renaming property if with renamed
labels as new input, the output tree will be the same one with labels renamed

accordingly. [20]

3. Optional compact form of relative divergence date. The relative divergence date
in the form div(S, z) < div(S’, ") with z, 2" € {0, 1} represents all relative diver-
gence dates in the form div(s) < div(s’) for any subset s € S and s’ € S" with

s = maz{x|S|,1} and s’ = maz{2’|S’|, 1}.

1.2 Related work

Descending from BuiLD. A stream of long developing supertree methods started
from applying BuiLD algorithm [1] in this domain [6, 7, 14,18, 19]. The input rooted
semi-labeled trees are labeled only on leaves and singularly-labeled. A tree is singularly-

labeled if each node has at most one label. The BuiLD algorithm uses O(Nn) time, and

4

Henzinger [12] cut its complexity down to min{O(Nn'/?),O(N + n*logn)} with N
the number of vertices and n the number of distinct labels. The MINCUTSUPERTREE
[17] algorithm and its modified versions [15] improved BuiLD to solve incompatible

data set with weights on each tree.

In successive works, the input was then expanded in two ways: one is the inclusion

of non-tree constraints, and the other is allowing labels for internal vertices.

The inclusion of relative divergence dates. In RANKEDTREE algorithm [5], the
input is a set D of relative divergence dates. It outputs a rooted semi-labeled tree with
rank. The input rooted semi-labeled trees are labeled only on leaves and singularly-
labeled. It runs in O(|D| + n?) time where n = |L(D)|.

The inclusion of rooted semi-labeled trees. In ANCESTRALBUILD algorithm [8],
the input is a set of rooted semi-labeled trees. And the output tree ancestrally displays
all the trees in input. It runs in O(¢t>n®) where t is the number of trees and n is the
number of taxa [2]. When the input trees are all singularly-labeled, the ANCESTRAL-
BuiLD* algorithm [2] cut down the complexity to O(log?n - (XCrep 2uer(my) d(u)?))
for n = |L(P)| and I(T) is the set of all internal nodes in tree 7. For other variants
of ANCESTRALBUILD with singularly-labeled trees, NESTEDSUPERTREE [9] solves the
rest types of incompatible inputs, after excluding pairwise inconsistent and ancestor-
descendant contradiction. The input P is pairwise inconsistent if there exists two labels
x,y € L(P), x is a strict ancestor of y in a tree but z is not strict ancestor of y in some
tree T with {x,y} C L(T). P is ancestor-descendant contradiction if there is a directed
loop in G where V(G) = L(P) and E(G) = {(z,y) : © € L(u),y € L(v), (u,v) € T,T €
P}

And MINEDGEWEIGHTTREE [9], a variant of NESTEDSUPERTREE, allows weighted

trees and can be modified easily to have flexible weighting functions on either edges

or labels.

The applications. Forapplications, ANCESTRALBUILD, its variants, and RANKEDTREE
are demonstrated on real data or used in [11, 16].

The approaches of RANKEDTREE and ANCESTRALBUILD are combined in the TREE
COMPATIBILITY problem [4]. It takes a set P of ranked semi-labeled trees and a set D
of relative divergence dates as input, and then rejects incompatible input, or output a
ranked semi-labeled tree if input is compatible. The algorithms BuiLDPLUS [4] solve
this problem in cubic time O((nm)?) where n is the number of labels in input and m is
the number of trees plus the number of relative divergence dates [4]. ALLBUILDPLUS

[4] in the same work output all compatible trees.

1.3 Roadmap

The TREE COMPATIBILITY problem is reduced to the CONSTRAINT GRAPH COMPAT-
IBILITY problem in Section 2, the CONSTRAINT GRAPH COMPATIBILITY problem is

solved in Section 3, and our result is proved in Section 4.

Chapter 2

Preliminary

The TREE COMPATIBILITY and CONSTRAINT GRAPH COMPATIBILITY problem are ab-
breviated to 7C and GC, respectively.

For a graph G, let C(G) be the connected components of G. For a connected com-
ponent C' € C(G), if, after the removal of a set of vertices in C, C becomes a set of
connected components C, let C be the children of C, denoted child(C'). And let the main
connected component, denoted M (C), be an arbitrarily chosen connected component
C’ e Cwith |[E(C")| > |E(C")| for C” € C and the new connected component, denoted

N(C),beC\ M(C) where C = child(C).

2.1 Generalization of input tree

A ranked semi-labeled tree is fully-labeled if each node has at least one label. A fully-

labeled semi-labeled tree is called fully-labeled tree.

Lemma 2.1. Let P and D be the input of 7C. Without loss of generality, P can be assumed

as fully-labeled and with a common root p ¢ L(D).

7

2.2 Decremental connectivity problem

Let G = (V, E) be an undirected graph. The DECREMENTAL CONNECTIVITY PROB-
LEM maintains G with the operation of edge removal, and the query of whether two

vertices are connected.

Lemma 2.2 (Holmetal. [13], Thorup [21]). The DECREMENTAL CONNECTIVITY PROB-
LEM can be solved in O(mlog®n + plogn/loglogn) and O(m) space with p queries, where

n=|V|,m = |E|

2.3 The batch deletion problem

For a graph G supporting the operation of vertex set removal with all vertices removed
are in the same component, let W be a component graph data structure, if W is a data
structure with respect to G maintaining a property of GG, and after the removal of a
vertex set, G becomes G’. the property of G remains maintained if the update function

U(x) of W are called for each z € C, some C € C(G).
W has partial update property if
1. Wisinitially maintained.

2. W is maintained, if, after a connected component C' € C(G) becomes its children

C by removal of some vertices S in V(C), the following is satisfied,

3. For each connected component C’ € C U S except an arbitrary one C” € C, C" is

updated by the following:

4. The update function provided by W is called for all vertices in C".

Lemma 2.3 (Even et al. [10], Henzinger et al. [12], and Berry et al. [2]). For a com-
ponent graph data structure W with respect to G and update function U(x), and W has the
partial update property, if the DECREMENTAL CONNECTIVITY PROBLEM can be solved in
T (n,m,p) time and S(n,m, p) space with G and p queries, then 1V is maintained by calling
U(x) at most O(log n) times for each « € V(G) with total O(m log n+T'(n, m,m)) time and

O(m + S(n,m,m)) space where n, m are the number of vertices and edges in G, respectively.

Chapter 3

The BuiLDPLUS Algorithm

Since our improvement is based on the BuiLDPLUS algorithm [4], we describe it first.

3.1 Terms

For a vertex = and a structure G, let indegree ;(x) and outdegree;(x), denote the inde-

gree and outdegree of = in G, respectively.

3.2 A Reduction

3.2.1 Constraint Graph

A constraint graph G = (G, ¢, Q), R) consists of
1. adirected graph G,
2. acoloring function ¢ : V(G) — {blue, aqua},
3. adirected graph @, and

10

4. a directed graph R,

where L(G), V,(G) are the set of blue and aqua vertices in G, respectively.

Let L(Q) = L(G) N V(Q), L(R) = L(G) N V(R), and V4 (R) = V,(G) NV (R).

In G, for an aqua vertex a € V,(G), indegree(a) = 0.

InQ,V(Q) = L(Q) = L(G), and E(Q) are called red edges.

In R, V(R) = L(G) U V,(G). For a blue vertex b € L(R), indegree p(b) = 0. For
a € Vo(R), outdegree p(a) = 0.

Remark 3.1. The edges in graphs G,Q, and R are constraints. A vertex with indegree 0
in all graphs can be removed in the iteration of BuiLDPLUS, and the removed vertices

becomes node in output tree.

3.2.2 The constraint graph compatibility problem

A ranked semi-labeled tree 7 displays a constraint graph G = (G, ¢, Q, R), if

2. For two labels z, y with a directed path from « to y in G, x is an ancestor of y in

7.

3. For an edge (z,y) € L(Q), z,y are not on the path from root to y, z in 7, respec-

tively.

4. For an aqua vertex a, let L = {z € L(R) : (z,a) € E(R)},and L' = {y € G :

(a,y) € E(G)}. We have rank(lca(L)) < rank(lca(L")) in T.

The CONSTRAINT GRAPH COMPATIBILITY problem, GC for short, try to find a

ranked semi-labeled tree 7 displays the input constraint graph G = (G, ¢,Q, R), or

11

output “incompatible” if not, where all v € V(G) are all in the same core.

3.2.3 The Reduction

Lemma 3.2. [Bordewich et al. [4]] The TREE COMPATIBILITY problem can be reduced to
CONSTRAINT GRAPH COMPATIBILITY problem. Given an instance of CONSTRAINT GRAPH
COMPATIBILITY problem, a constraint graph G which is reduced from P and D, the instance
of TREE COMPATIBILITY , if CONSTRAINT GRAPH COMPATIBILITY returns a ranked hier-

archy H, then H ancestrally displays P and preserves D.

The reduction is described as following:

1. Let L(G) = L(Q) = L(R) = L(P) U L(D).

2. For an internal node » in 7" and all its children v € child(u), add arcs {(z,y) : « €

L(u),y € L(v)} in G, where T € P.

3. For each pair of siblings N € T,add arcs £ = {(z,y) : € u, y € v, u # v, u,v €
N}in@Q.
4. For each relative divergence date div(L) < div(L’), an aqua vertex a are built in

G and R, arcs {(a,y) : y € L'} are builtin G, and arcs {(z,a) : z € L} are builtin

R.

5. For each relative divergence date div(L,z) < div(L’,z) in the compact form, it
is expressed by corresponding relative divergence dates D;, and then D; is built

by the previous step.

The above version of constraint graph applies the method of restricted descen-

dancy graph shown in [2], and by Proposition 4 in [2], it can replace the original ver-

12

sion of constraint graph in [4].

To prove Lemma 3.2, it is sufficient to show if there exists a ranked semi-labeled
tree 7 which ancestrally displays P and preserves D, then CONSTRAINT GRAPH COM-
PATIBILITY returns 7 displaying G. The sufficiency is shown in [4].

Furthermore, if there exists no tree which ancestrally displays P and preserves D,

then the CONSTRAINT GRAPH COMPATIBILITY returns “incompatible.”

3.3 The Algorithm

3.3.1 Terms

LetG = (G, ¢,Q, R) be a constraint graph. A core of G is a connected component in G,
and let C'(G) denote the cores in G. A source of G is a blue vertex with indegree 0 in G,
Q. Letx <7 yif zis an ancestor of y. Let |G| be |[V(G)| + |E(G)| + |V (Q)| + |E(Q)| +
[V(R)| + [E(R)].

3.3.2 Ranked Hierarchy

In [4], the ranked hierarchy is used as a data structure for recording the output tree in
the main iteration. A ranked hierarchy H; can be transformed into a unique ranked

semi-labeled tree 7.

A cluster is a set of labels. In the corresponding tree 7 and a vertex u, the cluster

CT(U) is

U Zw).

viulpv

A ranked hierarchy is set of clusters and a rank on each cluster, for each pair of

clusters Cr(u) and Cr(v) with Cr(v) C Cr(u), we have rank(Cr(u)) < rank(Cr(v)).

13

3.3.3 GraphBuild Algorithm

The GRAPHBUILD algorithm to solve CONSTRAINT GRAPH COMPATIBILITY problem.

It can be derived from the BuiLDPLUS in [4].

Algorithm 1 GraphBuild(G)

1: Create Gy from G.

2.

3:

4.

10:

11:

12:

13:

14:

15:

16:

17:

18:

repeat

Iteration k, starting from 0.

// Phase 2

Let S, ={a:a € V(Ga),a ¢ V(Qax)}

Gokt1 — Gor \ Sa.

// Phasel

Let S = {s: indegree(s) = 0in Gogy1, Qopr1} \ {s : indegree(s) # 01in Qo }.

Gokt2 — Gory1 \ S

Let 7,1 be the partition of the vertex set of G2 induced by the cores of

Gok42.

Hypq1 < Hip U .

for all cluster B € 7y, \ w341 do

r'(B) « k.

end for
until (a) All vertices in Gy,2 are removed, or (b) it is impossible to do so.
Incompatible. The input is incompatible in condition (b)
Compatible. In condition (a), H; is a ranked semi-labeled tree which ancestrally
displays P’ and P and preserves D.

Restriction. Restrict H; to L(P) U L(D) and get H.

14

3.3.4 The creation of G,,

If |C(G)] = 1, Let Gy = G. Otherwise, create a blue vertex p in G,Q, R, and arcs

(p,x) € E(G) for each blue vertex z € L(G).

When the constraint graph G,,,_1 becomes G,,, the following maintenance in @,, is

done:

1. The arcs (z,y) with z, y are in different cores are removed.

2. For an aqua vertex a, let L(a) = {u : (u,a) € E(R)}. If notall L(a) are in the
same core in G, if some vertices in L(a) are notin G, orif |L(a)| = 0, a is removed

from R.

3.3.5 The BuildPlus algorithm

The BuiLDPLUS algorithm reduces the input P and D to the input G of GC. G then be

solved by GRAPHBUILD. By Lemma 3.2, the output of GC is the output of 7C.

15

Chapter 4

Restricted constraint graph

We replace the constraint graph with a restricted constraint graph. A restricted con-
straint graph is a constraint graph, with the modification of intermediate vertices, red
bundles, and aqua bundles. A restricted constraint graph G, is associated with a con-
straint graph Gy, if Gy and Gj, are reduced from the same input P and D of 7C, and

G, G}, are derived from G, G)._,, respectively, with the same vertices set removed.

4.1 Intermediate vertices

Lemma4.1. Let P and D be the input of 7C, and Gy = (Go, ¢, Qo, Ro) be the input of GC
reduced from P and D. Let G; = (G, ¢, Q),, R},) be a restricted constraint graph associated
with Gy.. Then (1) L(Gx) = L(G},); (2) for each x € L(Gy), outdegreec, (x) = 0 if and only
if outdegree, (x) = 0; (3) for each two =,y € L(Gy), x,y are connected in Gy, if and only if
x, y are connected in G..

Furthermore, [V (G7)| + |E(GY)| = O(||P|)), where G = G \ V,(G) and the reduction

of G/ can be done in O(||P|)).

16

Proof. For each internal node v € T, if |[L(u)| > 1 and |L(child(u))| > 1, an intermedi-
ate vertex ¢t and edges {(z,t) : © € L(u)} U{(t,y) : y € L(child(u))} is built in G’ for
each T € P. Let ¢(t) = indigo, a new color in ¢.

After the removal of sources S, G;,_; becomes Gy, G, _, becomes G,. If after the
removal of S, the indegree of ¢ will become 0, ¢ is add to S. Note that the vertices in S
are still in the same core.

Foreachy € {y € L(Gk_1) : (t,y) € E(Gk—_1)}, y has indegree 0 in G}, For each two
y,z €{y,z € L(Gk_1) : (t,y),(t,z) € E(Gr-1)}, y, z are connected in Gy, if and only if

y, z are connected in G O

4.2 Bundles

Lemma 4.2. For the restricted constraint graph G = (G, ¢, @, R) reduced from P and D,
the total update time for red edge removal step and of aqua label removal step can be done in
O(hlog? h) time and O(h) space, where h = || P|| + || D|| + |V (G")| + |E(G")], and G’ be the

subgraph of G induced by L(G).

421 Red bundles

A red bundle tree T is a non-empty three-layered rooted tree in Q. If v € V(T') has no
outdegree, v has exactly two ancestors.

Terms. Let L(T') be the leaves of T, p(T') be the root of T', I(T) be the internal
nodes of T, Pr(z) be the parent of x in T'. For a subset L' C L(T), let U1(L’) be the
red bundle tree induced by L’ and all the ancestors of L’ in T'. For a vertex v € I(T),

v ¢ V(G)UL(Q)UV (R). Foraleaf x € L(T), z € L(Q). Ared bundle tree T is removed

17

if I(T) is removed from (). For a set of blue vertices S, let RT'(S) be the red bundle

trees T with L(T) N S # (), and for a graph G, let RT(G) be RT(L(QG)).

Lemma 4.3. For a constraint graph G = (G, ¢, Q, R), An blue vertex « has no red edge if and

only if 2 has no edges from red bundle trees.

For a constraint graph G, = (G, ¢, Qk, Rx) and a blue vertex = € L(Gy), Let

Ap(z) = {y : (2,y) € E(Qr)}-

Lemma 4.4. Let Gy be the input constraint graph, and G = (G, ¢, Qk, Rx) be a constraint
graph with & > 0 from G, by removal of a vertex set. If a data structure W keeps Yy (z) =
Ao(z), and YT(x) = Ag(x), and the vertex set {z : |YTi(z)| = 0,|Yr_1(z)| # 0} can be

known, for each blue vertex x € L(GY), then W can replace the red edges.

Proof. In BUILDPLUS, a vertex has no red edges if |A;(z)| = 0. O

Property. When a core C' becomes its children C, the following property is main-

tained:

Property 4.5. for each red bundle tree 7' € RT(C), T becomes the forest child(T) =
{Or(L') : L' = L(T) N L(C"),C" € C}, where the I(T") could be duplicated or moved in

the induction while L’ stays the same vertices set.

The reduction In the reduction from 7C to GC, for each node p with outdegree
greater than 1, a red bundle tree 7" with root r is built. For each child v of p, a vertex k
is created as a child of ». And for each label x € L(v), a leaf z is created as a child of k.

The removal of red bundle tree For ared bundle tree T', if p(T') has only one child,

remove 7.

18

Let

TeRT ()

We prove that Y (z) = Ax(x), and the vertex set S = {z : |T,(z)| = 0, | Ti_1(z)| #
0}

Proof. Let Gr = (G, Qk, Rx) with k > 0 be a constraint graph, and after the removal
of some vertices S € G with S € V(C), C € Gy, let the resulting constraint graph be
Gk+1-

Terms. LetT € RT(Qy) be ared bundle tree and x € L(Q) be a blue vertex.

Let Yy(z,T) be

{ye L(T): Pr(z) # Pr(y)}, ifzeT,
0, ifxe¢T.
And Tk(:c) = UTERT(Qk) Tk(:c,T) with k£ > 0.
Let Ag(z) = {y : (z,y) € Qo}, and Ag(z,T) = Yo(x) N L(T). Let Ag(x) = {y :

(.’Ii,y) € E(Qk)} and Ak(va) = Akfl('%yT) \ {y : (fL‘,y) € Qk,17($,y) ¢ Qk} with
k> 0.

Initialization. When the constraint graph g, is built, for each « € L(Qy) and each
T e RT(QQ), Ao((L') = T()((L‘) and AQ((L‘,T) = TQ((L‘,T)
Foreach z € L(Qy) and each T" € RT(Qx), Ax(z) = Ureprg,) Me(z. T).

Induction step. When G, becomes G4, let C € C(Gy,) be the core with vertex
set removed, C = child(C). Let x be a blue vertex, x € L(C) before removal, and
x € L(C") after removal for C' € C. And LetT € RT(Q) and T € RT(x), T becomes
T = child(T) in Q1.

Let 7" = Wp(L') with L' = L(T) N L(C"). Since T" is the subtree of 7" induced by

19

L’ and its ancestors, Ty 1(z, T") = T(xz, T) N L(C"). Since all the red edges (z, y) with
y ¢ L(C") are removed, Api1(x,T") = Ag(x,T) N L(C"). With Ty (z,T) = Ay (z,T), we
have Yy 1(x,T") = Apsq (2, T7).

An edge (Pr/(x),x) in T" is removed if and only if p(7") = 0. And p(T7") = 0 if and

only if Yj41(z,T") = 0. So, RT (z) = (if and only if = has no red edges.

For a constraint graph G = (G, ¢, Q, R), let |[RT(Q)[| = X rerr) [V (T)]-

Lemma 4.6. For the constraint graph build by the reduction, | RT(Q)|| = O(r). And the the

reduction for the red bundles cost O(r) time and space where r = || P||.

Proof. For each internal node u in each tree T’ € P, a bundle tree with U, ¢ piiq(u)| L (v)]
leaves are created. So, ||RT(Q)|| = O(r). And it is a linear time reduction, so the time

and space for the reduction are both O(r). O

Lemma 4.7. The red bundle trees has the partial update property. And if each blue vertex
updates red bundle trees at most O(t) times, the red bundles can be maintained in O(rt) time

with O(r) space where = || RT'(Q)|| for the input constraint graph G = (G, ¢, @, R).

When a core C becomes its children C, let each blue vertex = € C’ updates each red
bundle tree T € RT(x) by the following steps, where C’ € C\ {C”} and C” € C isan

arbitrary core.

For a red bundle tree T', let each node v € I(T") has a pointer, which is null when

created, and reset to null after each child core updated.

20

Algorithm 2 update(x,T")
1 k «— Pp(x), r — Pp(k).

2: Let g be the pointer of k.
3. if g is null then
4 A node £’ is created.
5: else
6: Let £’ be the node ¢ points to.
7. end if
8: Create edge (k/, z).
9: Let p be the pointer of r.
10: if pis null then
11: A root r’ is created.
12: else
13: Let 7’ be the node p points to.
14: end if
15. Create edge (', k).
16: Remove (k, x).
17: Remove k if k£ has no child.

18: Remove r if r has no child.

After all vertices in C’ updated, reset all visited pointers to null.

We then prove Lemma 4.7.

First, the bundles are initially maintained, 7' = U (L), L = L(T) N L(Cy), since all
blue vertices are initially in the single core C of Gj.

Correctness After the removal of a set of vertices in C, each C’ is updated.

21

For each ¢’ and L' = L(T) N L(C"), we show that U (L') is created. For w €
I(T) \ I(¥7(L")), w will not be visited in the update of C’. For v € I(Vy(L")) and
the child v which visits u, in the first visit of u, the pointer of v is null, and a new
node v’ and the edge (v’,v) are created as the duplication of v and (u,v). And in the
subsequent visit of u, the same v’ is used and (v, v) is created. So, after all leaves in L’
update, ¥, (L') is created.

For the rest part of 7', all leaves of L(T) N L(C") are removed from T since all
C’ € C\ C" are updated. And all internal nodes with outdegree 0 is removed. Also,
no new edges are created to the V(¥ (L”). So, the tree (L") is induced, where
L" = L(T) N L(C"). So the red bundles are maintained.

So, the red bundles has the partial update property.

Complexity For each z, constant space for each 7' is kept, since the number of
ancestors, the edges and the pointers of z and its ancestors is O(1) though each update.
And after C' is visited, the list of visited pointers can be released, the time and space of
the list is constant for each pointer. Each update of = and T costs constant time. Since
each z is updated at most ¢ times, the total time for the update is > ./ o) BT (2).

For each bundle tree with the outdegree of root 0, it is removed only once. So, the
time for the removal is linear to the size of the red bundles in addition to the time
above.

So, if each blue vertex updates red bundle trees at most O(t) times, the red bundles

can be maintained in O(rt) time with O(r) space.

22

4.2.2 Aquabundles

An aqua bundle tree T € R is a non-empty two-layered rooted tree consists of a root
p(T') and two sets of leaves L(T') C L(R) and V,.(T) C V,(R). For T, |L(T")| > 0 and
|[V.(T)| > 0. For a set of blue vertices S, let AT'(S) be the red bundle tree 7" with
L(T)Nn S # 0, and for a graph G, let AT(G) be AT(L(G)). And a function z = «(T)
from AT(R)to N U{0}.

Property. When a core C' becomes its children C, the following properties is main-

tained:

Property 4.8. For each u € L(T) is removed form the constraint graph, remove « from T,

too. Foreach T' € AT'(C), if |[L(T) N L(C)| < |a(T)|, T is removed.

4.2.3 Replacing the agua edges with aqua bundles

Without the loss of generality, a relative divergence date div(L) < div(L’) can be de-
scribed as the compact form div(L, x) < div(L',2") with z = 2/ = 1.

Let indegree(a) be the indegree of the aqua vertex a in R.

Lemma 4.9. For a constraint graph G = (G, ¢, @, R) and each relative divergence date d in
the form div(L,z) < div(L',z"), let the created set of aqua vertices be A. And let 7" be the

corresponding aqua bundle.

T can replace A and the edges created in the reduction form div(L, z) < div(L, 2').

Lemma 4.10. For a constraint graph G = (G, ¢, Q, R) and each relative divergence date d in

the form div(L,z) < div(L’,2"), let the created set of aqua vertices be A.

At least one I € L’ is not connected to the aqua vertices a € A with all @ € A with

indegree(a) = 0 removed in the version of agua vertices, if and only if all [€ L' is not

23

connected.

Proof. For div(L,z) < div(L',1), it is true, since all aqua vertices connect to the same
set of L. For div(L,1) < div(L',0), it is true, since all aqua vertices a with (a,y) and
y € L' has same set of edges {(b,a) : b € L} in R.

For div(L,0) < div(L',0), itis transformed into the set Div = {div(L,0) < div({v}, 1),
for v € L'. For each d € Div, d has the property. Since all are not connected if
at least one is is not connected. We only need to show for an v and each v € L,
{div(u) < div(v,1)} has the property. And itis div(L,0) < div(z), and shown in above

case. That finishes the proof.

We then prove Lemma 4.9.

Proof. We prove T can replace A and the edges, by showing if each a € A with
indegree(a) = 0 removed, then a blue vertex b € L’ is connected to no aqua vertices
a € A in the version of aqua vertices, if and only if 7" is removed.

By Lemma 4.10, we only need to show that no blue vertex b € L’ is connected to
any aqua vertices a € A in the version of aqua vertices, if and only if T' is removed.

For div(L,x) < div(L’, "), if all aqua vertex a € A created by each d € Div has
indegree(a) = 0, then T' can be removed, where Div is the expanded relative diver-
gence dates {div(l) < div(l")}.

If 7" can be removed, then all a € A created by each d € Div has indegree(a) = 0.

For div(L,z) < div(L',1), in both version, an aqua vertex or aqua vertices are
created and connected to [€ L’ which keep [in the same core. And for div(L,z) <

div(L',0), an aqua vertex or a set of vertices are created for each [€ L’. In the both

24

cases they keep the A’ C L' with |A’| = maxz(1,2'|L'|) in the same core and prevent all

I’ € A’ becomes sources.
That finishes the proof.

O

The reduction The creation of aqua vertices and the edges for relative divergence

dates is replaced by the steps here.

Let div(L,z) < div(L',2’) be a relative divergence date. If 2 = 0, an aqua vertex
a; is created for each z; € L’. If 2/ = 1, an aqua vertex «a is created. Let the set of
created aqua vertices be A. And an aqua bundle T is built with a root p and the leaves
L(T) = L, f(T) = max(z|L|,1), and V,(T) = A where A is the set of aqua vertices
created for this relative divergence date.

We then prove Lemma 4.9.

Proof. For x = 1, T is removed if some blue vertices in L are removed, or two blue
vertices in L are in different cores. It is the same condition of removing edges on the
aqua vertices in the version of aqua edges. So, all blue vertices created by {div(L) <
div({z})} with z € L' are free to be removed.

For x = 0, T is removed if and only if all blue vertices in L are removed. In the
version of aqua edges, for d € {div(y,1) < div(L’,2")} withy € L, all sets of aqua
edges for d have edge removed in R if and only if all L’ have no edge from aqua

vertex created from d. U

For a constraint graph G = (G, ¢, Q, R), let [AT(Q)[| = X rearg) [V(T)]-

Lemma 4.11. For the constraint graph build by the reduction, [|[AT(Q)|| = O(s). And the

the reduction for the red bundles cost O(s) time and space where s = || D||.

25

Proof. For each relative divergence date div(L, z) < div(L’, 2’), an aqua bundle is built
with |L| + |L'| leaves. And the aqua vertices and edges created in G and R are at most
O(|L']). So, [|[AT(Q)]| = O(s). Itis a linear time reduction, so the time and space is

O(s). O

Lemma 4.12. The aqua bundle trees has the partial update property. And if each blue vertex
updates agua bundle trees at most O(¢) times, the aqua bundles can be maintained in O(st)

time with O(s) space where s = ||AT'(Q)|| for the input constraint graph G = (G, ¢, @, R).

Proof. The removed blue vertex can be identified, and when the removed blue vertex

a updates the each T' € AT'(a), the removal of (a, p(T")) can be done.

For each C' € C\ C”, and each T' € AT(C"), since each blue vertex a € L(C")
updates, the total number of L(7") N L(C’) can be known after C’ is updated, and T’
can be removed if |[L(T) N L(C")| < «(T).

For the core C” not updated, since each ' € AT(C") but T ¢ AT(C') are not

affected, the total number of L(7') N L(C") will not be changed. O

4.3 Proof

We now prove Lemma 4.2.

Proof. By Lemma 4.3 and Lemma 4.9, the red edge removal step and aqua label re-

moval can be done by red bundles and aqua bundles.

With Lemma 4.6 and Lemma 4.11, if the update of a blue vertex is at most O(t)
time, then this can be done in O(ht) time and O(h) space.

And with Lemma 2.3, since red bundles and aqua bundles has partial update prop-

26

erty, the times of update for each blue vertex is O(log h) times, and if the framework
in Lemma 2.3 can be done in T'(n, m) time and S(n, m) space with graph G = (V, E),
where n = |V|,m = |E|, then the total update time for red edge removal step and of
aqua label removal step can be done in O(hlogh + T'(h,h)) time and O(h + S(h, h))

space, where h = ||G|| with G the input constraint graph. O

27

Chapter 5

Proof of Theorem 1.1

Proof. LetG = (G, ¢, Q, R) be a restricted constraint graph reduced from the input P
and D of TREE COMPATIBILITY. Let G’ be the subgraph of G induced by L(G).

By Lemma 4.1, |V(G")| + |E(G")| = O(||P||) and the reduction can be done in
O(||P||) time and space. Let h = || P|| + || D||, we have ||P| + || D||+ |V (G")|+ |[E(G")| =
O(h). By Lemma 4.2, the red edge removal step and of aqua label removal step can be
done in O(h'log? k') time and O(h) space, where b/ = || P| 4 || D|| + |V (G")| +|E(G")| =
O(h).

And the time and space complexity of BUILDPLUS is O(h+T'(h)) and O(h+ S(h)),
where h is the size of restricted constraint graph, T'(h) is the time for creating G, from
Gr_1 With Go = G. T'(h) = O(hlog?h) and S(h) = O(h).

So, the TREE COMPATIBILITY can be solved in O(hlog?h) time and O(h) space,

where h = ||P|| + || D]

28

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

A. V. Aho, Y. Sagiv, T. G. Szymanski, and J. D. Ullman. Inferring a tree from
lowest common ancestors with an application to the optimization of relational

expressions. SIAM Journal on Computing, 10(3):405-421, 1981.

V. Berry and C. Semple. Fast computation of supertrees for compatible phyloge-

nies with nested taxa. Systematic Biology, 55(2):270-288, 2006.

O. R. P. Bininda-Emonds, M. Cardillo, K. E. Jones, R. D. E. MacPhee, R. M. D.
Beck, R. Grenyer, S. A. Price, R. A. Vos, J. L. Gittleman, and A. Purvis. The delayed

rise of present-day mammals. Nature, 446(7135):507-512, 2007.

M. Bordewich, G. Evans, and C. Semple. Extending the limits of supertree meth-

ods. Annals of Combinatorics, 10(1):31-51, 2006.

D. Bryant, C. Semple, and M. Steel. Supertree methods for ancestral divergence
dates and other applications. In Phylogenetic Supertrees: Combining Information to

Reveal the Tree of Life, pages 129-150. Kluwer Academic Publishers, 2004.

D. Bryant and M. Steel. Extension operations on sets of leaf-labelled trees. Ad-

vances in Applied Mathematics, 16(4):425-453, 1995.

29

[7] M. Constantinescu and D. Sankoff. An efficient algorithm for supertrees. Journal

of Classification, 12(1):101-112, 1995.

[8] P. Daniel and C. Semple. Supertree algorithms for nested taxa. In Phylogenetic

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Supertrees: Combining Information to Reveal the Tree of Life, pages 151-172. Kluwer

Academic Publishers, 2004.

P. Daniel and C. Semple. A class of general supertree methods for nested taxa.

SIAM Journal on Discrete Mathematics, 19(2):463-480, 2005.

S. Even and Y. Shiloach. An on-line edge-deletion problem. Journal of the ACM,
28:1-4, 1981.

T. Griebel, M. Brinkmeyer, and S. Bocker. EPoS: a modular software framework

for phylogenetic analysis. Bioinformatics, 24(20):2399-2400, 2008.

M. R. Henzinger, V. King, and T. Warnow. Constructing a tree from homeomor-
phic subtrees, with applications to computational evolutionary biology. Algorith-

mica, 24(1):1-13, 1999.

J. Holm, K. de Lichtenberg, and M. Thorup. Poly-logarithmic deterministic fully-
dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and bicon-

nectivity. Journal of the ACM, 48(4):723-760, 2001.

M. P. Ng and N. C. Wormald. Reconstruction of rooted trees from subtrees. Dis-

crete Applied Mathematics, 69(1-2):19-31, 1996.

R. D. M. Page. Modified mincut supertree. In Proceedings of the 2nd International
Workshop on Algorithms in Bioinformatics, Lecture Notes in Computer Science 2452,

pages 537-551, 2002.

30

[16] C. Semple, P. Daniel, W. Hordijk, R. D. Page, and M. Steel. Supertree algorithms
for ancestral divergence dates and nested taxa. Bioinformatics, 20(15):2355-2360,

2004.

[17] C. Semple and M. Steel. A supertree method for rooted trees. Discrete Applied

Mathematics, 105(1-3):147-158, 2000.
[18] C. Semple and M. Steel. Phylogenetics. Oxford University Press, 2003.

[19] M. Steel. The complexity of reconstructing trees from qualitative characters and

subtrees. Journal of Classification, 9(1):91-116, 1992.

[20] M. Steel, A. W. M. Dress, and S. Bocker. Simple but fundamental limitations on

supertree and consensus tree methods. Systematic Biology, 49(2):3630-368, 2000.

[21] M. Thorup. Near-optimal fully-dynamic graph connectivity. In Proceedings of the

32nd Annual ACM Symposium on Theory of Computing, pages 343-350, 2000.

31

