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摘摘摘　　　要要要

在演化生物學中，尋找超樹是個重要的主題。一棵半標籤樹T 是一個有以下特性的

樹：(1)每個T 的頂點可以有零到多個標籤；(2)每個標籤在T 裡只出現一次；(3)所有

的樹葉與無分叉的頂點都至少有一個標籤。如果滿足以下性質，則稱半標籤樹T 遠祖

顯示另一棵半標籤樹T ′：(1)如果x在T ′ 裡是y 的祖先，則x在T 裡仍是y 的祖先；(2)

各自來說，如果在T ′ 之中，x, y 不在從樹根到y, x 的路徑上，則各自來說x, y 在T 之

中不會在從樹根到y, x的路徑上。一個排名半標籤樹T 是一棵在每個頂點上都有一個

排名值的半標籤樹。如果u 是v 的祖先，則u的排名會比v 的排名小。如果滿足以下

條件，則稱排名半標籤樹T 保存一個相對分歧時刻div(L) < div(L′)：lca(L)的排名小

於lca(L′)的排名。其中L及L′ 是兩個標籤集合，lca(L)則是那些標籤所在頂點的最接

近共同祖先。

我們提出一個在O(h log2 h)時間與O(h)空間內找到一個排名半標籤樹的演算法，

此樹遠祖顯示輸入的一組半標籤樹P與一組相對分歧時刻D。其中h是P中每棵樹的標

籤數目總和加上D中每個相對分歧時刻中的標籤數目總和。
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Abstract

Finding supertrees is critical in evolutionary biology. A semi-labeled tree T is a

rooted tree satisfies the following: (1) each node in T has zero to multiple labels,

(2) each label in T appears only once, and (3) all leaves and non-branching internal

nodes have at least one label. A semi-labeled tree T ancestrally displays another semi-

labeled tree T ′ if the following are satisfied: (1) if x is an ancestor of y in T ′, then x is an

ancestor of y in T ; and (2) if x, y are not on the path from root to y, x in T ′, respectively,

then x, y are not on the path from root to y, x, respectively. A ranked semi-labeled tree

T is a semi-labeled tree with one rank on each node, and if u is an ancestor of v, then

the rank of u is smaller than the rank of v. A ranked semi-labeled tree T preserves

a relative divergence date div(L) < div(L′) where L and L′ are two set of labels, if

the rank of lca(L) is smaller than the rank of lca(L′) where lca(L) is the least common

ancestor of the vertices which the labels l ∈ L is on. We show a O(m log2 m)-time and

O(m)-space algorithm to find a ranked semi-labeled tree which ancestrally displays a

set P of semi-labeled trees and preserves a set D of relative divergence dates, where m

is the sum of the number of labels in each trees in P and of labels in L and L′ in each

relative divergence dates in D.
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Chapter 1

Introduction

Finding supertrees is critical in evolutionary biology [3]. This paper focuses on the

following TREE COMPATIBILITY problem defined by Bordewich, Evans, and Semple [4]

which integrates smaller evolutionary trees with additional labels on internal nodes

and the relative orders of two divergence events into one evolutionary tree. A label on

an internal node of a evolutionary tree may represent a taxon at higher taxonomic level

than all its descendants [9]. The relative orders of divergence events can be collected

from fossil data or molecular dating techniques [5].

Unless specified, all the trees are rooted and directed from root to leaves, and we

use a vertex and the labels on the vertex interchangeably. The label set of a structure

S, denoted L(S), is the set of all labels in it.

For any set S, let |S| denote the cardinality of S.
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1.1 Problem definition

Let T be a rooted tree. Each node v of T is associated with a set LT (v) of labels, where

LT (v) is allowed to be empty. Let LT denote the union of LT (v) over all nodes v of T .

We say that T is a semi-labeled tree if both of the following conditions hold.

• Condition C1: LT (u) ∩ LT (v) = ∅ holds for any two distinct nodes u and v of T .

• Condition C2: LT (u) is not empty for each node u that has at most one child in T .

By Condition C1, we can specify a node u with nonempty LT (u) by any label in LT (u).

For any two distinct nodes u and v of T , we say that u is an ancestor of v if u belongs

to the path of T between v and the root of T . For any semi-labeled tree T , define

D(T ) = {(a, b) | a, b ∈ LT , a is an ancestor of b in T};

N(T ) = {{a, b} | a, b ∈ LT , a and b are unrelated in T}.

For any two semi-labeled trees T and T ′, we say that T ancestrally displays T ′ if

D(T ′) ⊆ D(T ) and N(T ′) ⊆ N(T ) [8]. A function r from the nodes of T to non-

negative integers is a rank of T if r(u) < r(v) holds for any nodes u and v such that u

is an ancestor of v in T [5]. A relative divergence date on T is a constraint of in the form

div(L) < div(L′), where L and L′ are nonempty subsets of LT .

A tree T with rank function r preserves a relative divergence date div(L) < div(L′)

if

r(lcaT (L)) < r(lcaT (L′)).

Given a set P of rooted semi-labeled tree and a set D of relative divergence dates,

the TREE COMPATIBILITY problem, defined in [4] seeks a ranked semi-labeled tree

2
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Figure 1.1: A ranked semi-labeled tree in (b) ancestrally displays rooted semi-labeled

trees and preserves relative divergence dates in (a).

which ancestrally displays P and preserves D, or reports “incompatible” if no such

tree exists.

The ranked semi-labeled tree in figure 1.1b ancestrally displays all rooted semi-

labeled trees and preserves all relative divergence dates in figure 1.1a.

The best result is O(n3m3) time and O(n2m2) space with n = |L(P ) ∪ L(D)|, and

m = |P | + |D| by Bordewich, Evans, and Semple [4]. And for each relative diver-

gence dates in the form div(S) < div(S ′), the size of S and S ′ are limited to 2 in their

algorithm. Moreover, all compatible trees can be enumerated in the same work. [4]

In this work, we reduce the time and space complexity of TREE COMPATIBILITY

with a constraint graph based algorithm in the following time and space bound.

Theorem 1.1. Given a set P of rooted semi-labeled trees and a set D of relative divergence

dates, a ranked semi-labeled tree (T , r) which ancestrally displays P and preserves D can be

built in O(h log2 h) time with O(h) space if such tree exists, or the incompatibility can be

3



detected in the same bound if not. And h = ‖P‖ + ‖D‖ where ‖P‖ =
∑
|L(T )| for T ∈ P

and ‖D‖ =
∑
|L(r)| for r ∈ D.

The previous best result is O(n3m3) time and O(n2m2) space, by applying the tech-

niques in [2], it is not hard to acquire a O(n2m2 log2 nm) time and O(n2m2) space al-

gorithm with n = |L(P ) ∪ L(D)|, and m = |P | + |D|. Our work further reduce the

time to O(nm log2 nm) and space to O(nm). While in our notations, the previous best

result becomes O(h2 log2 h) time and O(h2) space with h = ‖P‖+ ‖D‖.

Moreover, our result has the following additional features.

1. The ordering property. An algorithm satisfies ordering property if with the per-

mutation of input trees as new input, the output tree will be the same one. [20]

2. The renaming property. An algorithm satisfies renaming property if with renamed

labels as new input, the output tree will be the same one with labels renamed

accordingly. [20]

3. Optional compact form of relative divergence date. The relative divergence date

in the form div(S, x) < div(S′, x′) with x, x′ ∈ {0, 1} represents all relative diver-

gence dates in the form div(s) < div(s′) for any subset s ∈ S and s′ ∈ S′ with

s = max{x|S|, 1} and s′ = max{x′|S′|, 1}.

1.2 Related work

Descending from BUILD. A stream of long developing supertree methods started

from applying BUILD algorithm [1] in this domain [6, 7, 14, 18, 19]. The input rooted

semi-labeled trees are labeled only on leaves and singularly-labeled. A tree is singularly-

labeled if each node has at most one label. The BUILD algorithm uses O(Nn) time, and
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Henzinger [12] cut its complexity down to min{O(Nn1/2), O(N + n2 log n)} with N

the number of vertices and n the number of distinct labels. The MINCUTSUPERTREE

[17] algorithm and its modified versions [15] improved BUILD to solve incompatible

data set with weights on each tree.

In successive works, the input was then expanded in two ways: one is the inclusion

of non-tree constraints, and the other is allowing labels for internal vertices.

The inclusion of relative divergence dates. In RANKEDTREE algorithm [5], the

input is a set D of relative divergence dates. It outputs a rooted semi-labeled tree with

rank. The input rooted semi-labeled trees are labeled only on leaves and singularly-

labeled. It runs in O(|D|+ n3) time where n = |L(D)|.

The inclusion of rooted semi-labeled trees. In ANCESTRALBUILD algorithm [8],

the input is a set of rooted semi-labeled trees. And the output tree ancestrally displays

all the trees in input. It runs in O(t2n3) where t is the number of trees and n is the

number of taxa [2]. When the input trees are all singularly-labeled, the ANCESTRAL-

BUILD* algorithm [2] cut down the complexity to O(log2 n · (
∑

Ti∈P

∑
u∈I(Ti)

d(u)2))

for n = |L(P )| and I(T ) is the set of all internal nodes in tree T . For other variants

of ANCESTRALBUILD with singularly-labeled trees, NESTEDSUPERTREE [9] solves the

rest types of incompatible inputs, after excluding pairwise inconsistent and ancestor-

descendant contradiction. The input P is pairwise inconsistent if there exists two labels

x, y ∈ L(P ), x is a strict ancestor of y in a tree but x is not strict ancestor of y in some

tree T with {x, y} ⊆ L(T ). P is ancestor-descendant contradiction if there is a directed

loop in G where V (G) = L(P ) and E(G) = {(x, y) : x ∈ L(u), y ∈ L(v), (u, v) ∈ T, T ∈

P}.

And MINEDGEWEIGHTTREE [9], a variant of NESTEDSUPERTREE, allows weighted

5



trees and can be modified easily to have flexible weighting functions on either edges

or labels.

The applications. For applications, ANCESTRALBUILD, its variants, and RANKEDTREE

are demonstrated on real data or used in [11, 16].

The approaches of RANKEDTREE and ANCESTRALBUILD are combined in the TREE

COMPATIBILITY problem [4]. It takes a set P of ranked semi-labeled trees and a set D

of relative divergence dates as input, and then rejects incompatible input, or output a

ranked semi-labeled tree if input is compatible. The algorithms BUILDPLUS [4] solve

this problem in cubic time O((nm)3) where n is the number of labels in input and m is

the number of trees plus the number of relative divergence dates [4]. ALLBUILDPLUS

[4] in the same work output all compatible trees.

1.3 Roadmap

The TREE COMPATIBILITY problem is reduced to the CONSTRAINT GRAPH COMPAT-

IBILITY problem in Section 2, the CONSTRAINT GRAPH COMPATIBILITY problem is

solved in Section 3, and our result is proved in Section 4.
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Chapter 2

Preliminary

The TREE COMPATIBILITY and CONSTRAINT GRAPH COMPATIBILITY problem are ab-

breviated to T C and GC, respectively.

For a graph G, let C(G) be the connected components of G. For a connected com-

ponent C ∈ C(G), if, after the removal of a set of vertices in C , C becomes a set of

connected components C, let C be the children of C , denoted child(C). And let the main

connected component, denoted M(C), be an arbitrarily chosen connected component

C ′ ∈ C with |E(C ′)| ≥ |E(C ′′)| for C ′′ ∈ C and the new connected component, denoted

N(C), be C \M(C) where C = child(C).

2.1 Generalization of input tree

A ranked semi-labeled tree is fully-labeled if each node has at least one label. A fully-

labeled semi-labeled tree is called fully-labeled tree.

Lemma 2.1. Let P and D be the input of T C. Without loss of generality, P can be assumed

as fully-labeled and with a common root ρ /∈ L(D).
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2.2 Decremental connectivity problem

Let G = (V,E) be an undirected graph. The DECREMENTAL CONNECTIVITY PROB-

LEM maintains G with the operation of edge removal, and the query of whether two

vertices are connected.

Lemma 2.2 ( Holm et al. [13], Thorup [21] ). The DECREMENTAL CONNECTIVITY PROB-

LEM can be solved in O(m log2 n + p log n/ log log n) and O(m) space with p queries, where

n = |V |,m = |E|.

2.3 The batch deletion problem

For a graph G supporting the operation of vertex set removal with all vertices removed

are in the same component, let W be a component graph data structure, if W is a data

structure with respect to G maintaining a property of G, and after the removal of a

vertex set, G becomes G′. the property of G remains maintained if the update function

U(x) of W are called for each x ∈ C , some C ∈ C(G).

W has partial update property if

1. W is initially maintained.

2. W is maintained, if, after a connected component C ∈ C(G) becomes its children

C by removal of some vertices S in V (C), the following is satisfied,

3. For each connected component C ′ ∈ C ∪ S except an arbitrary one C ′′ ∈ C, C ′ is

updated by the following:

4. The update function provided by W is called for all vertices in C ′.

8



Lemma 2.3 (Even et al. [10], Henzinger et al. [12], and Berry et al. [2]). For a com-

ponent graph data structure W with respect to G and update function U(x), and W has the

partial update property, if the DECREMENTAL CONNECTIVITY PROBLEM can be solved in

T (n,m, p) time and S(n,m, p) space with G and p queries, then W is maintained by calling

U(x) at most O(log n) times for each x ∈ V (G) with total O(m log n+T (n,m,m)) time and

O(m + S(n,m,m)) space where n,m are the number of vertices and edges in G, respectively.

9



Chapter 3

The BUILDPLUS Algorithm

Since our improvement is based on the BUILDPLUS algorithm [4], we describe it first.

3.1 Terms

For a vertex x and a structure G, let indegreeG(x) and outdegreeG(x), denote the inde-

gree and outdegree of x in G, respectively.

3.2 A Reduction

3.2.1 Constraint Graph

A constraint graph G = (G,φ,Q,R) consists of

1. a directed graph G,

2. a coloring function φ : V (G)→ {blue, aqua},

3. a directed graph Q, and

10



4. a directed graph R,

where L(G), Va(G) are the set of blue and aqua vertices in G, respectively.

Let L(Q) = L(G) ∩ V (Q), L(R) = L(G) ∩ V (R), and Va(R) = Va(G) ∩ V (R).

In G, for an aqua vertex a ∈ Va(G), indegreeG(a) = 0.

In Q, V (Q) = L(Q) = L(G), and E(Q) are called red edges.

In R, V (R) = L(G) ∪ Va(G). For a blue vertex b ∈ L(R), indegreeR(b) = 0. For

a ∈ Va(R), outdegreeR(a) = 0.

Remark 3.1. The edges in graphs G,Q, and R are constraints. A vertex with indegree 0

in all graphs can be removed in the iteration of BUILDPLUS, and the removed vertices

becomes node in output tree.

3.2.2 The constraint graph compatibility problem

A ranked semi-labeled tree T displays a constraint graph G = (G,φ,Q,R), if

1. L(T ) = L(G).

2. For two labels x, y with a directed path from x to y in G, x is an ancestor of y in

T .

3. For an edge (x, y) ∈ L(Q), x, y are not on the path from root to y, x in T , respec-

tively.

4. For an aqua vertex a, let L = {x ∈ L(R) : (x, a) ∈ E(R)}, and L′ = {y ∈ G :

(a, y) ∈ E(G)}. We have rank(lca(L)) < rank(lca(L′)) in T .

The CONSTRAINT GRAPH COMPATIBILITY problem, GC for short, try to find a

ranked semi-labeled tree T displays the input constraint graph G = (G,φ,Q,R), or

11



output “incompatible” if not, where all v ∈ V (G) are all in the same core.

3.2.3 The Reduction

Lemma 3.2. [Bordewich et al. [4]] The TREE COMPATIBILITY problem can be reduced to

CONSTRAINT GRAPH COMPATIBILITY problem. Given an instance of CONSTRAINT GRAPH

COMPATIBILITY problem, a constraint graph G which is reduced from P and D, the instance

of TREE COMPATIBILITY , if CONSTRAINT GRAPH COMPATIBILITY returns a ranked hier-

archy H, thenH ancestrally displays P and preserves D.

The reduction is described as following:

1. Let L(G) = L(Q) = L(R) = L(P ) ∪ L(D).

2. For an internal node u in T and all its children v ∈ child(u), add arcs {(x, y) : x ∈

L(u), y ∈ L(v)} in G, where T ∈ P .

3. For each pair of siblings N ∈ T , add arcs E = {(x, y) : x ∈ u, y ∈ v, u 
= v, u, v ∈

N} in Q.

4. For each relative divergence date div(L) < div(L′), an aqua vertex a are built in

G and R, arcs {(a, y) : y ∈ L′} are built in G, and arcs {(x, a) : x ∈ L} are built in

R.

5. For each relative divergence date div(L, x) < div(L′, x) in the compact form, it

is expressed by corresponding relative divergence dates D i, and then Di is built

by the previous step.

The above version of constraint graph applies the method of restricted descen-

dancy graph shown in [2], and by Proposition 4 in [2], it can replace the original ver-
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sion of constraint graph in [4].

To prove Lemma 3.2, it is sufficient to show if there exists a ranked semi-labeled

tree T which ancestrally displays P and preserves D, then CONSTRAINT GRAPH COM-

PATIBILITY returns T displaying G. The sufficiency is shown in [4].

Furthermore, if there exists no tree which ancestrally displays P and preserves D,

then the CONSTRAINT GRAPH COMPATIBILITY returns “incompatible.”

3.3 The Algorithm

3.3.1 Terms

Let G = (G,φ,Q,R) be a constraint graph. A core of G is a connected component in G,

and let C(G) denote the cores in G. A source of G is a blue vertex with indegree 0 in G,

Q. Let x ≤T y if x is an ancestor of y. Let ‖G‖ be |V (G)|+ |E(G)|+ |V (Q)|+ |E(Q)| +

|V (R)|+ |E(R)|.

3.3.2 Ranked Hierarchy

In [4], the ranked hierarchy is used as a data structure for recording the output tree in

the main iteration. A ranked hierarchy HT can be transformed into a unique ranked

semi-labeled tree T .

A cluster is a set of labels. In the corresponding tree T and a vertex u, the cluster

CT (u) is
⋃

v:u≤T v

L(v).

A ranked hierarchy is set of clusters and a rank on each cluster, for each pair of

clusters CT (u) and CT (v) with CT (v) ⊆ CT (u), we have rank(CT (u)) < rank(CT (v)).
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3.3.3 GraphBuild Algorithm

The GRAPHBUILD algorithm to solve CONSTRAINT GRAPH COMPATIBILITY problem.

It can be derived from the BUILDPLUS in [4].

Algorithm 1 GraphBuild(G)
1: Create G0 from G.

2: repeat

3: Iteration k, starting from 0.

4: // Phase 2

5: Let Sa = {a : a ∈ V (G2k), a /∈ V (Q2k)}.

6: G2k+1 ← G2k \ Sa.

7: // Phase 1

8: Let S = {s : indegree(s) = 0 in G2k+1, Q2k+1} \ {s : indegree(s) 
= 0 in Q2k}.

9: G2k+2 ← G2k+1 \ S

10: Let πk+1 be the partition of the vertex set of G2k+2 induced by the cores of

G2k+2.

11: Hk+1 ← Hk ∪ πk+1.

12: for all cluster B ∈ πk \ πk+1 do

13: r′(B)← k.

14: end for

15: until (a) All vertices in G2k+2 are removed, or (b) it is impossible to do so.

16: Incompatible. The input is incompatible in condition (b)

17: Compatible. In condition (a), Hk is a ranked semi-labeled tree which ancestrally

displays P ′ and P and preserves D.

18: Restriction. RestrictHk to L(P ) ∪ L(D) and getH.
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3.3.4 The creation of Gm

If |C(G)| = 1, Let G0 = G. Otherwise, create a blue vertex ρ in G,Q,R, and arcs

(ρ, x) ∈ E(G) for each blue vertex x ∈ L(G).

When the constraint graph Gm−1 becomes Gm, the following maintenance in Qm is

done:

1. The arcs (x, y) with x, y are in different cores are removed.

2. For an aqua vertex a, let L(a) = {u : (u, a) ∈ E(R)}. If not all L(a) are in the

same core in G, if some vertices in L(a) are not in G, or if |L(a)| = ∅, a is removed

from R.

3.3.5 The BuildPlus algorithm

The BUILDPLUS algorithm reduces the input P and D to the input G of GC. G then be

solved by GRAPHBUILD. By Lemma 3.2, the output of GC is the output of T C.
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Chapter 4

Restricted constraint graph

We replace the constraint graph with a restricted constraint graph. A restricted con-

straint graph is a constraint graph, with the modification of intermediate vertices, red

bundles, and aqua bundles. A restricted constraint graph G′
k is associated with a con-

straint graph Gk if G0 and G′
0 are reduced from the same input P and D of T C, and

Gk, G
′
k are derived from Gk−1, G

′
k−1, respectively, with the same vertices set removed.

4.1 Intermediate vertices

Lemma 4.1. Let P and D be the input of T C, and G0 = (G0, φ,Q0, R0) be the input of GC

reduced from P and D. Let G′k = (G′
k, φ,Q′

k, R
′
k) be a restricted constraint graph associated

with Gk. Then (1) L(Gk) = L(G′
k); (2) for each x ∈ L(Gk), outdegreeGk

(x) = 0 if and only

if outdegreeG′
k
(x) = 0; (3) for each two x, y ∈ L(Gk), x, y are connected in Gk if and only if

x, y are connected in G′
k .

Furthermore, |V (G′′
k)| + |E(G′′

k)| = O(‖P‖), where G′′
k = G \ Va(G) and the reduction

of G′′
k can be done in O(‖P‖).
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Proof. For each internal node u ∈ T , if |L(u)| > 1 and |L(child(u))| > 1, an intermedi-

ate vertex t and edges {(x, t) : x ∈ L(u)} ∪ {(t, y) : y ∈ L(child(u))} is built in G′ for

each T ∈ P . Let φ(t) = indigo, a new color in φ.

After the removal of sources S, Gk−1 becomes Gk, G′k−1 becomes G′k. If after the

removal of S, the indegree of t will become 0, t is add to S. Note that the vertices in S

are still in the same core.

For each y ∈ {y ∈ L(Gk−1) : (t, y) ∈ E(Gk−1)}, y has indegree 0 in Gk For each two

y, z ∈ {y, z ∈ L(Gk−1) : (t, y), (t, z) ∈ E(Gk−1)}, y, z are connected in Gk, if and only if

y, z are connected in G′
k.

4.2 Bundles

Lemma 4.2. For the restricted constraint graph G = (G,φ,Q,R) reduced from P and D,

the total update time for red edge removal step and of aqua label removal step can be done in

O(h log2 h) time and O(h) space, where h = ‖P‖+ ‖D‖+ |V (G′)|+ |E(G′)|, and G′ be the

subgraph of G induced by L(G).

4.2.1 Red bundles

A red bundle tree T is a non-empty three-layered rooted tree in Q. If v ∈ V (T ) has no

outdegree, v has exactly two ancestors.

Terms. Let L(T ) be the leaves of T , ρ(T ) be the root of T , I(T ) be the internal

nodes of T , PT (x) be the parent of x in T . For a subset L′ ⊆ L(T ), let ΨT (L′) be the

red bundle tree induced by L′ and all the ancestors of L′ in T . For a vertex v ∈ I(T ),

v /∈ V (G)∪L(Q)∪V (R). For a leaf x ∈ L(T ), x ∈ L(Q). A red bundle tree T is removed

17



if I(T ) is removed from Q. For a set of blue vertices S, let RT (S) be the red bundle

trees T with L(T ) ∩ S 
= ∅, and for a graph G, let RT (G) be RT (L(G)).

Lemma 4.3. For a constraint graph G = (G,φ,Q,R), An blue vertex x has no red edge if and

only if x has no edges from red bundle trees.

For a constraint graph Gk = (Gk, φ,Qk, Rk) and a blue vertex x ∈ L(Gk), Let

Λk(x) = {y : (x, y) ∈ E(Qk)}.

Lemma 4.4. Let G0 be the input constraint graph, and Gk = (Gk, φ,Qk, Rk) be a constraint

graph with k > 0 from Gk−1 by removal of a vertex set. If a data structure W keeps Υ0(x) =

Λ0(x), and Υk(x) = Λk(x), and the vertex set {x : |Υk(x)| = 0, |Υk−1(x)| 
= 0} can be

known, for each blue vertex x ∈ L(Gk), then W can replace the red edges.

Proof. In BUILDPLUS, a vertex has no red edges if |Λk(x)| = 0.

Property. When a core C becomes its children C, the following property is main-

tained:

Property 4.5. for each red bundle tree T ∈ RT (C), T becomes the forest child(T ) =

{ΨT (L′) : L′ = L(T ) ∩ L(C ′), C ′ ∈ C}, where the I(T ) could be duplicated or moved in

the induction while L′ stays the same vertices set.

The reduction In the reduction from T C to GC, for each node p with outdegree

greater than 1, a red bundle tree T with root r is built. For each child v of p, a vertex k

is created as a child of r. And for each label x ∈ L(v), a leaf x is created as a child of k.

The removal of red bundle tree For a red bundle tree T , if ρ(T ) has only one child,

remove T .
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Let

Υk(x) =
⋃

T∈RT (x)

Υk(x, T ).

We prove that Υk(x) = Λk(x), and the vertex set S = {x : |Υk(x)| = 0, |Υk−1(x)| 
=

0}

Proof. Let Gk = (Gk, Qk, Rk) with k ≥ 0 be a constraint graph, and after the removal

of some vertices S ∈ Gk with S ∈ V (C), C ∈ Gk, let the resulting constraint graph be

Gk+1.

Terms. Let T ∈ RT (Qk) be a red bundle tree and x ∈ L(Qk) be a blue vertex.

Let Υk(x, T ) be
⎧⎪⎨
⎪⎩
{y ∈ L(T ) : PT (x) 
= PT (y)}, if x ∈ T,

∅, if x /∈ T.

And Υk(x) =
⋃

T∈RT (Qk) Υk(x, T ) with k ≥ 0.

Let Λ0(x) = {y : (x, y) ∈ Q0}, and Λ0(x, T ) = Υ0(x) ∩ L(T ). Let Λk(x) = {y :

(x, y) ∈ E(Qk)} and Λk(x, T ) = Λk−1(x, T ) \ {y : (x, y) ∈ Qk−1, (x, y) /∈ Qk} with

k > 0.

Initialization. When the constraint graph G′ is built, for each x ∈ L(Q0) and each

T ∈ RT (Q0), Λ0(x) = Υ0(x) and Λ0(x, T ) = Υ0(x, T ).

For each x ∈ L(Qk) and each T ∈ RT (Qk), Λk(x) =
⋃

T∈RT (Qk) Λk(x, T ).

Induction step. When Gk becomes Gk+1, let C ∈ C(Gk) be the core with vertex

set removed, C = child(C). Let x be a blue vertex, x ∈ L(C) before removal, and

x ∈ L(C ′) after removal for C ′ ∈ C. And Let T ∈ RT (Qk) and T ∈ RT (x), T becomes

T = child(T ) in Qk+1.

Let T ′ = ΨT (L′) with L′ = L(T ) ∩ L(C ′). Since T ′ is the subtree of T induced by
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L′ and its ancestors, Υk+1(x, T ′) = Υk(x, T )∩L(C ′). Since all the red edges (x, y) with

y /∈ L(C ′) are removed, Λk+1(x, T ′) = Λk(x, T ) ∩ L(C ′). With Υk(x, T ) = Λk(x, T ), we

have Υk+1(x, T ′) = Λk+1(x, T ′).

An edge (PT ′(x), x) in T ′ is removed if and only if ρ(T ′) = ∅. And ρ(T ′) = ∅ if and

only if Υk+1(x, T ′) = ∅. So, RT (x) = ∅ if and only if x has no red edges.

For a constraint graph G = (G,φ,Q,R), let ‖RT (Q)‖ =
∑

T∈RT (Q) |V (T )|.

Lemma 4.6. For the constraint graph build by the reduction, ‖RT (Q)‖ = O(r). And the the

reduction for the red bundles cost O(r) time and space where r = ‖P‖.

Proof. For each internal node u in each tree T ∈ P , a bundle tree with ∪v∈child(u)|L(v)|

leaves are created. So, ‖RT (Q)‖ = O(r). And it is a linear time reduction, so the time

and space for the reduction are both O(r).

Lemma 4.7. The red bundle trees has the partial update property. And if each blue vertex

updates red bundle trees at most O(t) times, the red bundles can be maintained in O(rt) time

with O(r) space where r = ‖RT (Q)‖ for the input constraint graph G = (G,φ,Q,R).

When a core C becomes its children C, let each blue vertex x ∈ C ′ updates each red

bundle tree T ∈ RT (x) by the following steps, where C ′ ∈ C \ {C ′′} and C ′′ ∈ C is an

arbitrary core.

For a red bundle tree T , let each node u ∈ I(T ) has a pointer, which is null when

created, and reset to null after each child core updated.
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Algorithm 2 update(x,T )
1: k ← PT (x), r ← PT (k).

2: Let q be the pointer of k.

3: if q is null then

4: A node k′ is created.

5: else

6: Let k′ be the node q points to.

7: end if

8: Create edge (k′, x).

9: Let p be the pointer of r.

10: if p is null then

11: A root r′ is created.

12: else

13: Let r′ be the node p points to.

14: end if

15: Create edge (r′, k′).

16: Remove (k, x).

17: Remove k if k has no child.

18: Remove r if r has no child.

After all vertices in C ′ updated, reset all visited pointers to null.

We then prove Lemma 4.7.

First, the bundles are initially maintained, T = ΨT (L), L = L(T ) ∩ L(C0), since all

blue vertices are initially in the single core C0 of G0.

Correctness After the removal of a set of vertices in C , each C ′ is updated.
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For each C ′ and L′ = L(T ) ∩ L(C ′), we show that ΨT (L′) is created. For w ∈

I(T ) \ I(ΨT (L′)), w will not be visited in the update of C ′. For u ∈ I(ΨT (L′)) and

the child v which visits u, in the first visit of u, the pointer of u is null, and a new

node u′ and the edge (u′, v) are created as the duplication of u and (u, v). And in the

subsequent visit of u, the same u′ is used and (u′, v) is created. So, after all leaves in L′

update, ΨT (L′) is created.

For the rest part of T , all leaves of L(T ) ∩ L(C ′′) are removed from T since all

C ′ ∈ C \ C ′′ are updated. And all internal nodes with outdegree 0 is removed. Also,

no new edges are created to the V (ΨT (L′′). So, the tree ΨT (L′′) is induced, where

L′′ = L(T ) ∩ L(C ′). So the red bundles are maintained.

So, the red bundles has the partial update property.

Complexity For each x, constant space for each T is kept, since the number of

ancestors, the edges and the pointers of x and its ancestors is O(1) though each update.

And after C ′ is visited, the list of visited pointers can be released, the time and space of

the list is constant for each pointer. Each update of x and T costs constant time. Since

each x is updated at most t times, the total time for the update is
∑

x∈L(Q0)
RT (x).

For each bundle tree with the outdegree of root 0, it is removed only once. So, the

time for the removal is linear to the size of the red bundles in addition to the time

above.

So, if each blue vertex updates red bundle trees at most O(t) times, the red bundles

can be maintained in O(rt) time with O(r) space.
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4.2.2 Aqua bundles

An aqua bundle tree T ∈ R is a non-empty two-layered rooted tree consists of a root

ρ(T ) and two sets of leaves L(T ) ⊆ L(R) and Vr(T ) ⊆ Vr(R). For T , |L(T )| > 0 and

|Vr(T )| > 0. For a set of blue vertices S, let AT (S) be the red bundle tree T with

L(T ) ∩ S 
= ∅, and for a graph G, let AT (G) be AT (L(G)). And a function x = α(T )

from AT (R) to N ∪ {0}.

Property. When a core C becomes its children C, the following properties is main-

tained:

Property 4.8. For each u ∈ L(T ) is removed form the constraint graph, remove u from T ,

too. For each T ∈ AT (C), if |L(T ) ∩ L(C)| < |α(T )|, T is removed.

4.2.3 Replacing the aqua edges with aqua bundles

Without the loss of generality, a relative divergence date div(L) < div(L′) can be de-

scribed as the compact form div(L, x) < div(L′, x′) with x = x′ = 1.

Let indegree(a) be the indegree of the aqua vertex a in R.

Lemma 4.9. For a constraint graph G = (G,φ,Q,R) and each relative divergence date d in

the form div(L, x) < div(L′, x′), let the created set of aqua vertices be A. And let T be the

corresponding aqua bundle.

T can replace A and the edges created in the reduction form div(L, x) < div(L′, x′).

Lemma 4.10. For a constraint graph G = (G,φ,Q,R) and each relative divergence date d in

the form div(L, x) < div(L′, x′), let the created set of aqua vertices be A.

At least one l ∈ L′ is not connected to the aqua vertices a ∈ A with all a ∈ A with

indegree(a) = 0 removed in the version of aqua vertices, if and only if all l ∈ L′ is not
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connected.

Proof. For div(L, x) < div(L′, 1), it is true, since all aqua vertices connect to the same

set of L′. For div(L, 1) < div(L′, 0), it is true, since all aqua vertices a with (a, y) and

y ∈ L′ has same set of edges {(b, a) : b ∈ L} in R.

For div(L, 0) < div(L′, 0), it is transformed into the set Div = {div(L, 0) < div({v}, 1),

for v ∈ L′. For each d ∈ Div, d has the property. Since all are not connected if

at least one is is not connected. We only need to show for an v and each u ∈ L,

{div(u) < div(v, 1)} has the property. And it is div(L, 0) < div(z), and shown in above

case. That finishes the proof.

We then prove Lemma 4.9.

Proof. We prove T can replace A and the edges, by showing if each a ∈ A with

indegree(a) = 0 removed, then a blue vertex b ∈ L′ is connected to no aqua vertices

a ∈ A in the version of aqua vertices, if and only if T is removed.

By Lemma 4.10, we only need to show that no blue vertex b ∈ L ′ is connected to

any aqua vertices a ∈ A in the version of aqua vertices, if and only if T is removed.

For div(L, x) < div(L′, x′), if all aqua vertex a ∈ A created by each d ∈ Div has

indegree(a) = 0, then T can be removed, where Div is the expanded relative diver-

gence dates {div(l) < div(l′′)}.

If T can be removed, then all a ∈ A created by each d ∈ Div has indegree(a) = 0.

For div(L, x) < div(L′, 1), in both version, an aqua vertex or aqua vertices are

created and connected to l ∈ L′ which keep l in the same core. And for div(L, x) <

div(L′, 0), an aqua vertex or a set of vertices are created for each l ∈ L′. In the both
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cases they keep the A′ ⊆ L′ with |A′| = max(1, x′|L′|) in the same core and prevent all

l′ ∈ A′ becomes sources.

That finishes the proof.

The reduction The creation of aqua vertices and the edges for relative divergence

dates is replaced by the steps here.

Let div(L, x) < div(L′, x′) be a relative divergence date. If x′ = 0, an aqua vertex

ai is created for each zi ∈ L′. If x′ = 1, an aqua vertex a is created. Let the set of

created aqua vertices be A. And an aqua bundle T is built with a root ρ and the leaves

L(T ) = L, f(T ) = max(x|L|, 1), and Va(T ) = A where A is the set of aqua vertices

created for this relative divergence date.

We then prove Lemma 4.9.

Proof. For x = 1, T is removed if some blue vertices in L are removed, or two blue

vertices in L are in different cores. It is the same condition of removing edges on the

aqua vertices in the version of aqua edges. So, all blue vertices created by {div(L) <

div({z})} with z ∈ L′ are free to be removed.

For x = 0, T is removed if and only if all blue vertices in L are removed. In the

version of aqua edges, for d ∈ {div(y, 1) < div(L′, x′)} with y ∈ L′, all sets of aqua

edges for d have edge removed in R if and only if all L′ have no edge from aqua

vertex created from d.

For a constraint graph G = (G,φ,Q,R), let ‖AT (Q)‖ =
∑

T∈AT (Q) |V (T )|.

Lemma 4.11. For the constraint graph build by the reduction, ‖AT (Q)‖ = O(s). And the

the reduction for the red bundles cost O(s) time and space where s = ‖D‖.
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Proof. For each relative divergence date div(L, x) < div(L′, x′), an aqua bundle is built

with |L|+ |L′| leaves. And the aqua vertices and edges created in G and R are at most

O(|L′|). So, ‖AT (Q)‖ = O(s). It is a linear time reduction, so the time and space is

O(s).

Lemma 4.12. The aqua bundle trees has the partial update property. And if each blue vertex

updates aqua bundle trees at most O(t) times, the aqua bundles can be maintained in O(st)

time with O(s) space where s = ‖AT (Q)‖ for the input constraint graph G = (G,φ,Q,R).

Proof. The removed blue vertex can be identified, and when the removed blue vertex

a updates the each T ∈ AT (a), the removal of (a, ρ(T )) can be done.

For each C ′ ∈ C \ C ′′, and each T ∈ AT (C ′), since each blue vertex a ∈ L(C ′)

updates, the total number of L(T ) ∩ L(C ′) can be known after C ′ is updated, and T

can be removed if |L(T ) ∩ L(C ′)| < α(T ).

For the core C ′′ not updated, since each T ∈ AT (C ′′) but T /∈ AT (C ′) are not

affected, the total number of L(T ) ∩ L(C ′′) will not be changed.

4.3 Proof

We now prove Lemma 4.2.

Proof. By Lemma 4.3 and Lemma 4.9, the red edge removal step and aqua label re-

moval can be done by red bundles and aqua bundles.

With Lemma 4.6 and Lemma 4.11, if the update of a blue vertex is at most O(t)

time, then this can be done in O(ht) time and O(h) space.

And with Lemma 2.3, since red bundles and aqua bundles has partial update prop-
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erty, the times of update for each blue vertex is O(log h) times, and if the framework

in Lemma 2.3 can be done in T (n,m) time and S(n,m) space with graph G = (V,E),

where n = |V |,m = |E|, then the total update time for red edge removal step and of

aqua label removal step can be done in O(h log h + T (h, h)) time and O(h + S(h, h))

space, where h = ‖G‖ with G the input constraint graph.
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Chapter 5

Proof of Theorem 1.1

Proof. Let G = (G,φ,Q,R) be a restricted constraint graph reduced from the input P

and D of TREE COMPATIBILITY. Let G′ be the subgraph of G induced by L(G).

By Lemma 4.1, |V (G′)| + |E(G′)| = O(‖P‖) and the reduction can be done in

O(‖P‖) time and space. Let h = ‖P‖+ ‖D‖, we have ‖P‖+ ‖D‖+ |V (G′)|+ |E(G′)| =

O(h). By Lemma 4.2, the red edge removal step and of aqua label removal step can be

done in O(h′ log2 h′) time and O(h) space, where h′ = ‖P‖+‖D‖+ |V (G′)|+ |E(G′)| =

O(h).

And the time and space complexity of BUILDPLUS is O(h+T (h)) and O(h+S(h)),

where h is the size of restricted constraint graph, T (h) is the time for creating Gk from

Gk−1 with G0 = G. T (h) = O(h log2 h) and S(h) = O(h).

So, the TREE COMPATIBILITY can be solved in O(h log2 h) time and O(h) space,

where h = ‖P‖+ ‖D‖.
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