Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生態學與演化生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8888
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor高文媛(Wen-Yuan Kao)
dc.contributor.authorChen-Ying Hoen
dc.contributor.author何承穎zh_TW
dc.date.accessioned2021-05-20T20:03:24Z-
dc.date.available2009-08-29
dc.date.available2021-05-20T20:03:24Z-
dc.date.copyright2009-08-21
dc.date.issued2009
dc.date.submitted2009-08-18
dc.identifier.citation方莞婷。2003。黍族 (禾本科) 植物無融合生殖之篩選方法,國立成功大學生物學研究所碩士論文。
曲敬平。1998。野火對大肚山臺地土壤營養鹽影響之研究,逢甲大學土木及水利工程研究所碩士論文。
呂金誠。1990。野火對臺灣主要森林生態系影響之研究,國立中興大學植物學研究所博士論文。
李海瑞。1996。瑞芳地區火燒對植群影響之研究,國立中興大學植物學研究所碩士論文。
李貽華、陳明義。1995。殺草劑對大黍族群之影響。中華民國雜草學會會刊 16:34-54。
李瑞宗。1995。臺灣芒屬植物之研究,台灣大學植物學研究所博士論文。
周昌弘、黃生、陳淑華、郭長生、蔣鎮宇、江友中。1999。臺灣芒屬植物生態與演化,科學發展 27:1158-1169。
周昌弘、黃生、蔣鎮宇、許再文、江友中。2006。我們眼中的草,別人心中的寶-台灣的芒草。載於于宏燦、黃生 (主編),基因生萬物 (117-126頁)。行政院農業委員會林務局,台北市。
林信輝、鄭梨櫻、林妍琇。2006。坡地植生草類與綠肥植物,行政院農業委員會水土保持局,南投市。
林昭遠。1991。野火影響森林土壤性質之研究,國立中興大學植物學研究所博士論文。
林朝欽、邱祈榮、陳明義、蕭其文、曾仁鍵。2005。大肚山地區林火危險預測模式之推導。中華林學季刊 38:12。
洪彩香、白昌軍、張如蓮。2006。堅尼草種子休眠期的研究。草業科學 23:49-53。
張又滿、鄭慶生。1974。果園敷蓋與覆蓋作物之研究第二報:坡地柑橘園覆蓋作物與敷蓋之水土保持效益。中華水土保持學報 5:82-95。
張集豪。2003。大肚山防火植栽帶建立之研究,東海大學景觀學系碩士論文。
許建昌。1975。臺灣的禾草。臺灣省教育會,臺北市。
許福星。1985。溫度對菅草種子發芽之影響。畜產研究 18:143-157。
許福星。1986。台灣牧草及野草種子發芽能力之研究。畜產研究 19:87-97。
郭長生。1985。台灣產禾草葉部比較解剖,國立台灣大學植物學研究所博士論文。
陳玉峰。2004。台中縣大甲鎮植被調查報告。台灣人文生態研究 6:87-172。
陳明義、呂金誠、劉思謙。1989。相思樹林火燒後植群演替之探討。台灣省林業試驗所「生態原則下的森林經營」研討會論文集,111-125。
陳明義、施纓煜。1998。野火影響環山地區植群之研究。國家公園學報 8:155-165。
陳秋正。1997。天竺草族群生態之研究,國立中興大學植物學研究所碩士論文。
陳美如。2007。利用ISSR及RAPD探討台灣地區綠天竺草和天竺草之遺傳歧異度,國立嘉義大學農學研究所碩士論文。
陳章和、李小芳、黄茂雅、周先葉。2001。外来植物堅尼草生態學研究。生態科學 20:37-40。
章錦瑜、陳明義。1995。野火對中山高速公路沿線綠帶之影響。中華林學季刊 28:69-79。
曾仁鍵。2004。衛星影像於大肚山地區植被光譜變遷之監測,台灣大學森林環境暨資源學研究所碩士論文。
黃文博。2005。南瀛植物探索,臺南縣政府,台南縣新營市。
黃清吟、林朝欽。2005。臺灣地區國有林森林火之特性分析。中華林學季刊 38:449-464。
劉逸斌。1991。八通關地區草生地之植群變動與火災適存植群之研究,國立台灣大學植物學研究所碩士論文。
蔣慕琰、徐玲明、袁秋英、陳永富、蔣永正。2003。台灣外來植物之危害與生態。小花蔓澤蘭危害與管理研討會專刊: 97-109。
蔡長宏。1996。關刀溪森林生態系干擾地更新之研究,國立中興大學植物學研究所碩士論文。
蔡淑華。1975。植物組織切片技術綱要,初版,茂昌圖書有限公司。
蔡智豪。2005。台中大肚山竹坑北坑樣帶四年內植群分布與環境因子相關性之研究,靜宜大學生態學系碩士論文。
蕭素碧、羅國棟、許福星。1996。台灣牧草種原之保存與利用。畜產研究 29:187-200。
賴靖融。2003。環山火燒跡地植群變化之研究,國立中興大學森林學研究所碩士論文。
Aganga, A. and S. Tshwenyane. 2004. Potentials of guinea grass (Panicum maximum) as forage crop in livestock production. Pakistan Journal of Nutrition 3:1-4.
Anten, N. and T. Hirose. 2003. Shoot structure, leaf physiology, and daily carbon gain of plant species in a tallgrass meadow. Ecology 84:955-968.
Baruch, Z. and B. Bilbao. 1999. Effects of fire and defoliation on the life history of native and invader C4 grasses in a Neotropical savanna. Oecologia 119:510-520.
Baruch, Z. and G. Goldstein. 1999. Leaf construction cost, nutrient concentration, and net CO2 assimilation of native and invasive species in Hawaii. Oecologia 121:183-192.
Bossuyt, B. and O. Honnay. 2008. Heat shock increases the reliability of a temperate calcareous grassland seed bank study. Plant Ecology 199:1-7.
Brooks, M. L., C. M. D'Antonio, D. M. Richardson, J. B. Grace, J. E. Keeley, J. M. DiTomaso, R. J. Hobbs, M. Pellant, and D. Pyke. 2004. Effects of invasive alien plants on fire regimes. Bioscience-Washington- 54:677-688.
Brown, R. H. and G. T. Byrd. 1993. Estimation of bundle sheath cell conductance in C4 species and O2 insensitivity of photosynthesis. Plant Physiology 103: 1183-1188.
Buhk, C., A. Meyn, and A. Jentsch. 2007. The challenge of plant regeneration after fire in the Mediterranean Basin: scientific gaps in our knowledge on plant strategies and evolution of traits. Plant Ecology 192:1-19.
Carmo-Silva, A., A. Francisco, S. Powers, A. Keys, L. Ascensao, M. Parry, and M. Arrabaca. 2009. Grasses of different C4 subtypes reveal leaf traits related to drought tolerance in their natural habitats: Changes in structure, water potential, and amino acid content. American Journal of Botany 96:1222-1235.
Chou, C. and Y. Chung. 1974. The allelopathic potential of Miscanthus floridulus. Botanical Bulletin of Academia Sinica 15:14-27.
Chou, C. and Y. Lee. 1991. Allelopathic dominance of Miscanthus transmorrisonensis in an alpine grassland community in Taiwan. Journal of Chemical Ecology 17:2267-2281.
Chou, C. and C. Young. 1975. Phytotoxic substances in twelve subtropical grasses. Journal of Chemical Ecology 1:183-193.
Clemente, A., F. Rego, and O. Correia. 2005. Growth, water relations and photosynthesis of seedlings and resprouts after fire. Acta Oecologica 27:233-243.
Couto, L., R. Roath, D. Betters, R. Garcia, and J. Almeida. 1994. Cattle and sheep in eucalypt plantations: a silvopastoral alternative in Minas Gerais, Brazil. Agroforestry Systems 28:173-185.
Cronk, Q. C. B. 1995. Plant invaders: the threat to natural ecosystems. Chapman & Hall, New York
D'Antonio, C. M. and P. M. Vitousek. 1992. Biological invasions by exotic grasses, the grass/fire cycle, and global change. Annual Review of Ecology and Systematics 23:63-87.
Dawson, T., S. Mambelli, A. Plamboeck, P. Templer, and K. Tu. 2002. Stable isotope in plant ecology. Annual Review of Ecology and Systematics 33:507-559.
Douglas, M. and S. Setterfield. 2005. Impacts of exotic tropical grasses: lessons from gamba grass in the northern territory. Pages 69-73 in W. Vogler, editors. Proceedings of the Eighth Queensland Weed Symposium. Tropical Savannas CRC, Brisbane, Queensland, Australia.
Ehleringer, J. and R. Pearcy. 1983. Variation in quantum yield for CO2 uptake among C3 and C4 plants. Plant Physiology 73:555-559.
Esposito, A., S. Strumia, S. Caporaso, and S. Mazzoleni. 2006. The effect of fire intensity on soil seed bank in Mediterranean macchia. Forest Ecology and Management 234:S207-S207.
Farquhar, G. 1983. On the nature of carbon isotope discrimination in C4 species. Australian Journal of Plant Physiology 10:205-226.
Farquhar, G., J. Ehleringer, and K. Hubick. 1989. Carbon isotope discrimination and photosynthesis. Annual Review of Plant Biology 40:503-537.
Fravolini, A., D. Williams, and T. Thompson. 2002. Carbon isotope discrimination and bundle sheath leakiness in three C4 subtypes grown under variable nitrogen, water and atmospheric CO2 supply. Journal of Experimental Botany 53:2261-2269.
Fujii, Y. 2001. Screening and future exploitation of allelopathic plants as alternative herbicides with special reference to hairy vetch. Journal of Crop Production 4:257-275.
Groen, T., F. Van Langevelde, C. Van De Vijver, N. Govender, and H. Prins. 2008. Soil clay content and fire frequency affect clustering in trees in South African savannas. Journal of Tropical Ecology 24:269-279.
Guillermo Sarmiento. 1992. Adaptive strategies of perennial grasses in South American savannas. Journal of Vegetation Science 3:325-336.
Hattersley, P. 1982. δ13C values of C4 types in grasses. Australian Journal of Plant Physiology 9:139–154.
Hoffmann, W. A. and H. Poorter. 2002. Avoiding bias in calculations of relative growth rate. Annals of Botany. 90:37-42.
Huang, J., R. Boerner, and J. Rebbeck. 2007. Ecophysiological responses of two herbaceous species to prescribed burning, alone or in combination with overstory thinning. American Journal of Botany 94:755.
Hsu, C.-C., Lin W.-C., Kuoh C.-S., Chen C.-H., and Liu H.-Y. 2000. Gramineae (Poaceae). Pages 318–654 in Huang, T.-C. and Editorial Committee of the Flora of Taiwan, editors. Flora of Taiwan Vol. 5. 2nd ed. Editorial Committee of the Flora of Taiwan, Department of Botany, National Taiwan University, Taipei, Taiwan.
Jakobsson, A. and O. Eriksson. 2000. A comparative study of seed number, seed size, seedling size and recruitment in grassland plants. Oikos 88:494-502.
Kalra, Y. P. and D. G. Maynard. 1991. Methods manual for forest soil and plant analysis. Forestry Canada, Northwest Region, Northern Forestry Centre, Edmonton, Alberta.
Kaushal, P., D. Malaviya, A. Roy, S. Pathak, A. Agrawal, A. Khare, and S. Siddiqui. 2008. Reproductive pathways of seed development in apomictic guinea grass (Panicum maximum Jacq.) reveal uncoupling of apomixis components. Euphytica 164:81-92.
Lambers, H., F. S. Chapin, and T. L. Pons. 1998. Plant physiological ecology. Springer, New York.
Lawes, R., H. Murphy, and A. Grice. 2006. Comparing agglomerative clustering and three weed classification frameworks to assess the invasiveness of alien species across spatial scales. Diversity & Distributions 12:633-644.
Levine, J. M., M. Vilà, C. M. D'Antonio, J. S. Dukes, K. Grigulis, and S. Lavorel. 2003. Mechanisms underlying the impacts of exotic plant invasions. Proceedings. Biological sciences / The Royal Society 270:775-781.
Low, T. 1997. Tropical pasture plants as weeds. Tropical Grasslands 31:337-343.
Mack, M. C. and C. M. D'Antonio. 1998. Impacts of biological invasions on disturbance regimes. Trends in Ecology & Evolution 13:195-198.
Martinez, M., T. Valverde, and P. Moreno-Casasola. 1992. Germination response to temperature, salinity, light and depth of sowing of ten tropical dune species. Oecologia 92:343-353.
Matos, D., C. Santos, and D. Chevalier. 2002. Fire and restoration of the largest urban forest of the world in Rio de Janeiro City, Brazil. Urban Ecosystems 6:151-161.
McCosker, T. and J. Teitzel. 1975. A review of guinea grass (Panicum maximum) for the wet tropics of Australia. Tropical Grasslands 9:177-190.
Meziane, D. and B. Shipley. 1999. Interacting Components of Interspecific Relative Growth Rate: Constancy and Change under Differing Conditions of Light and Nutrient Supply. Functional Ecology 13:611-622.
Mott, K., A. Gibson, and J. O'Leary. 1982. The adaptive significance of amphistomatic leaves. Plant, Cell and Environment 5:455-460.
Mutch, R. W. 1970. Wildland fires and ecosystems--A hypothesis. Ecology 51:1046-1051.
Nepstad, D. C., C. Uhl, and E. A. S. Serrão. 1991. Recuperation of a degraded Amazonian landscape: forest recovery and agricultural restoration. Ambio 20:248-255.
Parsons, J. J. 1972. Spread of african pasture grasses to the american tropics. Journal of Range Management 25:12-17.
Radosevich, S. R., J. S. Holt, and C. Ghersa. 2007. Ecology of weeds and invasive plants: relationship to agriculture and natural resource management. Wiley-Interscience, Hoboken, N.J.
Reich, P., D. Ellsworth, M. Walters, J. Vose, C. Gresham, J. Volin, and W. Bowman. 1999. Generality of leaf trait relationships: a test across six biomes. Ecology 80:1955-1969.
Reich, P. B., M. B. Walters, and D. S. Ellsworth. 1997. From tropics to tundra: Global convergence in plant functioning. Proceedings of the National Academy of Sciences 94:13730-13734.
Richardson, D. M., P. Pysek, M. Rejmanek, M. G. Barbour, F. D. Panetta, and C. J. West. 2000. Naturalization and invasion of alien plants: concepts and definitions. Diversiy & Distribution 6:93-108.
Rossiter, N. A., S. A. Setterfield, M. M. Douglas, and L. B. Hutley. 2003. Testing the grass-fire cycle: alien grass invasion in the tropical savannas of northern Australia. Diversiy & Distribution 9:169-176.
Sarmiento, G. 1992. Adaptive Strategies of Perennial Grasses in South American Savannas. Journal of Vegetation Science 3:325-336.
Setterfield, S. A., M. M. Douglas, L. B. Hutley, and M. A. Welch. 2005. Effects of canopy cover and ground disturbance on establishment of an invasive grass in an Australia savanna. Biotropica 37:25-31.
Schulze, E., R. Ellis, W. Schulze, P. Trimborn, and H. Ziegler. 1996. Diversity, metabolic types and δ13C carbon isotope ratios in the grass flora of Namibia in relation to growth form, precipitation and habitat conditions. Oecologia 106:352-369.
Smith, W. K., T. C. Vogelmann, E. H. Delucia, D. T. Bell, and K. A. Shepherd. 1997. Leaf form and photosynthesis. BioScience 47:785-793.
Sumrall, L., B. Roundy, J. Cox, and V. Winkel. 1991. Influence of canopy removal by burning or clipping on emergence of Eragrostis lehmanniana seedlings. International Journal of Wildland Fire 1:35-40.
Tsuyuzaki, S. and C. Miyoshi. 2009. Effects of smoke, heat, darkness and cold stratification on seed germination of 40 species in a cool temperate zone in northern Japan. Plant Biology 11:369-378.
Turner, N. and M. Long. 1980. Errors arising from rapid water loss in the measurement of leaf water potential by the pressure chamber technique. Australia Journal of Plant Physiology 7:527-537.
Usberti, R. and L. Martins. 2007. Sulphuric acid scarification effects on Brachiaria brizantha, B. humidicola and Panicum maximum seed dormancy release. Revista Brasileira de Sementes 29:143-147.
Vitousek, P. M. 1990. Biological invasions and ecosystem processes: towards an integration of population biology and ecosystem studies. Oikos 57:7-13.
Walter, H. 1985. Vegetation of the earth and ecological systems of the geo-biosphere. Third, revised and enlarged edition. Springer, Berlin.
Warmke, H. E. 1954. Apomixis in Panicum maximum. American Journal of Botany 41:5-11.
Williams, D. and Z. Baruch. 2000. African grass invasion in the Americas: ecosystem consequences and the role of ecophysiology. Biological Invasions 2:123-140.
Wintermans, J. F. and A. de Mots. 1965. Spectrophotometric characteristics of chlorophylls a and b and their pheophytins in ethanol. Biochimica et biophysica acta 109:448-453.
Zacharias, P., N. Tainton, and C. Oberholster. 1988. The effect of fire on germination in five common veld grasses. Journal of the Grassland Society of Southern Africa 5:229-230.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8888-
dc.description.abstract大黍 (Panicum maximum) 是一種禾本科多年生的草本植物,近年來被列為台灣危害力最高的二十種入侵植物之一。早期的研究指出:在大肚山與鐵砧山區的本地植物芒草 (Miscanthus sinensis) 為當地相思樹林反覆火燒後的最優勢種;但近年來同一地區的研究顯示:大黍已取代芒草的角色,而且發現大黍在火燒後植群覆蓋度顯著的增加,但芒草卻沒有相同的現象;反覆火燒使得大肚山地區的相思樹林逐漸轉變成以大黍為主的草生地。本研究藉由野外調查與溫室實驗,比較大黍與芒草在形態、光合作用、生長和生活史等特徵,目的在了解造成大黍成功入侵大肚山地區之因素。
野外植株測量發現:大黍比葉面積 (SLA, cm2/g) 和最大淨光合作用速率均顯著高於芒草,而光合作用氣體交換與穩定性同位素分析則顯示,兩者均為C4植物,且芒草有較高的水分使用效率。調查火燒與刈除後,經由地下根莖再萌蘗植株發現:在乾季時芒草比大黍有較好的恢復能力;但在濕季,大黍生長速率顯著增加。在生活史特徵方面,大黍有較重的種子和較長的花期與果期,而且大黍的果期主要在濕季,而芒草的果期主要在乾季,且有較高的發芽率。
溫室內生物分析實驗結果顯示,在高水分處理下,相較於芒草,大黍有顯著較高的生長速率和生物量的累積;兩者在低水分處理下生物量均顯著減少,且大黍減少的量顯著高於芒草;芒草在低水處理下會改變生物量的分配比例,大黍則無此現象。這些結果顯示芒草比大黍耐旱。栽植在不同的光照下,大黍都比芒草有更多分蘗枝和總生物量,有助於大黍有更高的覆蓋度與更多的花序生成。大黍刈除後在全光照環境下再萌蘗枝的生長比芒草顯著較優,遮蔭處理下再萌蘗植株生長也有較長的分蘗枝長,此有利於競爭光線。不管在水分或光度處理實驗都發現大黍比芒草有顯著較多的枯枝落葉,而且更容易受到乾旱壓力的影響而枯葉。
綜合以上結果顯示,由於在形態和光合作用等特徵上的優勢,再加上大肚山地區的濕季較長,大黍在濕季可以比芒草有更快速的萌蘗和生長,在與芒草競爭資源時佔優勢,使其能快速的增加覆蓋度;又大黍在濕季有很長的果期也有助於其建立更大的種子庫和更多小苗的生長;芒草雖然有適應乾旱的優勢,但因為大肚山乾季短,該優勢無法表現出來。由於大黍生物量累積顯著大於芒草,又比芒草容易受到乾旱的影響,因此在乾季時會產生較多的枯葉,而累積較多的可燃物而易於引發火災,火災的發生又會產生新的空間讓生長快速的大黍可以入侵與擴張族群覆蓋度,並導致下一個乾季有更多的易燃物且易燃物分佈的更廣。而在這樣反覆的火燒干擾下,大黍因此能逐漸取代芒草成為大肚山地區在火燒後的最優勢種。
zh_TW
dc.description.abstractPrevious studies showed that Miscanthus sinensis, a native plant, was the dominant species of Acacia confuse forest after recurrent of burning in Dadu and Tiehchen mountain area. But recent survey reported that Panicum maximum, a perennial grass in the family of Poaceae and listed as one of the twenty most noxious invasive plants in Taiwan has replaced the role of M sinensis in those areas. As a result of recurrent burning, A. confuse forest has been gradually replaced by the grassland of P. maximum. In this study, I compared morphological, photosynthetic, growth and life history characters of field growing P. maximum and M. sinensis and conducted greenhouse experiments to understand the mechanisms contributing to the invasion of P. maximum after burning.
Field growing P. maximum had significant higher specific leaf area (cm2/g) and net photosynthetic rates but lower water use efficiency than M. sinensis. In comparison of the two species, after burning or been pruned, I found that M. sinensis had better recovery ability in drought season, but P. maximum grew faster in wet season. The fruiting period of P. maximum was mainly in wet season, but M. sinensis mainly in dry season. In comparison to M. sinensis, P. maximum had significantly longer flowering and fruiting period and heavier seeds, but lower germination percentage.
Greenhouse experiments revealed that under high water or high light availability P. maximum grew much faster, accumulated significantly more biomass, and produced more litters than M. sinensis. It indicates that P. maximum could have more coverage and inflorescence than M. sinensisin favorable conditions. However, under low water condition, P. maximum was more susceptible to drought than M. sinensis. P. maximum grew much better than M. sinensis in full light condition and much taller in shading environment after pruning.
These results suggest that with the advantage of the morphological and photosynthetic traits in combination with longer wet season in Dadu mountain area, P. maximum can resprout and grow faster than M. sinensis in wet season which may help the species in competition for resource uptake after fire. In addition, a longer fruiting period of P. maximum might contribute to a larger seed bank which might enable the species to have more seedlings germinated than M. sinensis. Though M. sinensis is drought tolerant, the advantages of drought tolerance ability can not expressed in the area due to a short dry season. Due to its higher growth rate, P. maximum produces more litters than M. sinensis which would help inducing fire during dry season. The burning events create new space that P. maximum can easily invade again. The invasion of P. maximum makes the area prone to fire in dry season. As a result of recurrent burning, P. maximum replaces M. sinensis becoming the most dominant species in Dadu mountain area.
en
dc.description.provenanceMade available in DSpace on 2021-05-20T20:03:24Z (GMT). No. of bitstreams: 1
ntu-98-R96b44019-1.pdf: 4143118 bytes, checksum: 36b53daab0adddf3c943da9d5d5f6097 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents目錄 I
圖表目錄 V
中文摘要 VII
英文摘要 IX
一、前言 1
二、材料與方法 7
(一)野外調查實驗 7
1. 實驗地氣候、植群和環境因子分析 7
1.1 大肚山地區氣候 7
1.2 樣區植群調查 7
1.3 火燒後環境因子之改變 9
2. 野外植株測量 10
2.1 植株葉部比較 10
2.2 葉片光合作用氣體交換、含水量、碳氮含量及碳氮同位素比較 12
2.3 植株經火燒或人工刈除後的再萌蘗能力比較 13
2.4 生活史、種子重及發芽率比較 13
(二)溫室與田地種植之植株測量 13
1. 溫室大黍與芒草植株測量比較 14
1.1 小苗成長速率比較 14
1.2 葉片形態及生長比較 14
2. 環境因子操作實驗 15
2.1 水分處理實驗 15
2.2 光度處理實驗 16
(三)統計分析 17
三、結果 18
(一)野外調查實驗 18
1. 實驗地氣候、植群和環境因子分析 18
1.1 大肚山地區氣候 18
1.2 樣區植群調查 18
1.3 火燒後環境因子之改變 25
2. 野外植株測量 28
2.1 植株葉部比較 28
2.2 葉片光合作用氣體交換、含水量、碳氮含量及碳氮同位素比較 28
2.3 植群經火燒或人工刈除後的再萌蘗能力比較 29
2.4 生活史、種子重及發芽率比較 29
(二)溫室與田地種植之植株測量 37
1. 溫室大黍與芒草植株測量比較 37
1.1 小苗成長速率比較 37
1.2 成株葉片形態及植株生長比較 37
2. 環境因子操作實驗 45
2.1 水分處理實驗 45
2.2 光度處理實驗 53
四、討論 61
(一) 野外調查實驗 61
1. 實驗地氣候、植群和環境因子的關係探討 61
2. 野外植株比較 63
2.1 植株葉片構造、形態和光合作用生理表現 63
2.2 植群經火燒或人工刈除後的再萌蘗能力比較 66
2.3 生活史及發芽率比較 67
(二)溫室與田地種植之植株測量 67
1. 溫室大黍與芒草植株測量比較 67
2. 環境因子操作實驗 68
2.1 水分處理實驗 68
2.2 光度處理實驗 69
(三) 綜合討論 70
(四) 未來研究方向 71
五、結論 73
六、參考文獻 75
七、附錄 84
dc.language.isozh-TW
dc.title大黍為何能在火燒後成功入侵大肚山地區?zh_TW
dc.titleWhat make Panicum maximum Jacq. successfully invade the Dadu mountain area after fire?en
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee郭長生,張英?,陳建德
dc.subject.keyword大黍,芒草,火燒,大肚山,光合作用氣體交換,再萌蘗能力,植株生長,zh_TW
dc.subject.keywordPanicum maximum,Miscanthus sinensis,fire,Dadu mountain,photosynthetic gas exchange,resprout ability,plant growth,en
dc.relation.page85
dc.rights.note同意授權(全球公開)
dc.date.accepted2009-08-18
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生態學與演化生物學研究所zh_TW
顯示於系所單位:生態學與演化生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf4.05 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved