Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88770
標題: (0, q)-形式的柏格曼核與譜核之半經典漸進
Semi-Classical Asymptotics of Bergman and Spectral Kernels for (0,q)-forms
作者: 蔣岳霖
Yueh-Lin Chiang
指導教授: 蕭欽玉
Chin-Yu Hsiao
關鍵字: 柏格曼核,複幾何,半經典分析,複分析,譜核,譜間隙,
Bergman Kernel,Complex Geometry,Semi-Classical Analysis,Complex Analysis,Spectral Kernel,Spectral Gap,
出版年 : 2023
學位: 碩士
摘要: 在這篇論文中,我們發展了一種新的伸縮方法,用於研究複流形線叢之高階張量冪的譜核與柏格曼核於局部譜間隙條件下的行為。特別的,我們給出了譜核和柏格曼核的逐點漸進性質的簡單證明。作為一個新結果,在純函數而不帶有形式的情況下,我們在具有指數衰減的譜間隙條件下得到了柏格曼核的主要項。此外,在 (0,q)-形式的一般情況下,即使線叢的曲率退化,漸進性質仍然成立。
In this thesis, we develop a new scaling method to study spectral and Bergman kernels for the k-th tensor power of a line bundle over a complex manifold under local spectral gap condition. In particular, we establish a simple proof of the pointwise asymptotics of spectral and Bergman kernels. As a new result, in the function case, we obtain the leading term of Bergman kernel under spectral gap with exponential decay. Moreover, in the general cases of (0,q)-forms, the asymptotics remain valid while the curvature of the line bundle is degenerate.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88770
DOI: 10.6342/NTU202302926
全文授權: 同意授權(限校園內公開)
電子全文公開日期: 2024-08-01
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
889.6 kBAdobe PDF檢視/開啟
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved