Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88770
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蕭欽玉zh_TW
dc.contributor.advisorChin-Yu Hsiaoen
dc.contributor.author蔣岳霖zh_TW
dc.contributor.authorYueh-Lin Chiangen
dc.date.accessioned2023-08-15T17:42:58Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-15-
dc.date.issued2023-
dc.date.submitted2023-08-08-
dc.identifier.citation[1] Robert Berman. Bergman kernels and local holomorphic Morse inequalities, Math. Z. 248 (2004), no. 2, 325–344.

[2] Robert Berman, Bo Berndtsson, Johannes Sjöstrand. A direct approach to Bergman kernel asymptotics for positive line bundles, Ark. Math. 46 (2008), no. 2,197–217.

[3] Robert Berman, Johannes Sjöstrand. Asymptotics for Bergman-Hodge kernels for high powers of complex line bundles, Ann. Fac. Sci. Toulouse Math. (6), 16 (2007), No.4, 719-771.

[4] Martin Bordemann, Eckhard Meinrenken, Martin Schlichenmaier. Toeplitz quantization of Kähler manifolds and gl(N), N→1 limits, Comm. Math. Phys., 165(1994), No.2, 281-296.

[5] Thierry Bouche. Convergence de la métrique de Fubini-Study d’un fibré linéaire positif. Annales de l’Institut Fourier, Volume 40 (1990) no. 1, pp. 117-130. doi : 10.5802/aif.1206.

[6] David Catlin. The Bergman kernel and a theorem of Tian. In Analysis and geometry in several complex variables (Katata, 1997), Trends Math., pages 1-23. Birkhäuser Boston, Boston, MA, 1999.

[7] Xiuxiong Chen, Simon Donaldson, Song Sun. Kähler-Einstein metrics on Fano manifolds. I: Approximation of metrics with cone singularities, J. Amer. Math. Soc., 28 (2015), No.1, 183-197.

[8] Xiuxiong Chen, Simon Donaldson, Song Sun. Kähler-Einstein metrics on Fano manifolds. III: Limits as cone angle approaches 2π and completion of the main proof, J. Amer. Math. Soc., 28 (2015), No.1, 235-278.

[9] Xianzhe Dai, Kefeng Liu, Xiaonan Ma. On the asymptotic expansion of Bergman kernel, C. R. Math. Acad. Sci. Paris 339 (2004), no. 3, 193–198.

[10] Xianzhe Dai, Kefeng Liu, Xiaonan Ma. On the asymptotic expansion of Bergman kernel, J. Differential Geom., 72, (2006), no. 1, 1–41.

[11] Edward Davies. Spectral theory and differential operators, volume 42 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1995.

[12] Jean-Pierre Demailly. Complex analytic and algebraic geometry. https://www-fourier.ujfgrenoble.fr/demailly/manuscripts/agbook.pdf, 2012.

[13] Simon Donaldson. Scalar curvature and projective embeddings. I, J. Differential Geom., 59(2001), No.3, 479-522.

[14] Simon Donaldson, Song Sun. Gromov-Hausdorff limits of Kähler manifolds and algebraic geometry, Acta Math., 213 (2014), No.1, 63-106.

[15] Matthew Gaffney. Hilbert space methods in the theory of harmonic integrals. Trans. Amer. Math. Soc., 78:426–444, 1955.

[16] Peter Gilkey. Invariance Theory, the Heat Equation and the Atiyah-Singer Index Theorem, Publish or Perish.

[17] Phillip Griffiths, Joseph Harris. Principles of algebraic geometry. Pure and Applied Mathematics. Wiley-Interscience [JohnWiley and Sons], New York, 1978.

[18] Lars Hörmander. The analysis of linear partial differential operators. I. Classics in Mathematics. Springer-Verlag, Berlin, 2003. Distribution theory and Fourier analysis, Reprint of the second (1990) edition [Springer, Berlin; MR1065993 (91m:35001a)].

[19] Yu-Chi Hou. Asymptotic expansion of the Bergman kernel via semiclassical symbolic calculus. Bull. Inst. Math. Acad. Sin. (N.S.) 17(1), 1–51 (2022).

[20] Chin-Yu Hsiao. Bergman kernel asymptotics and a pure analytic proof of the Kodaira embedding theorem, In Complex analysis and geometry, volume 144 of Springer Proc. Math. Stat., pages 161-173. Springer, Tokyo, 2015.

[21] Chin-Yu Hsiao, George Marinescu. Asymptotics of spectral function of lower energy forms and Bergman kernel of semi-positive and big line bundles, Comm. Anal. Geom., 22 (2014), No.1, 1-108.

[22] Chin-Yu Hsiao, George Marinescu. Berezin–Toeplitz quantization for lower energy forms, Communications in Partial Differential Equations (2017), 42:6, 895-942.

[23] Xiaonan Ma, George Marinescu. Berezin-Toeplitz quantization on Kähler manifolds, J. Reine Angew. Math., 662 (2012), 1-56.

[24] Xiaonan Ma, George Marinescu. The first coefficients of the asymptotic expansion of the Bergman kernel of the spin^{c} Dirac operator, Internat. J. Math., 17 (2006), No.6, 737-759.

[25] Xiaonan Ma, George Marinescu. Holomorphic Morse inequalities and Bergman kernels, volume 254 of Progress in Mathematics, Birkhäuser Verlag, Basel, 2007.

[26] Raymond O. Wells Jr.. Differential Analysis on Complex Manifolds, third edition, Graduate Texts in Mathematics, 65, Springer, New York, 2008.

[27] Martin Schlichenmaier. Berezin-Toeplitz quantization for compact Kähler manifolds. A review of results. Adv. Math. Phys., pages Art. ID 927280, 38, 2010.

[28] Gang Tian. On a set of polarized Kähler metrics on algebraic manifolds, J. Differential Geom., 32 (1990), No.1, 99-130.

[29] Edward Witten. Supersymmetry and Morse theory. J. Differential Geom. 17 (1982), no. 4, 661-692.

[30] Kosaku Yosida. Functional analysis. Classics in Mathematics, Springer-Verlag, Berlin, 1995. Reprint of the sixth (1980) edition.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88770-
dc.description.abstract在這篇論文中,我們發展了一種新的伸縮方法,用於研究複流形線叢之高階張量冪的譜核與柏格曼核於局部譜間隙條件下的行為。特別的,我們給出了譜核和柏格曼核的逐點漸進性質的簡單證明。作為一個新結果,在純函數而不帶有形式的情況下,我們在具有指數衰減的譜間隙條件下得到了柏格曼核的主要項。此外,在 (0,q)-形式的一般情況下,即使線叢的曲率退化,漸進性質仍然成立。zh_TW
dc.description.abstractIn this thesis, we develop a new scaling method to study spectral and Bergman kernels for the k-th tensor power of a line bundle over a complex manifold under local spectral gap condition. In particular, we establish a simple proof of the pointwise asymptotics of spectral and Bergman kernels. As a new result, in the function case, we obtain the leading term of Bergman kernel under spectral gap with exponential decay. Moreover, in the general cases of (0,q)-forms, the asymptotics remain valid while the curvature of the line bundle is degenerate.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T17:42:58Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-15T17:42:58Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsVerification Letter from the Oral Examination Committee i
Acknowledgements ii
摘要 iii
Abstract iv
Contents v

Chapter I Introduction ...p.1
I.1 Set-up and the main results ...p.4

Chapter II Preliminaries and terminology ...p.10
II.1 Standard notations ...p.10
II.2 Complex geometry and Hermitian holomorphic line bundle ...p.12
II.3 The spectral and Bergman kernels ...p.16
II.4 The Sobolev and Gårding inequalities ...p.19

Chapter III The local uniform bounds for scaled spectral and Bergman kernels ...p.23
III.1 The scaled bundles ...p.23
III.2 The Laplacians ...p.28
III.3 The uniform bounds ...p.34

Chapter IV Asymptotics of spectral and Bergman kernels ...p.43
IV.1 The model case ...p.44
IV.2 Mapping properties of the approximated integral operator ...p.50
IV.3 Asymptotic of the function case ...p.54
IV.4 The spectral gap of the extended Laplacian...p.60
IV.5 Asymptotics of the general (0,q)-forms cases ...p.67
References ...p.79
-
dc.language.isoen-
dc.title(0, q)-形式的柏格曼核與譜核之半經典漸進zh_TW
dc.titleSemi-Classical Asymptotics of Bergman and Spectral Kernels for (0,q)-formsen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee李瑩英;郭庭榕;楊劼之;黃榮宗zh_TW
dc.contributor.oralexamcommitteeYng-Ing Lee;Ting-Jung Kuo ;Ryosuke Takahashi;Rung-Tzung Huangen
dc.subject.keyword柏格曼核,複幾何,半經典分析,複分析,譜核,譜間隙,zh_TW
dc.subject.keywordBergman Kernel,Complex Geometry,Semi-Classical Analysis,Complex Analysis,Spectral Kernel,Spectral Gap,en
dc.relation.page82-
dc.identifier.doi10.6342/NTU202302926-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-08-09-
dc.contributor.author-college理學院-
dc.contributor.author-dept數學系-
dc.date.embargo-lift2024-08-01-
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
889.6 kBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved