Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 食品科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88683
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor沈立言zh_TW
dc.contributor.advisorLee Yan Sheenen
dc.contributor.author蔡晞彤zh_TW
dc.contributor.authorHailey Hei Tung Choien
dc.date.accessioned2023-08-15T17:21:25Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-15-
dc.date.issued2023-
dc.date.submitted2023-08-04-
dc.identifier.citationAbelaira, H. M., Réus, G. Z., & Quevedo, J. (2013). Animal models as tools to study the pathophysiology of depression. Brazilian Journal of Psychiatry, 35, S112-S120.
Adachi, Y., Toyoshima, K., Nishimoto, R., Ueno, S., Tanaka, T., Imaizumi, A., Arashida, N., Nakamura, M., Abe, Y., & Hakamada, T. (2019). Association between plasma α‐aminobutyric acid and depressive symptoms in older community‐dwelling adults in Japan. Geriatrics & Gerontology International, 19(3), 254-258.
Altamura, C., Maes, M., Dai, J., & Meltzer, H. (1995). Plasma concentrations of excitatory amino acids, serine, glycine, taurine and histidine in major depression. European Neuropsychopharmacology, 5, 71-75.
Autry, A. E., & Monteggia, L. M. (2012). Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacological Reviews, 64(2), 238-258.
Autry, A. E., & Monteggia, L. M. (2012). Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacological Reviews, 64(2), 238-258.
Baral, S., Pariyar, R., Yoon, C.-S., Kim, D.-C., Yun, J.-M., Jang, S. O., Kim, S. Y., Oh, H., Kim, Y.-C., & Seo, J. (2015). Effects of Gastrodiae rhizoma on proliferation and differentiation of human embryonic neural stem cells. Asian Pacific Journal of Tropical Medicine, 8(10), 792-797.
Baranyi, A., Amouzadeh-Ghadikolai, O., von Lewinski, D., Rothenhäusler, H.-B., Theokas, S., Robier, C., Mangge, H., Reicht, G., Hlade, P., & Meinitzer, A. (2016). Branched-chain amino acids as new biomarkers of major depression-a novel neurobiology of mood disorder. PloS one, 11(8), e0160542.
Belmaker, R. H., & Agam, G. (2008). Major depressive disorder. New England Journal of Medicine, 358(1), 55-68.
Benarroch, E. E. (2011). Glycine and its synaptic interactions: functional and clinical implications. Neurology, 77(7), 677-683.
Bersani, F. S., Wolkowitz, O. M., Lindqvist, D., Yehuda, R., Flory, J., Bierer, L. M., Makotine, I., Abu-Amara, D., Coy, M., & Reus, V. I. (2016). Global arginine bioavailability, a marker of nitric oxide synthetic capacity, is decreased in PTSD and correlated with symptom severity and markers of inflammation. Brain, Behavior, and Immunity, 52, 153-160.
Bersani, G., Liberati, D., Rasa, A., Polli, E., Ciuffa, M., Limpido, L., Russo, D., Marconi, D., & Pacitti, F. (2010). Premorbid sleep, appetite, energy, and cognitive circadian profile in patients with depressive disorders. European Psychiatry, 25(8), 461-464.
Bie, X., Chen, Y., Han, J., Dai, H., Wan, H., & Zhao, T. (2007). Effects of gastrodin on amino acids after cerebral ischemia-reperfusion injury in rat striatum. Asia Pac J Clin Nutr, 16(Suppl 1), 305-308.
Bot, M., Milaneschi, Y., Al-Shehri, T., Amin, N., Garmaeva, S., Onderwater, G. L., Pool, R., Thesing, C. S., Vijfhuizen, L. S., & Vogelzangs, N. (2020). Metabolomics profile in depression: a pooled analysis of 230 metabolic markers in 5283 cases with depression and 10,145 controls. Biological Psychiatry, 87(5), 409-418.
Caviedes, A., Lafourcade, C., Soto, C., & Wyneken, U. (2017). BDNF/NF-κB signaling in the neurobiology of depression. Current Pharmaceutical Design, 23(21), 3154-3163.
Chen, P.-J., Hsieh, C.-L., Su, K.-P., Hou, Y.-C., Chiang, H.-M., Lin, I.-H., & Sheen, L.-Y. (2008). The antidepressant effect of Gastrodia elata Bl. on the forced-swimming test in rats. The American Journal of Chinese Medicine, 36(01), 95-106.
Chen, P.-J., Hsieh, C.-L., Su, K.-P., Hou, Y.-C., Chiang, H.-M., & Sheen, L.-Y. (2009). Rhizomes of Gastrodia elata BL possess antidepressant-like effect via monoamine modulation in subchronic animal model. The American Journal of Chinese Medicine, 37(06), 1113-1124.
Chen, P.-J., & Sheen, L.-Y. (2011). Gastrodiae Rhizoma (天麻 tiān má): a review of biological activity and antidepressant mechanisms. Journal of Traditional and Complementary Medicine, 1(1), 31-40.
Chen, W.-C., Lai, Y.-S., Lin, S.-H., Lu, K.-H., Lin, Y.-E., Panyod, S., Ho, C.-T., & Sheen, L.-Y. (2016). Anti-depressant effects of Gastrodia elata Blume and its compounds gastrodin and 4-hydroxybenzyl alcohol, via the monoaminergic system and neuronal cytoskeletal remodeling. Journal of Ethnopharmacology, 182, 190-199.
Chen, W.-C., Lai, Y.-S., Lu, K.-H., Lin, S.-H., Liao, L.-Y., Ho, C.-T., & Sheen, L.-Y. (2015). Method development and validation for the high-performance liquid chromatography assay of gastrodin in water extracts from different sources of Gastrodia elata Blume. Journal of Food and Drug Analysis, 23(4), 803-810.
Cuijpers, P., Geraedts, A. S., van Oppen, P., Andersson, G., Markowitz, J. C., & van Straten, A. (2011). Interpersonal psychotherapy for depression: a meta-analysis. American Journal of Psychiatry, 168(6), 581-592.
Czysz, A. H., South, C., Gadad, B. S., Arning, E., Soyombo, A., Bottiglieri, T., & Trivedi, M. H. (2019). Can targeted metabolomics predict depression recovery? Results from the CO-MED trial. Translational Psychiatry, 9(1), 11.
Dantzer, R., O'connor, J. C., Freund, G. G., Johnson, R. W., & Kelley, K. W. (2008). From inflammation to sickness and depression: when the immune system subjugates the brain. Nature Reviews Neuroscience, 9(1), 46-56.
Danysz, W., & Parsons, C. G. (2003). The NMDA receptor antagonist memantine as a symptomatological and neuroprotective treatment for Alzheimer's disease: preclinical evidence. International Journal of Geriatric Psychiatry, 18(S1), S23-S32.
De Berardis, D., Orsolini, L., Serroni, N., Girinelli, G., Iasevoli, F., Tomasetti, C., de Bartolomeis, A., Mazza, M., Valchera, A., & Fornaro, M. (2016). A comprehensive review on the efficacy of S-Adenosyl-L-methionine in Major Depressive Disorder. CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders), 15(1), 35-44.
Dhir, A., & Kulkarni, S. (2007). Involvement of l-arginine–nitric oxide–cyclic guanosine monophosphate pathway in the antidepressant-like effect of venlafaxine in mice. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 31(4), 921-925.
Ding, X., Liu, Z., Liu, Y., Xu, B., Chen, J., Pu, J., Wu, D., Yu, H., Jin, C., & Wang, X. (2022). Comprehensive evaluation of the mechanism of Gastrodia elata Blume in ameliorating cerebral ischemia–reperfusion injury based on integrating fecal metabonomics and 16S rDNA sequencing. Frontiers in Cellular and Infection Microbiology, 1519.
Diniz, L. R. L., Souza, M. T. d. S., Barboza, J. N., Almeida, R. N. d., & Sousa, D. P. d. (2019). Antidepressant potential of cinnamic acids: mechanisms of action and perspectives in drug development. Molecules, 24(24), 4469.
Donahue, R. J., Muschamp, J. W., Russo, S. J., Nestler, E. J., & Carlezon Jr, W. A. (2014). Effects of striatal ΔFosB overexpression and ketamine on social defeat stress–induced anhedonia in mice. Biological psychiatry, 76(7), 550-558.
Erabi, H., Okada, G., Shibasaki, C., Setoyama, D., Kang, D., Takamura, M., Yoshino, A., Fuchikami, M., Kurata, A., & Kato, T. A. (2020). Kynurenic acid is a potential overlapped biomarker between diagnosis and treatment response for depression from metabolome analysis. Scientific Reports, 10(1), 16822.
Erjavec, G. N., Konjevod, M., Perkovic, M. N., Strac, D. S., Tudor, L., Barbas, C., Grune, T., Zarkovic, N., & Pivac, N. (2018). Short overview on metabolomic approach and redox changes in psychiatric disorders. Redox biology, 14, 178-186.
Fan, M., Gao, X., Li, L., Ren, Z., Lui, L. M., McIntyre, R. S., Teopiz, K. M., Deng, P., & Cao, B. (2021). The Association Between Concentrations of Arginine, Ornithine, Citrulline and Major Depressive Disorder: A Meta-Analysis. Frontiers in Psychiatry, 12, 686973.
Ferrari, A., Somerville, A., Baxter, A., Norman, R., Patten, S., Vos, T., & Whiteford, H. (2013). Global variation in the prevalence and incidence of major depressive disorder: a systematic review of the epidemiological literature. Psychological Medicine, 43(3), 471-481.
Gartlehner, G., Gaynes, B. N., Amick, H. R., Asher, G., Morgan, L. C., Coker-Schwimmer, E., Forneris, C., Boland, E., Lux, L. J., & Gaylord, S. (2015). Nonpharmacological versus pharmacological treatments for adult patients with major depressive disorder.
Gautam, M., Tripathi, A., Deshmukh, D., & Gaur, M. (2020). Cognitive behavioral therapy for depression. Indian Journal of Psychiatry, 62(Suppl 2), S223.
Geng, C., Guo, Y., Wang, C., Liao, D., Han, W., Zhang, J., & Jiang, P. (2020). Systematic impacts of chronic unpredictable mild stress on metabolomics in rats. Scientific Reports, 10(1), 1-11.
Gu, X., Gao, X., Cheng, J., Xia, C., Xu, Y., Yang, L., & Zhou, M. (2021). Emerging application of metabolomics on Chinese herbal medicine for depressive disorder. Biomedicine & Pharmacotherapy, 141, 111866.
Gu, X., Ke, S., Wang, Q., Zhuang, T., Xia, C., Xu, Y., Yang, L., & Zhou, M. (2021). Energy metabolism in major depressive disorder: Recent advances from omics technologies and imaging. Biomedicine & Pharmacotherapy, 141, 111869.
Gururajan, A., Reif, A., Cryan, J. F., & Slattery, D. A. (2019). The future of rodent models in depression research. Nature Reviews Neuroscience, 20(11), 686-701.
Hajek, T., Kopecek, M., & Höschl, C. (2012). Reduced hippocampal volumes in healthy carriers of brain-derived neurotrophic factor Val66Met polymorphism: meta-analysis. The World Journal of Biological Psychiatry, 13(3), 178-187.
Halahakoon, D. C., Kieslich, K., O’Driscoll, C., Nair, A., Lewis, G., & Roiser, J. P. (2020). Reward-processing behavior in depressed participants relative to healthy volunteers: A systematic review and meta-analysis. JAMA Psychiatry, 77(12), 1286-1295.
Hamada, M., Nishigawa, T., Maesono, S., Aso, K., Ikeda, H., & Furuse, M. (2019). Decreased stress-induced depression-like behavior in lactating rats is associated with changes in the hypothalamic-pituitary-adrenal axis, brain monoamines, and brain amino acid metabolism. Stress, 22(4), 482-491.
Hellerstein, D. J., Rosenthal, R. N., Pinsker, H., Samstag, L. W., Muran, J. C., & Winston, A. (1998). A randomized prospective study comparing supportive and dynamic therapies: Outcome and alliance. The Journal of Psychotherapy Practice and Research, 7(4), 261.
Hennings, J. M., Kohli, M. A., Uhr, M., Holsboer, F., Ising, M., & Lucae, S. (2019). Polymorphisms in the BDNF and BDNFOS genes are associated with hypothalamus-pituitary axis regulation in major depression. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 95, 109686.
Heresco-Levy, U., Javitt, D. C., Ermilov, M., Mordel, C., Silipo, G., & Lichtenstein, M. (1999). Efficacy of high-dose glycine in the treatment of enduring negative symptoms of schizophrenia. Archives of General Psychiatry, 56(1), 29-36.
Hess, S., Baker, G., Gyenes, G., Tsuyuki, R., Newman, S., & Le Melledo, J.-M. (2017). Decreased serum L-arginine and L-citrulline levels in major depression. Psychopharmacology, 234, 3241-3247.
Hill, R. A., Klug, M., Kiss Von Soly, S., Binder, M. D., Hannan, A. J., & van Den Buuse, M. (2014). Sex‐specific disruptions in spatial memory and anhedonia in a “two hit” rat model correspond with alterations in hippocampal brain‐derived neurotrophic factor expression and signaling. Hippocampus, 24(10), 1197-1211.
Hoekstra, R., Fekkes, D., Pepplinkhuizen, L., Loonen, A., Tuinier, S., & Verhoeven, W. (2006). Nitric oxide and neopterin in bipolar affective disorder. Neuropsychobiology, 54(1), 75-81.
Hoffman, J. R., Varanoske, A., & Stout, J. R. (2018). Effects of β-alanine supplementation on carnosine elevation and physiological performance. Advances in Food and Nutrition Research, 84, 183-206.
Hollis, F., & Kabbaj, M. (2014). Social defeat as an animal model for depression. ILAR Journal, 55(2), 221-232.
Hu, Y., Li, C., & Shen, W. (2014). Gastrodin alleviates memory deficits and reduces neuropathology in a mouse model of Alzheimer's disease. Neuropathology, 34(4), 370-377.
Huang, C.-C., Wei, I.-H., Huang, C.-L., Chen, K.-T., Tsai, M.-H., Tsai, P., Tun, R., Huang, K.-H., Chang, Y.-C., & Lane, H.-Y. (2013). Inhibition of glycine transporter-I as a novel mechanism for the treatment of depression. Biological Psychiatry, 74(10), 734-741.
Huang, H.-S., Lin, Y.-E., Panyod, S., Chen, R.-A., Lin, Y.-C., Wu, W.-K., Chai, L. M. X., Hsu, C.-C., Lu, K.-H., & Huang, Y.-J. Gastrodia Elata Blume Water Extract Induces Alterations in Gut Microbiome Related to Anti-Depression Effect and Cognition Improvement in Apoe−/− Mice Exposed to Unpredictable Chronic Mild Stress.
Huang, Y. J., Choong, L. X. C., Panyod, S., Lin, Y. E., Huang, H. S., Lu, K. H., Wu, W. K., & Sheen, L. Y. (2021). Gastrodia elata Blume water extract modulates neurotransmitters and alters the gut microbiota in a mild social defeat stress‐induced depression mouse model. Phytotherapy Research, 35(9), 5133-5142.
Ito, R., Nakano, T., Hojo, Y., Hashizume, M., Koshiba, M., & Murakoshi, T. (2020). Chronic restraint stress affects network oscillations in the anterior cingulate cortex in mice. Neuroscience, 437, 172-183.
Jakaria, M., Azam, S., Haque, M. E., Jo, S.-H., Uddin, M. S., Kim, I.-S., & Choi, D.-K. (2019). Taurine and its analogs in neurological disorders: Focus on therapeutic potential and molecular mechanisms. Redox biology, 24, 101223.
Jeon, S. W., & Kim, Y.-K. (2016). Molecular neurobiology and promising new treatment in depression. International Journal of Molecular Sciences, 17(3), 381.
Ji, S., Han, S., Yu, L., Du, L., You, Y., Chen, J., Wang, M., Wu, S., Li, S., & Sun, X. (2022). Jia Wei Xiao Yao San ameliorates chronic stress-induced depression-like behaviors in mice by regulating the gut microbiome and brain metabolome in relation to purine metabolism. Phytomedicine, 98, 153940.
Jung, J. W., Yoon, B. H., Oh, H. R., Ahn, J.-H., Kim, S. Y., Park, S.-Y., & Ryu, J. H. (2006). Anxiolytic-like effects of Gastrodia elata and its phenolic constituents in mice. Biological and Pharmaceutical Bulletin, 29(2), 261-265.
Jung, T. Y., Suh, S. I., Lee, H., Kim, I. S., Kim, H. J., Yoo, H. S., & Lee, S. R. (2007). Protective effects of several components of Gastrodia elata on lipid peroxidation in gerbil brain homogenates. Phytotherapy Research, 21(10), 960-964.
Kamilaris, T. C., Johnson, E. O., Calogero, A. E., Kalogeras, K. T., Bernardini, R., Chrousos, G. P., & Gold, P. (1992). Cholecystokinin-octapeptide stimulates hypothalamic-pituitary-adrenal function in rats: role of corticotropin-releasing hormone. Endocrinology, 130(4), 1764-1774.
Kanehisa, M. (2019). Toward understanding the origin and evolution of cellular organisms. Protein Science, 28(11), 1947-1951.
Kantrowitz, J. T., & Javitt, D. C. (2010). N-methyl-d-aspartate (NMDA) receptor dysfunction or dysregulation: the final common pathway on the road to schizophrenia? Brain Research Bulletin, 83(3-4), 108-121.
Kuo, T.-C., Tian, T.-F., & Tseng, Y. J. (2013). 3Omics: a web-based systems biology tool for analysis, integration and visualization of human transcriptomic, proteomic and metabolomic data. BMC Systems Biology, 7, 1-15.
Lanni, C., Govoni, S., Lucchelli, A., & Boselli, C. (2009). Depression and antidepressants: molecular and cellular aspects. Cellular and Molecular Life Sciences, 66, 2985-3008.
Laurino, A., Gencarelli, M., & Raimondi, L. (2021). The 3-iodothyronamine (T1AM) and the 3-iodothyroacetic acid (TA1) indicate a novel connection with the histamine system for neuroprotection. European Journal of Pharmacology, 912, 174606.
Lê Cao, K.-A., Boitard, S., & Besse, P. (2011). Sparse PLS discriminant analysis: biologically relevant feature selection and graphical displays for multiclass problems. BMC Bioinformatics, 12(1), 1-17.
Lê Cao, K.-A., Martin, P. G., Robert-Granié, C., & Besse, P. (2009). Sparse canonical methods for biological data integration: application to a cross-platform study. BMC Bioinformatics, 10, 1-17.
Lê Cao, K.-A., Rossouw, D., Robert-Granié, C., & Besse, P. (2008). A sparse PLS for variable selection when integrating omics data. Statistical Applications in Genetics and Molecular Biology, 7(1).
Lecca, D., Jung, Y. J., Scerba, M. T., Hwang, I., Kim, Y. K., Kim, S., Modrow, S., Tweedie, D., Hsueh, S. C., & Liu, D. (2022). Role of chronic neuroinflammation in neuroplasticity and cognitive function: A hypothesis. Alzheimer's & Dementia, 18(11), 2327-2340.
Liang, S., Sin, Z. Y., Yu, J., Zhao, S., Xi, Z., Bruzzone, R., & Tun, H. (2022). Multi-cohort analysis of depression-associated gut microbiota sheds insight on bacterial biomarkers across populations.
Lin, S.-H., Chen, W.-C., Lu, K.-H., Chen, P.-J., Hsieh, S.-C., Pan, T.-M., Chen, S.-T., & Sheen, L.-Y. (2014). Down-regulation of slit–Robo pathway mediating neuronal cytoskeletal remodeling processes facilitates the antidepressive-like activity of Gastrodia elata Blume. Journal of Agricultural and Food Chemistry, 62(43), 10493-10503.
Lin, Y.-E., Chou, S.-T., Lin, S.-H., Lu, K.-H., Panyod, S., Lai, Y.-S., Ho, C.-T., & Sheen, L.-Y. (2018). Antidepressant-like effects of water extract of Gastrodia elata Blume on neurotrophic regulation in a chronic social defeat stress model. Journal of Ethnopharmacology, 215, 132-139.
Lin, Y.-E., Lin, S.-H., Chen, W.-C., Ho, C.-T., Lai, Y.-S., Panyod, S., & Sheen, L.-Y. (2016). Antidepressant-like effects of water extract of Gastrodia elata Blume in rats exposed to unpredictable chronic mild stress via modulation of monoamine regulatory pathways. Journal of Ethnopharmacology, 187, 57-65.
Lin, Y.-E., Lu, K.-H., & Sheen, L.-Y. (2018). Recent Research Progress on the Antidepressant-like Effect and Neuropharmacological Potential of Gastrodia elata Blume. Current Pharmacology Reports, 4(3), 220-237.
Liu, Q. F., Park, S.-W., Kim, Y.-M., Song, S.-j., Chin, Y.-W., Pak, S. C., Jeon, S., & Koo, B.-S. (2021). Administration of Kyung-Ok-Ko reduces stress-induced depressive behaviors in mice through inhibition of inflammation pathway. Journal of Ethnopharmacology, 265, 113441.
Logan, A. C., & Katzman, M. (2005). Major depressive disorder: probiotics may be an adjuvant therapy. Medical Hypotheses, 64(3), 533-538.
Lu, J., Gong, X., Yao, X., Guang, Y., Yang, H., Ji, R., He, Y., Zhou, W., Wang, H., & Wang, W. (2021). Prolonged chronic social defeat stress promotes less resilience and higher uniformity in depression-like behaviors in adult male mice. Biochemical and Biophysical Research Communications, 553, 107-113.
Lu, K.-H., Ou, G.-L., Chang, H.-P., Chen, W.-C., Liu, S.-H., & Sheen, L.-Y. (2020). Safety evaluation of water extract of Gastrodia elata Blume: Genotoxicity and 28-day oral toxicity studies. Regulatory Toxicology and Pharmacology, 114, 104657.
Maes, M., Schotte, C., Scharpe, S., Martin, M., & Blockx, P. (1990). The effects of glucocorticoids on the availability of L-tryptophan and tyrosine in the plasma of depressed patients. Journal of Affective Disorders, 18(2), 121-127.
Maes, M., Verkerk, R., Vandoolaeghe, E., Lin, A., & Scharpe, S. (1998). Serum levels of excitatory amino acids, serine, glycine, histidine, threonine, taurine, alanine and arginine in treatment‐resistant depression: modulation by treatment with antidepressants and prediction of clinical responsivity. Acta Psychiatrica Scandinavica, 97(4), 302-308.
Margolis, K. G., Cryan, J. F., & Mayer, E. A. (2021). The microbiota-gut-brain axis: from motility to mood. Gastroenterology, 160(5), 1486-1501.
Markowitz, J. C., & Weissman, M. M. (2004). Interpersonal psychotherapy: principles and applications. World Psychiatry, 3(3), 136.
Mauri, M. C., Ferrara, A., Boscati, L., Bravin, S., Zamberlan, F., Alecci, M., & Invernizzi, G. (1998). Plasma and platelet amino acid concentrations in patients affected by major depression and under fluvoxamine treatment. Neuropsychobiology, 37(3), 124-129.
Mauri, M. C., Laini, V., Scalvini, M. E., Omboni, A., Ferrari, V. M., Clemente, A., Salvi, V., & Cerveri, G. (2001). Gabapentin and the prophylaxis of bipolar disorders in patients intolerant to lithium. Clinical Drug Investigation, 21, 169-174.
Mayneris-Perxachs, J., Castells-Nobau, A., Arnoriaga-Rodríguez, M., Martin, M., de la Vega-Correa, L., Zapata, C., Burokas, A., Blasco, G., Coll, C., & Escrichs, A. (2022). Microbiota alterations in proline metabolism impact depression. Cell Metabolism, 34(5), 681-701. e610.
Mayoral-Mariles, A., Cruz-Revilla, C., Vega-Manriquez, X., Aguirre-Hernández, R., Severiano-Pérez, P., Aburto-Arciniega, E., Jiménez-Mendoza, A., & Guevara-Guzmán, R. (2012). Plasma amino acid levels discriminate between control subjects and mildly depressed elderly women. Archives of Medical Research, 43(5), 375-382.
McBean, G. J., Aslan, M., Griffiths, H. R., & Torrão, R. C. (2015). Thiol redox homeostasis in neurodegenerative disease. Redox biology, 5, 186-194.
Mitani, H., Shirayama, Y., Yamada, T., Maeda, K., Ashby Jr, C. R., & Kawahara, R. (2006). Correlation between plasma levels of glutamate, alanine and serine with severity of depression. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 30(6), 1155-1158.
Mitrea, L., Nemeş, S.-A., Szabo, K., Teleky, B.-E., & Vodnar, D.-C. (2022). Guts imbalance imbalances the brain: A review of gut microbiota association with neurological and psychiatric disorders. Frontiers in Medicine, 9.
Monteiro, M., Carvalho, M., Bastos, M., & Guedes de Pinho, P. (2013). Metabolomics analysis for biomarker discovery: advances and challenges. Current Medicinal Chemistry, 20(2), 257-271.
Mor, N., & Haran, D. (2009). Cognitive-behavioral therapy for depression. Israel Journal of Psychiatry and Related Sciences, 46(4), 269.
Murakami, T., & Furuse, M. (2010). The impact of taurine-and beta-alanine-supplemented diets on behavioral and neurochemical parameters in mice: antidepressant versus anxiolytic-like effects. Amino Acids, 39, 427-434.
Naz, S., Vallejo, M., García, A., & Barbas, C. (2014). Method validation strategies involved in non-targeted metabolomics. Journal of Chromatography A, 1353, 99-105.
Nestler, E. J., Barrot, M., DiLeone, R. J., Eisch, A. J., Gold, S. J., & Monteggia, L. M. (2002). Neurobiology of depression. Neuron, 34(1), 13-25.
Nicholson, J. K., & Lindon, J. C. (2008). Metabonomics. Nature, 455(7216), 1054-1056.
Nowak, G., & Dulinski, J. (1991). Effect of repeated treatment with electroconvulsive shock (ECS) on serotonin receptor density and turnover in the rat cerebral cortex. Pharmacology Biochemistry and Behavior, 38(3), 691-694.
Ogawa, S., Fujii, T., Koga, N., Hori, H., Teraishi, T., Hattori, K., Noda, T., Higuchi, T., Motohashi, N., & Kunugi, H. (2014). Plasma L-tryptophan concentration in major depressive disorder: new data and meta-analysis. The Journal of Clinical Psychiatry, 75(9), 14646.
Ogawa, S., Koga, N., Hattori, K., Matsuo, J., Ota, M., Hori, H., Sasayama, D., Teraishi, T., Ishida, I., & Yoshida, F. (2018). Plasma amino acid profile in major depressive disorder: Analyses in two independent case-control sample sets. Journal of Psychiatric Research, 96, 23-32.
Pałucha-Poniewiera, A., & Pilc, A. (2016). Glutamate-based drug discovery for novel antidepressants. Expert Opinion on Drug Discovery, 11(9), 873-883.
Pang, Z., Zhou, G., Ewald, J., Chang, L., Hacariz, O., Basu, N., & Xia, J. (2022). Using MetaboAnalyst 5.0 for LC–HRMS spectra processing, multi-omics integration and covariate adjustment of global metabolomics data. Nature Protocols, 17(8), 1735-1761.
Pehrson, A. L., & Sanchez, C. (2015). Altered γ-aminobutyric acid neurotransmission in major depressive disorder: a critical review of the supporting evidence and the influence of serotonergic antidepressants. Drug design, development and therapy, 9, 603.
Pinto, V. L. M., de Souza, P. F. C., Brunini, T. M. C., Oliveira, M. B., Moss, M. B., de Sá Siqueira, M. A., Ferraz, M. R., & Mendes-Ribeiro, A. C. (2012). Low plasma levels of L-arginine, impaired intraplatelet nitric oxide and platelet hyperaggregability: implications for cardiovascular disease in depressive patients. Journal of affective disorders, 140(2), 187-192.
Ramírez-Guerrero, S., Guardo-Maya, S., Medina-Rincón, G. J., Orrego-González, E. E., Cabezas-Pérez, R., & González-Reyes, R. E. (2022). Taurine and astrocytes: a homeostatic and neuroprotective relationship. Frontiers in Molecular Neuroscience, 15.
Rezzi, S., Ramadan, Z., Fay, L. B., & Kochhar, S. (2007). Nutritional metabonomics: applications and perspectives. Journal of proteome research, 6(2), 513-525.
San-Martin, B. S. D., Ferreira, V. G., Bitencourt, M. R., Pereira, P. C. G., Carrilho, E., Assunção, N. A. d., & Carvalho, L. R. S. d. (2020). Metabolomics as a potential tool for the diagnosis of growth hormone deficiency (GHD): a review. Archives of Endocrinology and Metabolism, 64, 654-663.
Sanacora, G., Mason, G. F., Rothman, D. L., Hyder, F., Ciarcia, J. J., Ostroff, R. B., Berman, R. M., & Krystal, J. H. (2003). Increased cortical GABA concentrations in depressed patients receiving ECT. American Journal of Psychiatry, 160(3), 577-579.
Saveanu, R. V., & Nemeroff, C. B. (2012). Etiology of depression: genetic and environmental factors. Psychiatric clinics, 35(1), 51-71.
Setoyama, D., Kato, T. A., Hashimoto, R., Kunugi, H., Hattori, K., Hayakawa, K., Sato-Kasai, M., Shimokawa, N., Kaneko, S., & Yoshida, S. (2016). Plasma metabolites predict severity of depression and suicidal ideation in psychiatric patients-a multicenter pilot analysis. PloS one, 11(12), e0165267.
Shirayama, Y., Chen, A. C.-H., Nakagawa, S., Russell, D. S., & Duman, R. S. (2002). Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. Journal of Neuroscience, 22(8), 3251-3261.
Simmons, W. K., Burrows, K., Avery, J. A., Kerr, K. L., Bodurka, J., Savage, C. R., & Drevets, W. C. (2016). Depression-related increases and decreases in appetite: dissociable patterns of aberrant activity in reward and interoceptive neurocircuitry. American Journal of Psychiatry, 173(4), 418-428.
Slominski, A., Wortsman, J., Tuckey, R. C., & Paus, R. (2007). Differential expression of HPA axis homolog in the skin. Molecular and cellular endocrinology, 265, 143-149.
Spencer, S. J., & Tilbrook, A. (2011). The glucocorticoid contribution to obesity. Stress, 14(3), 233-246.
Subermaniam, K., Teoh, S. L., Yow, Y.-Y., Tang, Y. Q., Lim, L. W., & Wong, K. H. (2021). Marine algae as emerging therapeutic alternatives for depression: A review. Iranian journal of basic medical sciences, 24(8), 997.
Tagliari, B., dos Santos, T. M., Cunha, A. A., Lima, D. D., Delwing, D., Sitta, A., Vargas, C. R., Dalmaz, C., & Wyse, A. T. (2010). Chronic variable stress induces oxidative stress and decreases butyrylcholinesterase activity in blood of rats. Journal of Neural Transmission, 117, 1067-1076.
Tang, Q., Tan, P., Ma, N., & Ma, X. (2021). Physiological functions of threonine in animals: beyond nutrition metabolism. Nutrients, 13(8), 2592.
Tomonaga, S., Yamane, H., Onitsuka, E., Yamada, S., Sato, M., Takahata, Y., Morimatsu, F., & Furuse, M. (2008). Carnosine-induced antidepressant-like activity in rats. Pharmacology Biochemistry and Behavior, 89(4), 627-632.
Tsai, G., Lane, H.-Y., Yang, P., Chong, M.-Y., & Lange, N. (2004). Glycine transporter I inhibitor, N-methylglycine (sarcosine), added to antipsychotics for the treatment of schizophrenia. Biological psychiatry, 55(5), 452-456.
Verhagen, M., Van Der Meij, A., Van Deurzen, P., Janzing, J., Arias-Vasquez, A., Buitelaar, J., & Franke, B. (2010). Meta-analysis of the BDNF Val66Met polymorphism in major depressive disorder: effects of gender and ethnicity. Molecular psychiatry, 15(3), 260-271.
Wang, D., Wang, Q., Chen, R., Yang, S., Li, Z., & Feng, Y. (2019). Exploring the effects of Gastrodia elata Blume on the treatment of cerebral ischemia-reperfusion injury using UPLC-Q/TOF-MS-based plasma metabolomics. Food & function, 10(11), 7204-7215.
Wang, M.-W., Hao, X., & Chen, K. (2007). Biological screening of natural products and drug innovation in China. Philosophical Transactions of the Royal Society B: Biological Sciences, 362(1482), 1093-1105.
Wang, T., Liu, J., Luo, X., Hu, L., & Lu, H. (2021). Functional metabolomics innovates therapeutic discovery of traditional Chinese medicine derived functional compounds. Pharmacology & Therapeutics, 224, 107824.
Wang, Y., Wu, Z., Liu, X., & Fu, Q. (2013). Gastrodin ameliorates Parkinson's disease by downregulating connexin 43. Molecular medicine reports, 8(2), 585-590.
Woo, H. I., Chun, M. R., Yang, J. S., Lim, S. W., Kim, M. J., Kim, S. W., Myung, W. J., Kim, D. K., & Lee, S. Y. (2015). Plasma amino acid profiling in major depressive disorder treated with selective serotonin reuptake inhibitors. CNS neuroscience & therapeutics, 21(5), 417-424.
Wu, G.-F., Ren, S., Tang, R.-Y., Xu, C., Zhou, J.-Q., Lin, S.-M., Feng, Y., Yang, Q.-H., Hu, J.-M., & Yang, J.-C. (2017). Antidepressant effect of taurine in chronic unpredictable mild stress-induced depressive rats. Scientific Reports, 7(1), 4989.
Xia, J., & Wishart, D. S. (2011). Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst. Nature protocols, 6(6), 743-760.
Yamagishi, N., Omata, Y., AOKI-YOSHIDA, A., Moriya, N., Goto, T., Toyoda, A., Aoki, R., Suzuki, C., & Takayama, Y. (2019). Comparison of gut tight junction gene expression in C57BL/6J and BALB/c mice after chronic social defeat stress. Japan Agricultural Research Quarterly: JARQ, 53(1), 41-46.
Zhan, H.-D., Zhou, H.-Y., Sui, Y.-P., Du, X.-L., Wang, W.-h., Dai, L., Sui, F., Huo, H.-R., & Jiang, T.-L. (2016). The rhizome of Gastrodia elata Blume–An ethnopharmacological review. Journal of Ethnopharmacology, 189, 361-385.
Zhang, R., Peng, Z., Wang, H., Xue, F., Chen, Y., Wang, Y., Wang, H., & Tan, Q. (2014). Gastrodin ameliorates depressive-like behaviors and up-regulates the expression of BDNF in the hippocampus and hippocampal-derived astrocyte of rats. Neurochemical Research, 39, 172-179.
Zheng, P., Gao, H. C., Li, Q., Shao, W. H., Zhang, M. L., Cheng, K., Yang, D. Y., Fan, S. H., Chen, L., & Fang, L. (2012). Plasma metabonomics as a novel diagnostic approach for major depressive disorder. Journal of Proteome Research, 11(3), 1741-1748.
Zhou, X., Liu, L., Zhang, Y., Pu, J., Yang, L., Zhou, C., Yuan, S., Zhang, H., & Xie, P. (2017). Metabolomics identifies perturbations in amino acid metabolism in the prefrontal cortex of the learned helplessness rat model of depression. Neuroscience, 343, 1-9.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88683-
dc.description.abstract重度憂鬱症(MDD)是全世界最普遍的神經精神疾病之一。根據世界衛生組織(WHO)的數據,2020年全球有3.5億患者患有慢性壓力和憂鬱症。目前憂鬱症藥物副作用多且複雜,導致患者對抗憂鬱藥物的接受度低。因此,找尋更好的憂鬱症療法逐漸受到重視。生物體內氨基酸代謝物可進一步合成與憂鬱症相關的神經傳導物質,例如:甘胺酸(glycine)、天門冬胺酸(aspartic acid)、酪胺酸(tyrosine)、γ-氨基丁酸(GABA)等。因此,在憂鬱症的發展中起著至關重要的作用,近年來,液相層析質譜儀(LC-MS)的代謝體學是研究憂鬱症病理生理學的新興方法,因其可透過識別生物體內代謝紊亂下的新途徑和網絡,能有助選出預測、預防、與治療憂鬱症的氨基酸標記代謝物。許多中草藥能透過抑制炎症等方法改善生理系統失衡,從而表現出類抗憂鬱的功效;其副作用更比現有的憂鬱症藥物來得少,因而提高病人的服藥遵從性;因此,中草藥的互補醫學可能是改善憂鬱症的替代方法。天麻(Gastrodia elata Blume)是一種傳統中草藥,其活性物質天麻素(GAS)已被證明對大鼠的憂鬱症有益。然而,文獻中仍缺乏天麻水萃取物(WGE)和GAS對代謝物的作用。因此,本研究旨在利用代謝體學方法探討WGE和GAS對不可預期慢性輕度壓力(UCMS)誘導的憂鬱症大鼠模型血清氨基酸代謝體的變化,並解釋與抗憂鬱效用有關的潛在標記代謝物。在本研究中,WGE和GAS可以通過增加糖水偏好來緩解UCMS大鼠的類憂鬱行為。在血清氨基酸代謝體學分析中,以LC-MS分析,確定了39種氨基酸。稀疏偏最小二乘法判別分析(sPLS-DA)顯示各組之間的分離度有很大不同。多變量分析也揭示了組別之間具有差異的代謝物。此外,路徑分析與文獻回顧發現了給予WGE和GAS的憂鬱大鼠體內,有數條與憂鬱症相關而且被改變的潛在血清代謝物路徑,包括組氨酸代謝(histidine metabolism);牛磺酸和次牛磺酸代謝(taurine and hypotaurine metabolism);半胱氨酸和甲硫胺酸代謝(cysteine and methionine metabolism);甘氨酸、絲氨酸和蘇氨酸代謝(glycine, serine, and threonine metabolism);β-丙氨酸代謝(beta-alanine metabolism);精氨酸的生物合成(arginine biosynthesis);精氨酸與脯氨酸代謝(arginine and proline metabolism)。總括而言,本研究發現WGE與GAS於憂鬱症大鼠血清中21個胺基酸代謝物及7條潛在代謝路徑的變化。透過整理現有機轉,代謝體能有助於進一步理解 WGE 和 GAS 的抗憂鬱作用的潛在機轉,期望可用作未來開發保健食品的基礎。zh_TW
dc.description.abstractMajor depressive disorder (MDD) is one of the most prevalent neuropsychiatric disorders worldwide. According to the World Health Organization (WHO), there were 350 million patients suffering from chronic stress and depression globally in 2020. Liquid chromatography-mass spectrometry (LC-MS)-based metabolomics is a powerful tool to investigate the pathophysiology of depression by identifying the novel pathways and networks of metabolic disorders, amino acid metabolites play an essential role in the development of depression as they contribute to several neurotransmitters. Numerous medications have been developed to cure depression patients, including antidepressants. However, the side effects of the drug cause low acceptance from patients. Various food and herbs exhibit antidepressive-like activity; thus, using food and herbs as mind modulation is an alternative approach for depression amelioration. Gastrodia elata Blume (GE), a traditional Chinese medicine, and its active compound gastrodin has been proven beneficial for depression in rats. However, the role of water extract of GE (WGE) and gastrodin on the metabolites is still lacking in the literature. Therefore, this study aims to use the metabolomic method to discover the alterations in serum amino acid metabolome of unpredictable chronic mild stress (UCMS)-induced depression rat model by WGE and gastrodin (GAS), and to interpret potential marker metabolites related to metabolic pathways involved in antidepressant-like effects of them. In this study, WGE and GAS could alleviate the depressive-like behavior of UCMS rats by increasing the sucrose preference. In serum amino acid metabolomic analysis, 39 amino acids were identified based on LC-MS analysis. The sparse Partial Least Squares-Discriminant Analysis (sPLS-DA) showed substantially different separations among the groups. Multivariate analysis also reveals the differentially expressed metabolites. Moreover, the pathway analysis uncovered several changes in serum metabolites linked to twenty-one candidate metabolite markers and seven potential pathways in the depressed rats with WGE and GAS treatments, including histidine metabolism; taurine and hypotaurine metabolism; cysteine and methionine metabolism; glycine, serine, and threonine metabolism; beta-alanine metabolism; arginine biosynthesis; arginine and proline metabolism. In summary, this study provided a comprehensive understanding of metabolic alterations in the serum, helping to understand the potential mechanisms underlying the antidepressant-like effects of WGE and GAS.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T17:21:25Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-15T17:21:25Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsTable of Contents
Acknowledgements I
Abstract II
中文摘要 IV
Table of Contents VI
List of Table XI
List of Figure XII
Abbreviation XVII
1. INTRODUCTION 1
2. LITERATURE REVIEW 3
2.1 Depression 3
2.1.1 Epidemiology and global prevalence of depression 3
2.1.2 Classification of depression 4
2.1.3 Diagnosis of depression 4
2.1.4 Treatments of depression 5
2.1.5 Pathophysiological mechanism of depression 12
2.1.5.1 Psychological 12
2.1.5.2 Pathophysiological 13
2.1.5.2.1 Neuroendocrine system (hypothalamic-pituitary-adrenal, HPA axis) 13
2.1.5.2.2 Neural plasticity and neurogenesis 14
2.1.5.2.3 Neurotrophic and brain-derived neurotrophic factor (BDNF) hypothesis 15
2.1.5.2.4 Neurotransmitters 16
2.1.5.2.4.1 Monoamine hypothesis 16
2.1.5.2.4.2 Glutamate hypothesis 17
2.1.5.2.5 Neuroinflammation 18
2.1.5.3 Genetics 20
2.1.6 Animal model of depression 20
2.1.6.1 Learned helplessness model (LH) 21
2.1.6.2 Unpredictable chronic mild stress (UCMS) 21
2.1.6.3 Chronic social defeat stress (CSDS) 22
2.1.6.4 Chronic restraint stress model (CRS) 23
2.2 Metabolomics and depression 24
2.2.1 Metabolomics 24
2.2.2 Analyses of metabolomics 25
2.2.3 Applications of metabolomics 28
2.2.4 Metabolomics and depression 30
2.2.5 Amino acid metabolism involved in depression 30
2.3 Gastrodia elata Blume 33
2.3.1 Introduction of Gastrodia elata Blume 33
2.3.2 Potential active ingredient of Gastrodia elata Blume 34
2.3.3 Physiological functions of Gastrodia elata Blume 37
2.3.3.1 Neurotransmitters regulations 37
2.3.3.2 Anti-oxidation 37
2.3.3.3 Anti-inflammation 38
2.3.3.4 Neurotrophic effects 38
2.3.3.5 Neuroplasticity 39
2.3.4 Application of metabolomics on Traditional Chinese Medicines (TCMs) used in MDD treatment 40
3. HYPOTHESES 41
4. EXPERIMENTAL DESIGN 42
5. MATERIALS AND METHOD 44
5.1 Experimental materials 44
5.1.1 Water extract of Gastrodia elata Blume 44
5.1.2 Chemicals and reagents 44
5.1.2.1 Animal experiment-related chemicals 44
5.1.2.2 Serum metabolomics analysis 44
5.1.3 Experimental apparatus 45
5.1.3.1 Unpredictable chronic mild stress (UCMS) 45
5.1.3.2 Animal sacrifice and sample collection 45
5.1.3.3 Serum metabolomics analysis 45
5.2 Experimental method 46
5.2.1 WGE and GAS dosage 46
5.2.2 Animal model 46
5.2.2.1 Animal feeding and experimental groups 46
5.2.2.2 Unpredictable chronic mild stress (UCMS) procedure 47
5.2.2.3 Sucrose preference test (SPT) 47
5.2.2.4 Sacrifice and sample collection 48
5.2.3 Serum metabolomics analysis 49
5.2.3.1 Preparation of standard curves and quality control (QC) 49
5.2.3.2 Preparation of serum samples 49
5.2.3.3 Sample analysis – Metabolites identification 50
5.2.3.4 Data export and statistical analysis 51
5.2.3.5 Multivariate statistical analysis 51
5.2.3.6 Biomarkers identification and pathway analysis 52
6. RESULTS 53
6.1 Body weight, food intake, and water intake 53
6.2 Sucrose preference test (SPT) 54
6.3 Serum metabolomics analysis 55
6.3.1 Comparison between the CON group and UCMS group 55
6.3.2 Comparison between the UCMS group and WGE or GAS treatment group 56
6.3.3 Comparison between UCMS group and FLUO treatment group 57
6.3.4 Multivariate statistical analysis of metabolomics data 58
6.3.4.1 Principal Component Analysis (PCA) 58
6.3.4.2 Partial Least Squares-Discriminant Analysis (PLS-DA) 58
6.3.4.3 Sparse Partial Least Squares-Discriminant Analysis (sPLS-DA) 59
6.3.4.4 Heatmap 59
6.3.5 Pathways analysis of serum metabolomics 59
6.3.5.1 Metabolic pathways altered by UCMS in rats 60
6.3.5.2 Metabolic pathways altered by WGE and GAS in UCMS rats 60
6.3.5.3 Metabolic pathways altered by FLUO in UCMS rats 61
6.3.6 Amino acid pathways and network altered by UCMS, WGE, and GAS 61
7. DISCUSSION 62
7.1 The effects of the UCMS animal model and the intervention of WGE towards body weight, food, and water intakes 62
7.2 The effects of the UCMS animal model and the intervention of WGE towards week 5 sucrose preference 63
7.3 Multivariate statistical analysis of metabolomics data 64
7.3.1 Principal Component Analysis (PCA) 64
7.3.2 Partial Least Squares-Discriminant Analysis (PLS-DA) 65
7.3.3 Sparse Partial Least Squares-Discriminant Analysis (sPLS-DA) 65
7.3.4 Heatmap 66
7.4 Biochemical interpretation of amino acid biomarkers or the metabolic pathways in UCMS animal model and the intervention of WGE and GAS 67
7.4.1 Histidine metabolism 67
7.4.2 Taurine and hypotaurine metabolism 69
7.4.3 Cysteine and methionine metabolism 70
7.4.4 Glycine, serine, and threonine metabolism 72
7.4.5 Beta-alanine metabolism 74
7.4.6 Arginine biosynthesis 75
7.4.7 Arginine and proline metabolism 77
7.4.8 D-glutamine and D-glutamate metabolism 78
7.4.9 Alanine, aspartate, and glutamate metabolism 80
7.4.10 Phenylalanine, tyrosine, and tryptophan biosynthesis 81
7.4.11 Other possible amino acid metabolites or metabolic pathways altered by WGE and GAS in UCMS rats 82
8. CONCLUSION 85
9. REFERENCES 124
10. APPENDICES 142
-
dc.language.isoen-
dc.subject不可預期慢性輕度壓力(UCMS)zh_TW
dc.subject氨基酸zh_TW
dc.subject代謝體學zh_TW
dc.subject天麻(Gastrodia elata Blume)zh_TW
dc.subject重度憂鬱症(MDD)zh_TW
dc.subject神經傳遞物質zh_TW
dc.subjectmajor depressive disorder (MDD)en
dc.subjectneurotransmittersen
dc.subjectamino acidsen
dc.subjectmetabolomicsen
dc.subjectGastrodia elata Blumeen
dc.subjectunpredictable chronic mild stress (UCMS)en
dc.title以代謝體學探討天麻與天麻素於大鼠血清胺基酸代謝物的抗憂鬱機轉zh_TW
dc.titleSerum amino acids metabolomic investigation of Gastrodia elata Blume and gastrodin on rats with depressive-like behaviorsen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee鄭美玲;郭錦樺zh_TW
dc.contributor.oralexamcommitteeMei Ling Cheng;Ching Hua Kuoen
dc.subject.keyword天麻(Gastrodia elata Blume),重度憂鬱症(MDD),代謝體學,神經傳遞物質,氨基酸,不可預期慢性輕度壓力(UCMS),zh_TW
dc.subject.keywordGastrodia elata Blume,major depressive disorder (MDD),metabolomics,neurotransmitters,amino acids,unpredictable chronic mild stress (UCMS),en
dc.relation.page203-
dc.identifier.doi10.6342/NTU202300958-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-08-08-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept食品科技研究所-
顯示於系所單位:食品科技研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
10.19 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved