請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88654
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林哲宇 | zh_TW |
dc.contributor.advisor | Che-Yu Lin | en |
dc.contributor.author | 邱友岑 | zh_TW |
dc.contributor.author | You-Tsen Chiu | en |
dc.date.accessioned | 2023-08-15T17:14:14Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-08-15 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-08-07 | - |
dc.identifier.citation | [1]Wan, J. J., Qin, Z., Wang, P. Y., Sun, Y., & Liu, X. (2017). Muscle fatigue: general understanding and treatment. Experimental & Molecular Medicine, 49(10), e384-e384.
[2]Ricci, J. A., Chee, E., Lorandeau, A. L., & Berger, J. (2007). Fatigue in the US workforce: prevalence and implications for lost productive work time. Journal of Occupational and Environmental Medicine, 1-10. [3]Kajimoto, O. (2008). Development of a method of evaluation of fatigue and its economic impacts. Fatigue Science for Human Health, 33-46. [4]Techera, U., Hallowell, M., Stambaugh, N., & Littlejohn, R. (2016). Causes and consequences of occupational fatigue. Journal of Occupational and Environmental Medicine, 58(10), 961-973. [5]Van Cutsem, J., Marcora, S., De Pauw, K., Bailey, S., Meeusen, R., & Roelands, B. (2017). The effects of mental fatigue on physical performance: a systematic review. Sports Medicine, 47(8), 1569-1588. [6]Rahnama, N., Reilly, T., Lees, A., & Graham-Smith, P. (2003). Muscle fatigue induced by exercise simulating the work rate of competitive soccer. Journal of Sports Science, 21(11), 933-942. [7]Liu, J. (2000). FMRI studies on human brain function and model of muscle activation and fatigue. Case Western Reserve University. [8]Bigland-Ritchie, B. (1981). EMG/force relations and fatigue of human voluntary contractions. Exercise and Sport Sciences Reviews, 9(1), 75-118. [9]Gandevia, S. C. (2001). Spinal and supraspinal factors in human muscle fatigue. Physiological Reviews. [10]Bigland‐Ritchie, B. W. J. J., & Woods, J. J. (1984). Changes in muscle contractile properties and neural control during human muscular fatigue. Muscle & Nerve: Official Journal of the American Association of Electrodiagnostic Medicine, 7(9), 691-699. [11]Taylor, J. L., Amann, M., Duchateau, J., Meeusen, R., & Rice, C. L. (2016). Neural contributions to muscle fatigue: from the brain to the muscle and back again. Medicine & Science in Sports & Exercise, 48(11), 2294-2306. [12]Mahdavi, N., Dianat, I., Heidarimoghadam, R., Khotanlou, H., & Faradmal, J. (2020). A review of work environment risk factors influencing muscle fatigue. International Journal of Industrial Ergonomics, 80, 103028. [13]Stutzig, N., & Siebert, T. (2015). Muscle force compensation among synergistic muscles after fatigue of a single muscle. Human Movement Science, 42, 273-287. [14]Lenhart, S., & Workman, J. T. (2007). Optimal Control Applied to Biological Models. CRC press. [15]L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelize, and E. F.Mishchenko. The Mathematical Theory of Optimal Processes. Wiley, New York, 1962. [16]H. L. Royden. Real Analysis. McMillan Publishing Company, Inc., New York, 1968. [17]Walter Rudin. Real and Complex Analysis. McGraw-Hill Book Company, New York, 1987. [18]Bellman, R. (1966). Dynamic programming. Science, 153(3731), 34-37. [19]Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2022). Introduction to Algorithms. MIT press. [20]Liu, J. Z., Brown, R. W., & Yue, G. H. (2002). A dynamical model of muscle activation, fatigue, and recovery. Biophysical Journal, 82(5), 2344-2359. [21]Canu, M. H., Fourneau, J., Coq, J. O., Dannhoffer, L., Cieniewski-Bernard, C., Stevens, L., ... & Dupont, E. (2019). Interplay between hypoactivity, muscle properties and motor command: How to escape the vicious deconditioning circle?. Annals of Physical and Rehabilitation Medicine, 62(2), 122-127. [22]Gandevia, S. C. (1987). Roles for perceived voluntary motor commands in motor control. Trends in Neurosciences, 10(2), 81-85. [23]McComas, A. J., Miller, R. G., & Gandevia, S. C. (1995). Fatigue brought on by malfunction of the central and peripheral nervous systems. Fatigue: Neural and Muscular Mechanisms, 495-512. [24]Enoka, R. M., and D. G. Stuart. 1992. Neurobiology of muscle fatigue. J. Appl. Physiol. 72:1631–1648. [25]Merton, P. A. 1954. Voluntary strength and fatigue. J. Physiol. (Lond.). 123:553–564. [26]Adrian, E. D., & Bronk, D. W. (1929). The discharge of impulses in motor nerve fibres: Part II. The frequency of discharge in reflex and voluntary contractions. The Journal of Physiology, 67(2), i3. [27]Burke, D., & Howells, J. (2016). The motor unit. Oxford Textbook of Clinical Neurophysiology, 9. [28]McArdle, W. D., Katch, F. I., & Katch, V. L. (2010). Exercise Physiology: Nutrition, Energy, and Human Performance. Lippincott Williams & Wilkins. [29]Ganong, W. F. 1971. Review of Medical Physiology. 5th ed. Lange Medical Publications, Los Altos, California. [30]Fitts, R. H. 1994. Cellular mechanisms of muscle fatigue. Physiol. Rev. 74:49 –94. [31]Liu, J. Z., Dai, T. H., Siemionow, V., Sahgal, V., & Yue, G. H. (1999). Brain activation during muscle fatigue. In Soc Neurosci Abstr (Vol. 25, p. 1145). [32]Heckman, C. J., & Enoka, R. M. (2012). Motor unit. Comprehensive Physiology, (4), 2629-2682. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88654 | - |
dc.description.abstract | 在特定的工作和運動中,例如拔河、重訓以及相關勞力工作,大腦下達指令使肌肉進行活動。然而,上述持續施力之活動可能導致肌肉疲勞和相應的肌肉損傷,進而影響工作效率。本論文以肌肉持續施力的數學模型為基礎,探討肌肉在持續施力情境中,施力大小與疲勞程度之關係。在肌肉活動中,施力策略對於減少疲勞和最大程度地提高工作效率極為重要,本研究運用最佳控制理論(Optimal Control Theory)來找尋最佳策略。最佳控制理論為一種數學工具及優化方法,透過解決動態系統的控制問題,以求解出在給定限制條件下的最佳操作策略。
利用最佳控制理論來制定最佳的持續施力策略,以最大程度地減少肌肉疲勞並提高工作效率,使我們肌肉在持續施力情況下,找到大腦控制肌肉的最佳省力模式,以在不引起肌肉過度疲勞的同時實現高效的肌肉活動,故本研究提出了三種施力目標函數,並由數值軟體MATLAB進行量化。這些目標函數考慮大腦施加命令程度、肌肉施力大小及疲勞程度之間關係,並且將此關係結合最佳控制理論,找尋最佳控制策略。同時本研究也將提出之目標函數與未使用最佳控制策略進行分析。藉由上述分析,我們能夠評估不同施力策略的優勢和劣勢,並選擇最有效率的施力方式。 | zh_TW |
dc.description.abstract | In specific tasks and activities such as tug-of-war, weightlifting, and related physically demanding work, the brain sends commands to the muscles to initiate movement. However, the sustained exertion involved in such activities can lead to muscle fatigue and subsequent muscle damage, ultimately affecting work efficiency. This paper is based on a mathematical model of sustained muscle exertion and explores the relationship between the magnitude of force applied and the level of fatigue experienced. In muscle activities, the strategy of force application plays a crucial role in reducing fatigue and maximizing work efficiency. This study employs Optimal Control Theory to identify the optimal strategy. Optimal Control Theory is a mathematical tool and optimization approach that solves control problems of dynamic systems to determine the best operational strategy under given constraints. Utilizing Optimal Control Theory, this study aims to develop an optimal sustained exertion strategy to minimize muscle fatigue and enhance work efficiency. By considering the optimal energy-saving mode of muscle control by the brain during sustained exertion, we seek to achieve efficient muscle activity without inducing excessive fatigue. To accomplish this, the study proposes three objective functional, quantified using the MATLAB numerical software. These objective functional consider the relationship between the level of commands issued by the brain, the magnitude of muscle force exertion, and the degree of fatigue. By integrating this relationship with Optimal Control Theory, the study seeks to identify the optimal control strategy. Additionally, an analysis comparing the proposed objective functional with the absence of optimal control strategy will be conducted. Through analysis, we can evaluate the advantages and disadvantages of different force strategies and select the optimal approach. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T17:14:14Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-08-15T17:14:14Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iii 目 錄 v 圖目錄 viii 表目錄 x 第一章 緒論 1 1.1研究背景 1 1.2研究動機與目的 3 第二章 最佳控制理論 4 2.1定義及目標函數 4 2.1.1定義 4 2.1.2目標函數 4 2.1.3必要條件推導 6 2.1.4求解問題步驟 10 2.2最佳化原則 11 2.3 回報項 16 第三章 研究方法 19 3.1肌肉持續施力之數學模型 19 3.1.1數學模型背景與機制 19 3.1.2數學模型建立 22 3.2目標函數建立 25 3.3最佳控制理論分析 26 3.3.1目標函數一 27 3.3.2目標函數二 30 3.3.3目標函數三 34 第四章 模擬結果與分析 38 4.1目標函數一 38 4.1.1未加入權重常數 38 4.1.2加入權重常數 40 4.2目標函數二 43 4.2.1未加入權重常數 43 4.2.2加入權重常數 45 4.3目標函數三 50 4.3.1未加入權重常數 50 4.3.2加入權重常數 52 4.4未使用最佳控制之策略 55 4.5分析 56 第五章 結果與討論 60 參考文獻 63 | - |
dc.language.iso | zh_TW | - |
dc.title | 以最佳控制理論研究肌肉持續施力之最佳控制策略 | zh_TW |
dc.title | The optimal control strategy for studying sustained muscle force production based on optimal control theory | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 劉建豪;李尉彰 | zh_TW |
dc.contributor.oralexamcommittee | Chien-Hao Liu;Wei-Chang Li | en |
dc.subject.keyword | 最佳控制理論,肌肉施力,肌肉疲勞,運動單元,大腦自主施力, | zh_TW |
dc.subject.keyword | Optimal Control Theory,Muscle strength,Muscle fatigue,Motor units,Voluntary brain effort, | en |
dc.relation.page | 65 | - |
dc.identifier.doi | 10.6342/NTU202302692 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2023-08-08 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 應用力學研究所 | - |
顯示於系所單位: | 應用力學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf | 3.1 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。