請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88637完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 孫珍理 | zh_TW |
| dc.contributor.advisor | Chen-li Sun | en |
| dc.contributor.author | 劉啟玄 | zh_TW |
| dc.contributor.author | Chi-Hsuan Liu | en |
| dc.date.accessioned | 2023-08-15T17:10:08Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-15 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-04 | - |
| dc.identifier.citation | [1]K. Hoo Teo, Y. Zhang, N. Chowdhury, S. Rakheja, R. Ma, Q. Xie, E. Yagyu, K. Yamanaka, K. Li and T. Palacios, "Emerging GaN technologies for power, RF, digital, and quantum computing applications: Recent advances and prospects," Journal of Applied Physics, vol. 130, no. 16, 2021, doi: 10.1063/5.0061555.
[2]M. Mahalingam, "RF power amplifier thermal design," in Handbook of RF and Microwave Power Amplifiers, J. L. B. Walker, Ed., USA: Cambridge University Press, 2011, pp. 411-445. [3]T. Kang, Y. Ye, Y. Jia, Y. Kong and B. Jiao, "Enhanced thermal management of GaN power amplifier electronics with micro-pin fin heat sinks," Electronics, vol. 9, no. 11, doi: 10.3390/electronics9111778 [4]Transient dual interface test method for the measurement of the thermal resistance junction-to-case of semiconductor devices with heat flow through a single path, JEDEC Standards 51-14, 2010. [5]Y. Shen, H. Wang, F. Blaabjerg, H. Zhao and T. Long, "Thermal modeling and design optimization of PCB vias and pads," IEEE Transactions on Power Electronics, vol. 35, no. 1, pp. 882-900, 2020, doi: 10.1109/TPEL.2019.2915029. [6]Simcenter Micred T3STER, Siemens, 2023. [Online]. Available: https://plm.sw.siemens.com/en-US/simcenter/physical-testing/t3ster/ [7]D. L. Blackburn, "Temperature measurements of semiconductor devices - a review," in Proceedings of. Twentieth Annual IEEE Semiconductor Thermal Measurement and Management Symposium, San Jose, CA, USA, March 11, 2004, pp. 70-80, doi: 10.1109/STHERM.2004.1291304. [8]Y. Xi and E. F. Schubert, "Junction–temperature measurement in GaN ultraviolet light-emitting diodes using diode forward voltage method," International Journal of High Speed Electronics and Systems, vol. 14, no. 03, pp. 708-713, 2004, doi: 10.1142/S0129156404002715. [9]M. H. M. Sathik, J. Pou, S. Prasanth, V. Muthu, R. Simanjorang and A. K. Gupta, "Comparison of IGBT junction temperature measurement and estimation methods-a review," in Proceedings of. 2017 Asian Conference on Energy, Power and Transportation Electrification, Oct. 24-26, 2017, pp. 1-8, doi: 10.1109/ACEPT.2017.8168600. [10]D. L. Blackburn and D. W. Berning, "Power MOSFET temperature measurements," in Proceedings of. 1982 IEEE Power Electronics Specialists conference, Cambridge, MA, USA, June 14-17, 1982, pp. 400-407, doi: 10.1109/PESC.1982.7072436. [11]E. J. Diebold and W. Luft, "Transient thermal impedance of semiconductor devices," Transactions of the American Institute of Electrical Engineers, Part I: Communication and Electronics, vol. 79, no. 6, pp. 719-726, 1961, doi: 10.1109/TCE.1961.6373039. [12]Z. Jakopovic, Z. Bencic and F. Kolonic, "Important properties of transient thermal impedance for MOS-gated power semiconductors," in Proceedings of. ISIE '99. Proceedings of the IEEE International Symposium on Industrial Electronics, July 12-16, 1999, vol. 2, pp. 574-578, doi: 10.1109/ISIE.1999.798675. [13]V. Székely, "A new evaluation method of thermal transient measurement results," Microelectronics Journal, vol. 28, no. 3, pp. 277-292, 1997, doi: 10.1016/S0026-2692(96)00031-6. [14]V. Székely, "THERMODEL: a tool for compact dynamic thermal model generation," Microelectronics Journal, vol. 29, no. 4, pp. 257-267, 1998, doi: 10.1016/S0026-2692(97)00065-7. [15]V. Székely, "Enhancing reliability with thermal transient testing," Microelectronics Reliability, vol. 42, no. 4, pp. 629-640, 2002, doi: 10.1016/S0026-2714(02)00028-8. [16]V. Székely, "Identification of RC networks by deconvolution: chances and limits," IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 45, no. 3, pp. 244-258, 1998, doi: 10.1109/81.662698. [17]T. J. Kennett, W. V. Prestwich and A. Robertson, "Bayesian deconvolution I: Convergent properties," Nuclear Instruments and Methods, vol. 151, no. 1, pp. 285-292, 1978, doi: 10.1016/0029-554X(78)90502-5. [18]N. Dey, L. Blanc-Feraud, C. Zimmer, P. Roux, Z. Kam, J.-C. Olivo-Marin and J. Zerubia, "3D microscopy deconvolution using Richardson-Lucy algorithm with total variation regularization," Microscopy research and technique, vol. 69, pp. 260-6, 2006, doi: 10.1002/jemt.20294. [19]V. Bissuel, E. Monier-Vinard, Q. Dupuis, O. Daniel, N. Laraqi and J. G. Bauzin, "Application of stochastic deconvolution methods to improve the identification of complex BCI multi-port thermal RC networks," in Proceedings of. 2020 19th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Orlando, FL, USA, July 21-23, 2020, pp. 236-243, doi: 10.1109/ITherm45881.2020.9190341. [20]Q. Dupuis, V. Bissuel, N. Laraqi, J. G. Bauzin and O. Daniel, "A Bayesian deconvolution application to calibrate multi-port RC network representation of electronic packages," in Proceedings of. 2021 20th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (iTherm), San Diego, CA, USA, June 1-4, 2021, pp. 139-144, doi: 10.1109/ITherm51669.2021.9503278. [21]Y. C. Gerstenmaier, W. Kiffe and G. Wachutka, "Combination of thermal subsystems by use of rapid circuit transformation and extended two-port theory," Microelectronics Journal, vol. 40, no. 1, pp. 26-34, 2009, doi: 10.1016/j.mejo.2008.09.002. [22]Y. C. Gerstenmaier and G. Wachutka, "Rigorous model and network for transient thermal problems," Microelectronics Journal, vol. 33, no. 9, pp. 719-725, 2002, doi: 10.1016/S0026-2692(02)00055-1. [23]L. Weinberg, Network Analysis and Synthesis. New York, NY, USA: McGraw-Hill, 1962. [24]V. Székely and T. Van Bien, "Fine structure of heat flow path in semiconductor devices: A measurement and identification method," Solid-State Electronics, vol. 31, no. 9, pp. 1363-1368, 1988, doi: 10.1016/0038-1101(88)90099-8. [25]M.-K. Kim and S. Yoon, "Thermal impedance characterization using optical measurement assisted by multi-physics simulation for multi-chip SiC MOSFET module," Micromachines, vol. 11, p. 1060, 11/30 2020, doi: 10.3390/mi11121060. [26]E. Ouyang, W. He, Y. Jeong, M. Chae, S. Gu, G. Kim and B. Ahn, "Thermal characterization and simulation of a fcBGA-H device," International Symposium on Microelectronics, vol. 2012, no. 1, pp. 809-817, 2012, doi: 10.4071/isom-2012-WP22. [27]R. Bornoff and A. Vass-Varnai, "A detailed IC package numerical model calibration methodology," in Proceedings of. 29th IEEE Semiconductor Thermal Measurement and Management Symposium, San Jose, CA, USA, March 17-21, 2013, pp. 65-70, doi: 10.1109/SEMI-THERM.2013.6526807. [28]A. L. Y. Beng, G. S. Hong and M. Devarajan, "Optimization of thermal vias for thermal resistance in FR-4 PCBs," in Proceedings of. Fifth Asia Symposium on Quality Electronic Design (ASQED 2013), Penang, Malaysia, Aug. 26-28, 2013, pp. 345-349, doi: 10.1109/ASQED.2013.6643611. [29]PowerPAD™ thermally enhanced package, Texas Instruments, 1997. [Online]. Available: https://www.ti.com/lit/an/slma002h/slma002h.pdf?ts=1675407389140 [30]M. T. Thompson, Intuitive Analog Circuit Design, second ed. Boston: Newnes, 2014, pp. 53-86. [31]Revised thermocouple reference tables, Omega Engineering, Inc., 2023. [Online]. Available: https://assets.omega.com/pdf/tables_and_graphs/thermocouple-type-t-fahrenheit.pdf [32]MATLAB. (2023). MathWorks. [Online]. Available: https://www.mathworks.com/products/matlab.html [33]Dev-C++. (2022). Bloodshed Software. [Online]. Available: bloodshed.net [34]S. W. Smith, The Scientist and Engineer’s Guide to Digital Signal Processing, 2nd ed. California, CA, USA: California Technical Publishing, 1999, pp. 277-284. [35]Ansys Icepak. (2023). Ansys, Inc. [Online]. Available: https://www.ansys.com/zh-tw/products/electronics/ansys-icepak [36]Keysight DAQ970A data acquisition system user's guide, Keysight Technologies, 2020. [Online]. Available: https://www.keysight.com/tw/zh/assets/9018-04738/user-manuals/9018-04738.pdf [37]Keysight B2900A series precision source/measure unit, Keysight Technologies, 2020. [Online]. Available: https://www.keysight.com/tw/zh/assets/7018-02794/data-sheets/5990-7009.pdf [38]A. S. Cura, "Enhancement of thermal performance in QFN assembly with respect to solder coverage and thermal via design," M.S., State University of New York at Binghamton, United State, 2011 [39]MatWeb, "Material property data." Available: https://www.matweb.com/search/QuickText.aspx [40]S. Cho and J. Lee, "Heat dissipation of printed circuit board by the high thermal conductivity of photo-imageable solder resist," Electronic Materials Letters, vol. 6, pp. 167-172, 2010, doi: 10.3365/eml.2010.12.167. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88637 | - |
| dc.description.abstract | 本研究建構一暫態熱特性測試平台,透過電晶體的順向電壓與溫度呈線性關係的特性,估測功率放大器在關掉電源後的暫態溫度響應,以獲得結構函數,準確表徵元件封裝內不同分層之熱阻與熱容。此外,我們亦以數值模擬搭配結構函數,探討功率放大器的PCB基板中熱通孔的設計對整體散熱之影響。
實驗結果顯示,PCB基板含有13個熱通孔的功率放大器樣品其熱阻值與僅有4個熱通孔時相比大幅降低65.9%,由9.55 ℃ W-1降低至3.25 ℃ W-1。13個熱通孔的樣品所造成之最高結溫為41.5℃,與4個熱通孔的最高結溫48.5℃相比降低了14.4%,並可減少39.1%熱量由晶片結接面傳遞至PCB底部的熱傳時間。熱通孔的增加有效增加熱傳效率,減少了元件在高溫損壞的可能。 此外,我們發現PCB層的熱阻受到熱通孔填充物材料的熱傳導係數影響甚劇。使用熱傳導係數較大的焊料時,熱通孔數量以及尺寸的增加都有助於降低PCB基板的熱阻,在9個熱通孔、尺寸0.3 mm的組合下有最低的熱阻值3.63 ℃ W-1。若使用熱傳導係數較小的空氣或防焊漆進行填充時,則分別在9個熱通孔、尺寸0.2 mm及0.15 mm有最小的PCB分層熱阻14.07 ℃ W-1與14.05 ℃ W-1。填充物的熱傳導係數下降,則最佳熱通孔尺寸降低,因為熱通孔的尺寸太大,反而會受到填充物的熱傳導係數影響,熱通孔內填充物所占的面積增加,熱阻不降反升。 PCB基板熱容的變化主要可以填充物的比熱分為兩種情形,當熱通孔使用的填充材料比熱為小於FR4材料的焊料時,若熱通孔數量大於6個,因為熱通孔占整體PCB面積較大,則填充物的比熱主導PCB層之熱容,使得PCB層熱容相較6個熱通孔以下的樣品皆明顯降低。當熱通孔數量少於6個時,PCB分層的熱容反而受到熱阻的影響,填充物為焊料時熱通孔尺寸增加會降低PCB熱阻,在特徵時間改變不大的情況下,PCB整體熱容有較大值。我們也發現填充物為焊料時,PCB分層熱容的增加能夠使PCB基板中溫度的分布較為平均,較不會出現局部熱點。若熱通孔填充材料的比熱大於FR4材料,即填充物為空氣與防焊漆時,不論熱通孔的數量,PCB層的熱容僅受PCB層的熱阻主宰,熱通孔小於尺寸約0.2 mm的大小時,PCB層的熱阻隨尺寸增加而下降,則PCB分層的熱容會隨尺寸增加而上升。 | zh_TW |
| dc.description.abstract | This study uses the structure function to investigate the impacts of filler materials and design of thermal vias of the PCB substrate on the thermal networks of a power amplifier. A test platform is constructed to measure the transient temperature response, from which the structure function is derived.
We find that the thermal conductivity of the filler material significantly affects the thermal resistance of PCB substrates. When thermal vias are filled with high thermal conductivity materials such as solder, increasing its number and size helps to reduce the thermal resistance of the PCB layer. However, when the thermal conductivity of the filler material is lower (air or solder mask), there exists an optimal via size. Thermal vias that are too large can lead to a higher thermal resistance of the PCB layer. On the other hand, the variation of the thermal capacitance of the PCB layer is more complicated. When the specific heat of the filler material is lower than that of FR4, the thermal capacitance of the PCB layer is controlled by its thermal resistance for a number of thermal vias less than 6. Since the characteristic time remains on the same order for the PCB layer, by reduction of the thermal resistance filling with solder, leads to the increase in the thermal capacitance for the PCB layer. Higher thermal capacitance can promote a more uniform temperature distribution within the substrate and reduce local hotspots. However, when the number of thermal vias exceeds 6, the thermal capacitance of the PCB layer is dominated by the specific heat of the filler material; the thermal capacitance decreases accordingly with the increase in the size of the thermal vias. For a filler material with higher specific heat, such as air or solder mask, the thermal capacitance of the PCB layer is solely determined by its thermal resistance. When the thermal vias are larger than about 0.2 mm, the lower thermal conductivities of air or solder mask increase the thermal resistance of the PCB and decrease the thermal capacitance of the PCB layer. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T17:10:08Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-15T17:10:08Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 摘要 iii
Abstract v 目錄 vii 符號索引 x 表目錄 xii 圖目錄 xiii 第一章 導論 1 1.1 前言 1 1.2 文獻回顧 2 1.2.1 結溫量測方法 2 1.2.2 暫態熱阻與結構函數 3 1.2.3 反卷積網絡識別 4 1.2.4 Cauer網絡模型轉換 4 1.2.5 結構函數校正 5 1.2.6 熱通孔對熱阻之影響 6 1.3 研究目的 6 第二章 實驗架構與不確定性分析 7 2.1 實驗架構 7 2.1.1 溫控平台與加壓治具 7 2.1.2 精密電源供應與電壓量測系統 9 2.2 溫度敏感電性參數校正 10 2.2.1 順向電壓與結溫理論 10 2.2.2 校正實驗程序 12 2.2.3 校正線性擬合 12 2.3 結構函數理論 13 2.3.1 反卷積網絡識別 13 2.3.2 貝氏反卷積理論 16 2.3.3 Cauer熱網絡模型 18 2.4 量測與分析程序 21 2.4.1 降溫曲線量測 21 2.4.2 實驗數據分析 20 2.4.3 資料縮減及延伸 22 2.4.4 平滑降溫曲線 22 2.4.5 模擬校正與最佳參數 23 2.5 不確定性分析 24 2.5.1 順向電壓量測之不確定性 25 2.5.2 溫控平台溫度量測之不確定性 26 2.5.3 結溫之不確定性 26 2.5.4 加熱功率之不確定性 28 2.5.5 熱阻之不確定性 28 第三章 實驗結果與討論 30 3.1 實驗功率放大器樣品 30 3.1.1 暫態熱阻變化 30 3.1.2 結構函數 31 3.2 模擬不同填充物之熱通孔 33 3.2.1 填充焊料之熱通孔 33 3.2.2 無填充物之熱通孔 38 3.2.3 填充防焊漆之熱通孔 41 3.3 不同填充物之熱通孔比較 45 3.3.1 熱阻比較 45 3.3.2 熱容比較 47 第四章 結論與建議 49 4.1 結論 49 4.2 建議 50 參考文獻 52 附錄 56 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 結構函數 | zh_TW |
| dc.subject | 暫態熱響應 | zh_TW |
| dc.subject | 熱通孔 | zh_TW |
| dc.subject | 熱阻 | zh_TW |
| dc.subject | 熱容 | zh_TW |
| dc.subject | thermal vias | en |
| dc.subject | transient thermal response | en |
| dc.subject | thermal resistance | en |
| dc.subject | structure function | en |
| dc.subject | thermal capacitance | en |
| dc.title | 應用結構函數於功率放大器元件之PCB分層最佳熱通孔設計 | zh_TW |
| dc.title | Using structure function to optimize the design of thermal vias in PCB for power amplifier | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 黃美嬌;劉慈祥 | zh_TW |
| dc.contributor.oralexamcommittee | Mei-Jiau Huang;Tsyr-Shyang Liou | en |
| dc.subject.keyword | 結構函數,熱通孔,暫態熱響應,熱阻,熱容, | zh_TW |
| dc.subject.keyword | structure function,thermal vias,transient thermal response,thermal resistance,thermal capacitance, | en |
| dc.relation.page | 99 | - |
| dc.identifier.doi | 10.6342/NTU202302704 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-08-08 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf | 6.56 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
