請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88614
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳永芳 | zh_TW |
dc.contributor.advisor | Yang-Fang Chen | en |
dc.contributor.author | 呂道峰 | zh_TW |
dc.contributor.author | Tao-Feng Lu | en |
dc.date.accessioned | 2023-08-15T17:04:08Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-08-15 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-08-03 | - |
dc.identifier.citation | [1] M. Liu, N. Yazdani, M. Yarema, M. Jansen, V. Wood, E. H. Sargent, Nat. Electron. 2021, 4, 548.
[2] C. B. Murray, C. R. Kagan, M. G. Bawendi, Annu. Rev. Mater. Sci. 2000, 30, 545. [3] F. Yuan, T. Yuan, L. Sui, Z. Wang, Z. Xi, Y. Li, X. Li, L. Fan, Z. a. Tan, A. Chen, Nat. Commun. 2018, 9, 2249. [4] J. Song, J. Li, X. Li, L. Xu, Y. Dong, H. Zeng, Adv. Mater. 2015, 27, 7162. [5] Z. Liu, C. H. Lin, B. R. Hyun, C.-W. Sher, Z. Lv, B. Luo, F. Jiang, T. Wu, C. H. Ho, H. C. Kuo, Light Sci. Appl. 2020, 9, 83. [6] H. Zhang, S. Wang, X. Sun, S. Chen, J. Phys. Chem. C 2017, 5, 817. [7] Z. Tan, F. Zhang, T. Zhu, J. Xu, A. Y. Wang, J. D. Dixon, L. Li, Q. Zhang, S. E. Mohney, J. Ruzyllo, Nano Lett. 2007, 7, 3803. [8] Y. R. Park, J. H. Doh, K. Shin, Y. S. Seo, Y. S. Kim, S. Y. Kim, W. K. Choi, Y. J. Hong, Org. Electron. 2015, 19, 131. [9] Y. Yang, Y. Zheng, W. Cao, A. Titov, J. Hyvonen, J. R. Manders, J. Xue, P. H. Holloway, L. Qian, Nat. Photon. 2015, 9, 259. [10] X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, X. Peng, Nature 2014, 515, 96. [11] R. Toufanian, A. Piryatinski, A. H. Mahler, R. Iyer, J. A. Hollingsworth, A. M. Dennis, Front. Chem. 2018, 6, 567. [12] X. Jiang, Z. Fan, L. Luo, L. Wang, Micromachines 2022, 13, 709. [13] B. Chen, D. Li, F. Wang, Small 2020, 16, 2002454. [14] Y. H. Won, O. Cho, T. Kim, D. Y. Chung, T. Kim, H. Chung, H. Jang, J. Lee, D. Kim, E. Jang, Nature 2019, 575, 634. [15] V. Brunetti, H. Chibli, R. Fiammengo, A. Galeone, M. A. Malvindi, G. Vecchio, R. Cingolani, J. L. Nadeau, P. P. Pompa, Nanoscale 2013, 5, 307. [16] L. Li, Y. Chen, G. Xu, D. Liu, Z. Yang, T. Chen, X. Wang, W. Jiang, D. Xue, G. Lin, Int. J. Nanomed. 2020, 1951. [17] D. H. Shin, R. Lampande, S. J. Kim, Y. H. Jung, J. H. Kwon, Adv. Electron. Mater. 2022, 8, 2200256. [18] B. Zhang, Y. Luo, C. Mai, L. Mu, M. Li, J. Wang, W. Xu, J. Peng, Nanomater. 2021, 11, 1246. [19] P. Kathirgamanathan, L. M. Bushby, M. Kumaraverl, S. Ravichandran, S. Surendrakumar, J. Inf. Technol. 2015, 11, 480. [20] A. R. Clapp, I. L. Medintz, H. Mattoussi, ChemPhysChem 2006, 7, 47. [21] B. R. Gautam, R. Younts, J. Carpenter, H. Ade, K. Gundogdu, J. Phys. Chem. A 2018, 122, 3764. [22] M. C. Dos Santos, W. R. Algar, I. L. Medintz, N. Hildebrandt, TrAC, Trends Anal. Chem. 2020, 125, 115819. [23] T. Ha, T. Enderle, D. Ogletree, D. S. Chemla, P. R. Selvin, S. Weiss, Proc. Natl. Acad. Sci. 1996, 93, 6264. [24] K. F. Wong, B. Bagchi, P. J. Rossky, J. Phys. Chem. A 2004, 108, 5752. [25] I. L. Medintz, H. Mattoussi, Phys. Chem. Chem. Phys. 2009, 11, 17. [26] A. Sarkar, S. C. Bhattacharya, J. Lumin. 2012, 132, 2612. [27] H. Chen, H. L. Puhl, S. V. Koushik, S. S. Vogel, S. R. Ikeda, Biophys. J. 2006, 91, L39. [28] R. B. Sekar, A. Periasamy, J. Cell Biol. 2003, 160, 629. [29] T. L. Shen, H. W. Hu, W. J. Lin, Y. M. Liao, T. P. Chen, Y. K. Liao, T. Y. Lin, Y. F. Chen, Sci. Adv. 2020, 6, eaba1705. [30] H. Cao, J. Y. Xu, Y. Ling, A. L. Burin, E. W. Seeling, X. Liu, R. P. Chang, IEEE J. Sel. Top. Quantum Electron. 2003, 9, 111. [31] M. Skruzny, E. Pohl, M. Abella, Biosensors 2019, 9, 122. [32] M. Liu, J. Zhao, S. Zhou, Y. Gao, J. Hu, X. Liu, X. Ding, Nanomater. 2018, 8, 450. [33] J.-I. Shim, D.-S. Shin, Nanophotonics 2018, 7, 1601. [34] A. M. Alshehawy, D.-E. A. Mansour, M. Ghali, M. Lehtonen, M. M. Darwish, Processes 2021, 9, 732. [35] Q. Sun, J. Hou, C. Yang, Y. Li, Y. Yang, Appl. Phys. Lett. 2006, 89, 153501. [36] J. Liang, L. Ying, W. Yang, J. Peng, Y. Cao, J. Phys. Chem. C 2017, 5, 5096. [37] C. Liu, C. Xiao, W. Li, J. Phys. Chem. C 2021, 9, 14093. [38] Y. Sun, J. H. Seo, C. J. Takacs, J. Seifter, A. J. Heeger, Adv. Mater. 2011, 23, 1679. [39] C. L. Takanishi, E. A. Bykova, W. Cheng, J. Zheng, Brain Res. 2006, 1091, 132. [40] L. Ma, F. Yang, J. Zheng, J. Mol. Struct. 2014, 1077, 87. [41] C. Berney, G. Danuser, Biophys. J. 2003, 84, 3992. [42] M. Lard, S. H. Kim, S. Lin, P. Bhattacharya, P. C. Ke, M. H. Lamm, Phys. Chem. Chem. Phys. 2010, 12, 9285. [43] A. Pietraszewska‐Bogiel, T. Gadella, J. Microsc. 2011, 241, 111. [44] S. V. Koushik, S. S. Vogel, J. Biomed. Opt. 2008, 13, 031204. [45] C. T. Shih, Y. C. Chao, J. L. Shen, Y. F. Chen, Opt. Express 2023, 31, 12669. [46] W. Gu, X. Liu, X. Pi, D. Xingliang, S. Zhao, L. Yao, D. Li, Y. Jin, M. Xu, D. Yang, G. Qin, IEEE Photonics J. 2017, PP, 1. [47] W. Jiang, B. Kim, H. Chae, Opt. Lett. 2020, 45, 5800. [48] J. H. Jo, J. H. Kim, K. H. Lee, C. Y. Han, E. P. Jang, Y. R. Do, H. Yang, Opt. Lett. 2016, 41, 3984. [49] H. H. Kim, S. Park, Y. Yi, D. I. Son, C. Park, D. K. Hwang, W. K. Choi, Sci. Rep. 2015, 5, 8968. [50] C. E. Rowland, J. B. Delehanty, C. L. Dwyer, I. L. Medintz, Mater. Today 2017, 20, 131. [51] K. F. Chou, A. M. Dennis, Sens. 2015, 15, 13288. [52] Z. Wu, P. Liu, W. Zhang, K. Wang, X. W. Sun, ACS Energy Lett. 2020, 5, 1095. [53] P. Ramasamy, K. J. Ko, J. W. Kang, J. S. Lee, Chem. Mater. 2018, 30, 3643. [54] H. H. Kim, S. Park, Y. Yi, D. I. Son, C. Park, D. K. Hwang, W. K. Choi, Sci. Rep. 2015, 5, 1. [55] X. Zhu, Y. Liu, H. Liu, X. Li, H. Ni, H. Tao, J. Zou, M. Xu, L. Wang, J. Peng, Org. Electron. 2021, 96, 106256. [56] S. R. Son, K. P. Yang, J. Park, J. H. Lee, K. Lee, Mater. Chem. Phys. 2022, 287, 126322. [57] Y. Li, X. Hou, X. Dai, Z. Yao, L. Lv, Y. Jin, X. Peng, J. Am. Chem. Soc. 2019, 141, 6448. [58] D. Li, B. Kristal, Y. Wang, J. Feng, Z. Lu, G. Yu, Z. Chen, Y. Li, X. Li, X. Xu, ACS Appl. Mater. Interfaces 2019, 11, 34067. [59] Y.-H. Won, O. Cho, T. Kim, D.-Y. Chung, T. Kim, H. Chung, H. Jang, J. Lee, D. Kim, E. Jang, Nature 2019, 575, 634. [60] W. Du, C. Cheng, J. Tian, Nano Res. 2023, 16, 7511. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88614 | - |
dc.description.abstract | 近年來,由於環保、無毒的特性,磷化銦量子點的發展及應用逐漸受到矚目。本論文中,我們探討了534 nm、607 nm磷化銦量子點之間的螢光共振能量轉移特性,使得量子點發光強度和載子生命週期有所提升。此外,我們成功地利用溶劑製程製造出以混合磷化銦量子點為主動發光層的發光二極體,其最大電流效率可達28.9 cd A-1,而外部電子效率可達10.6%,相比於其他相似結構但没有混和量子點發光層的已發表報告,效率大約可提升至兩倍。我們設計的磷化銦量子點發光二極體元件具有簡單易製作的結構,提出的機制和製程方法很也很容易複製並應用在其他材料,使其在光電技術的開發中具有極高的實用性和潛力。 | zh_TW |
dc.description.abstract | In recent years, there has been a growing interest in the development and application of indium phosphide (InP) quantum dots (QDs) due to their eco-friendly and non-toxic characteristics. We investigated the Förster resonance energy transfer (FRET) between 534 nm and 607 nm InP QDs to enhance the emission and carrier lifetime from 607 nm InP QDs. We further fabricated mixed InP quantum dot light-emitting diodes (QD-LEDs) using a solution-processed fabrication method. FRET was employed in the InP light emitting layer by utilizing a mixture of 607 nm and 534 nm QDs to enhance the emission efficiency. The best-performing mixed InP QD-LED device achieved a maximum current efficiency of 28.9 cd A-1 and an external quantum efficiency (EQE) of 10.6%, which is about two times better than those achieved by the pure QD device and other published reports with similar structures without QD mixture. The mechanisms presented here can be further replicated and applied in many other material systems, and the simple and easily-fabricated layer structure of the QD-LED devices makes them highly practical and promising for the development of efficient optoelectronic technology. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T17:04:08Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-08-15T17:04:08Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 致謝 i
中文摘要 ii Abstract iii Contents iv List of Figures vi Chapter 1 1 Introduction 1 Chapter 2 3 Theoretical Background 3 2.1 Photoluminescence (PL) 3 2.2 Time-Resolved Photoluminescence (TRPL) 3 2.3 Electroluminescence (EL) 4 2.4 Förster resonance energy transfer (FRET) 5 2.5 External Quantum Efficiency (EQE) 7 Chapter 3 8 Experimental Details 8 3.1 Equipment 8 3.1.1 SEM 8 3.1.2 PL apparatus 9 3.1.3 EL apparatus 9 3.2 Material preparation 10 3.2.1 Synthesis of ZnO nanoparticle 10 3.3 Device Fabrication 10 3.4 Experiment 11 Chapter 4 13 Results and Discussion 13 4.1 Device struture 13 4.2 Properties of the QDs mixture layer 14 4.3 Performance of the quantum dot light-emitting diode device 21 Chapter 5 31 Conclusion 31 Reference 32 | - |
dc.language.iso | en | - |
dc.title | 透過螢光共振能量轉移實現 高亮度混合磷化銦量子點發光二極體 | zh_TW |
dc.title | Highly Luminescent Emission of Mixed InP Quantum Dot Light-Emitting Diodes through Förster Resonance Energy Transfer | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 許芳琪;沈志霖 | zh_TW |
dc.contributor.oralexamcommittee | Fang-Chi Hsu;Ji-Lin Shen | en |
dc.subject.keyword | 磷化銦,無鎘量子點,量子點發光二極體,螢光共振能量轉移, | zh_TW |
dc.subject.keyword | InP,Cd-free quantum dots,quantum dots LED,FRET, | en |
dc.relation.page | 35 | - |
dc.identifier.doi | 10.6342/NTU202302477 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2023-08-07 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 物理學系 | - |
顯示於系所單位: | 物理學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf | 1.15 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。