請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88411完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林之謙 | zh_TW |
| dc.contributor.advisor | Jacob J. Lin | en |
| dc.contributor.author | 曹裕 | zh_TW |
| dc.contributor.author | Yu Tsao | en |
| dc.date.accessioned | 2023-08-15T16:10:33Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-15 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-07-27 | - |
| dc.identifier.citation | 1. Golparvar-Fard, M., Heydarian, A., & Niebles, J. C. (2013). Vision-based action recognition of earthmoving equipment using spatio-temporal features and support vector machine classifiers. Advanced Engineering Informatics, 27(4), 652-663.
2. Kim, H., Bang, S., Jeong, H., Ham, Y., & Kim, H. (2018). Analyzing context and productivity of tunnel earthmoving processes using imaging and simulation. Automation in Construction, 92, 188-198. 3. Rezazadeh Azar, E., Dickinson, S., & McCabe, B. (2013). Server-customer interaction tracker: computer vision–based system to estimate dirt-loading cycles. Journal of Construction Engineering and Management, 139(7), 785-794. 4. Bügler, M., Borrmann, A., Ogunmakin, G., Vela, P. A., & Teizer, J. (2017). Fusion of photogrammetry and video analysis for productivity assessment of earthwork processes. Computer‐Aided Civil and Infrastructure Engineering, 32(2), 107-123. 5. Han, S., & Lee, S. (2013). A vision-based motion capture and recognition framework for behavior-based safety management. Automation in Construction, 35, 131-141. 6. Ding, L., Fang, W., Luo, H., Love, P. E., Zhong, B., & Ouyang, X. (2018). A deep hybrid learning model to detect unsafe behavior: Integrating convolution neural networks and long short-term memory. Automation in construction, 86, 118-124. 7. Park, M. W., Elsafty, N., & Zhu, Z. (2015). Hardhat-wearing detection for enhancing on-site safety of construction workers. Journal of Construction Engineering and Management, 141(9), 04015024. 8. Fang, Q., Li, H., Luo, X., Ding, L., Luo, H., Rose, T. M., & An, W. (2018). Detecting non-hardhat-use by a deep learning method from far-field surveillance videos. Automation in construction, 85, 1-9. 9. Seo, J., Han, S., Lee, S., & Kim, H. (2015). Computer vision techniques for construction safety and health monitoring. Advanced Engineering Informatics, 29(2), 239-251. 10. Yang, J., Park, M. W., Vela, P. A., & Golparvar-Fard, M. (2015). Construction performance monitoring via still images, time-lapse photos, and video streams: Now, tomorrow, and the future. Advanced Engineering Informatics, 29(2), 211-224.. 11. 林之謙. (2021). 電腦視覺技術於自動化工程進度管控. 土木水利, 48(2), 22-31. 12. Golparvar-Fard, M., Pena-Mora, F., & Savarese, S. (2015). Automated progress monitoring using unordered daily construction photographs and IFC-based building information models. Journal of Computing in Civil Engineering, 29(1), 04014025. 13. Golparvar-Fard, M., Peña-Mora, F., & Savarese, S. (2010, June). D4AR–4 Dimensional augmented reality-tools for automated remote progress tracking and support of decision-enabling tasks in the AEC/FM industry. In Proc., The 6th Int. Conf. on Innovations in AEC Special Session-Transformative machine vision for AEC. 14. Bosché, F., Ahmed, M., Turkan, Y., Haas, C. T., & Haas, R. (2015). The value of integrating Scan-to-BIM and Scan-vs-BIM techniques for construction monitoring using laser scanning and BIM: The case of cylindrical MEP components. Automation in Construction, 49, 201-213. 15. Turkan, Y., Bosché, F., Haas, C. T., & Haas, R. (2013). Toward automated earned value tracking using 3D imaging tools. Journal of construction engineering and management, 139(4), 423-433. 16. Han, K. K., & Golparvar-Fard, M. (2015). Appearance-based material classification for monitoring of operation-level construction progress using 4D BIM and site photologs. Automation in construction, 53, 44-57. 17. Ahn, Y., Choi, H., & Kim, B. S. (2023). Development of early fire detection model for buildings using computer vision-based CCTV. Journal of Building Engineering, 65, 105647. 18. Reja, V. K., Varghese, K., & Ha, Q. P. (2022). Computer vision-based construction progress monitoring. Automation in Construction, 138, 104245. 19. Shi, J. J., & Halpin, D. W. (2003). Enterprise resource planning for construction business management. Journal of construction engineering and management, 129(2), 214-221. 20. Skibniewski, M. J., & Ghosh, S. (2009). Determination of key performance indicators with enterprise resource planning systems in engineering construction firms. Journal of construction engineering and management, 135(10), 965-978. 21. Caldas, C. H., Menches, C. L., Reyes, P. M., Navarro, L., & Vargas, D. M. (2015). Materials management practices in the construction industry. Practice Periodical on Structural Design and Construction, 20(3), 04014039. 22. LINa, Y. C., & TSERNG, H. P. The Development of e-Hub Supply Chain Management Portal System for Construction Projects. ISARC2003 The Future Site, 531. 23. Dalal, N., & Triggs, B. (2005, June). Histograms of oriented gradients for human detection. In 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR'05) (Vol. 1, pp. 886-893). Ieee. 24. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, 25. 25. Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 779-788). 26. Redmon, J., & Farhadi, A. (2018). Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767. 27. Redmon, J., & Farhadi, A. (2017). YOLO9000: better, faster, stronger. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 7263-7271). 28. Liu, X. P., Li, G., Liu, L., & Wang, Z. (2019). Improved YOLOV3 target recognition algorithm based on adaptive eged optimization. Microelectron. Comput, 36, 59-64. 29. Jocher, G., Nishimura, K., Mineeva, T., & Vilariño, R. (2020). yolov5. Code repository. Code repository. 30. Shannon Bond (2019). in San Francisco,"Amazon introduces computer vision into warehouses" FINANCIAL TIMES, JULY 2 2019. https://www.ft.com/content/ce0a7828-97bd-11e9-8cfb-30c211dcd229 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88411 | - |
| dc.description.abstract | 本論文旨在探討應用電腦視覺技術於袋裝水泥倉儲管理系統自動化的可行性。本研究主要採用點雲(Point Cloud)技術建立3D模型,並選擇適當的監視器架設位置,藉此監控並識別水泥品名,進行數量計算與進出貨追蹤,並將攝影機訊息自動傳送到資料庫中,以實現自動化管理。此外,本研究採用物體偵測(Object detection)技術、OCR光學字元辨識 (Optical Character Recongnition)技術、人工智慧(Artificial intelligence)等,透過標註現有的資料來進行訓練和學習,然後建立深度學習模型來進行預測,並由機器學習辨識監視器中水泥資訊,包含:進出貨、品牌、數量等資料來進行貨物管理,最後結合庫存管理系統,將貨物資訊自動寫入資料庫中,提供銷貨管理系統使用。經由實驗結果顯示,本研究所提出的方法能夠有效地辨識各種廠牌的水泥之高準確率,及高度誤差,並且能夠在不同的營造業和水泥經銷商等領域廣泛應用。本研究所提出的自動化管理方法,將為營建倉儲管理系統的現代化升級提供有力的支持。 | zh_TW |
| dc.description.abstract | The purpose of this paper is to explore the feasibility of applying computer vision technology to automate the management system of bagged cement storage. This study primarily utilizes point cloud technology to build a 3D model and selects appropriate positions for installing monitors to monitor and identify cement types, perform quantity calculations, and track incoming and outgoing shipments. The camera information is automatically transmitted to a database to achieve automated management. In addition, this research employs object detection technology, Optical Character Recognition (OCR), artificial intelligence, and other techniques. By annotating existing data, training and learning are conducted to establish deep learning models for prediction. Machine learning is used to recognize cement information captured by the monitors, including shipment records, brands, quantities, etc., for effective inventory management. Finally, by integrating with an inventory management system, the cement information is automatically written into the database, providing support for sales management systems. Experimental results demonstrate that the proposed method can accurately identify various cement brands with high precision and minimal error. It can be widely applied in different construction industries and cement distributors. The automation management approach proposed in this study provides strong support for the modernization of construction storage management systems. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-15T16:10:33Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-15T16:10:33Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iii 目錄 iv 圖目錄 v 表目錄 vii 第一章 緒論 1 1-1 研究背景與動機 1 1-2 研究目的與重要性 2 1-3 研究方法與流程 4 1-4 論文架構 5 第二章 文獻探討 7 2-1 監控工地進度 7 2-2 保障工人安全 8 2-3 監視材料的使用 9 第三章 系統架構與設計 12 3-1 資料收集 13 3-2 資料前處理 15 3-3 影像辨識模型設計 16 3-4 袋裝水泥辨識 18 第四章 系統實作與評估 26 4-1 倉庫點雲建立 26 4-2 建立影像辨識模型 36 4-3 進貨出貨判斷 41 4-4 水泥高度計算 44 4-5 訓練模型數據 48 4-6 系統優點與限制 56 第五章 結論與建議 58 5-1 研究結果總結 58 5-2 未來研究方向建議 59 第六章 參考文獻 61 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 袋裝水泥 | zh_TW |
| dc.subject | 電腦視覺 | zh_TW |
| dc.subject | 倉儲管理 | zh_TW |
| dc.subject | 深度學習 | zh_TW |
| dc.subject | 點雲 | zh_TW |
| dc.subject | storage management | en |
| dc.subject | computer vision | en |
| dc.subject | point cloud | en |
| dc.subject | bagged cement | en |
| dc.subject | deep learning | en |
| dc.title | 應用電腦視覺技術於袋裝水泥倉儲管理系統自動化 | zh_TW |
| dc.title | Automated vision-based warehouse management system for cement bag | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 曾惠斌;陳柏翰;紀乃文 | zh_TW |
| dc.contributor.oralexamcommittee | H-Ping Tserng;Pohan Chen;N-W Chi | en |
| dc.subject.keyword | 點雲,電腦視覺,深度學習,袋裝水泥,倉儲管理, | zh_TW |
| dc.subject.keyword | point cloud,computer vision,deep learning,bagged cement,storage management, | en |
| dc.relation.page | 65 | - |
| dc.identifier.doi | 10.6342/NTU202302117 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-07-31 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf | 6.05 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
