Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資料科學學位學程
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88399
Title: 透過高效且可微的陰影估計提升光度立體
Improved Photometric Stereo through Efficient and Differentiable Shadow Estimation
Authors: 葉柏宏
Po-Hung Yeh
Advisor: 吳沛遠
Pei-Yuan Wu
Co-Advisor: 陳駿丞
Jun-Cheng Chen
Keyword: 動態規劃,平行前綴掃描,NeRF,光度學立體,深度學習,
Dynamic Programming,Parallel Prefix Scan,NeRF,Photometric Stereo,Deep Learning,
Publication Year : 2023
Degree: 碩士
Abstract: 儘管在各種應用中具有價值,但由於沒有考慮在不同的物體幾何形狀和變化的照明條件下進行精確的陰影估計,傳統的光度立體方法面臨了限制。為了解決這個問題,我們提出了一種基於並行前綴採樣方法的快速而精確的陰影估計演算法,並且使用一個可微分的溫度函數。我們提出的方法可以輕易地用於改進現有的光度立體方法,以更好地估計陰影的結果。
此外,我們進一步通過我們提出的更高階導數損失配置來提高性能。
為了評估我們方法的有效性,我們進行了全面的實驗並將我們的結果與多種無監督和監督方法進行比較。結果表明,我們的方法在平均角誤差(MAE)方面始終優於其他最先進的無監督方法,同時與監督技術保持競爭力。
Although valuable in various applications, traditional photometric stereo approaches have faced limitations due to not considering accurate shadow estimation under different object geometry and varying lighting conditions. We propose a fast and precise shadow estimation algorithm based on a parallel prefix-based sampling method with a differentiable temperature function to address this issue. The proposed method can be easily used to improve existing photometric stereo methods for better estimation of shadow estimation results. In addition, we further improve the performance with our proposed higher-order derivation loss configuration. To assess the effectiveness of our method, we conduct comprehensive experiments and compare our results with diverse unsupervised and supervised approaches. The results demonstrate that our method consistently outperforms other state-of-the-art unsupervised methods regarding mean angular error (MAE) while remaining competitive with supervised techniques.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88399
DOI: 10.6342/NTU202301876
Fulltext Rights: 同意授權(限校園內公開)
Appears in Collections:資料科學學位學程

Files in This Item:
File SizeFormat 
ntu-111-2.pdf
Access limited in NTU ip range
2.56 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved