請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88380
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 劉霆 | zh_TW |
dc.contributor.advisor | Tyng Liu | en |
dc.contributor.author | 林柏毅 | zh_TW |
dc.contributor.author | Bo-Yi Lin | en |
dc.date.accessioned | 2023-08-09T16:48:21Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-08-09 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-07-27 | - |
dc.identifier.citation | [1] 國防部軍備局採購中心, 動力底盤系統乙項(GI00232L249)案招標文件. 2012.
[2] D. Bastow, G. Howard, and J. P. Whitehead, Car suspension and handling. SAE international Warrendale, 2004. [3] J. Y. Wong, Theory of ground vehicles. John Wiley & Sons, 2022. [4] R. N. Jazar, Vehicle dynamics. Springer, 2008. [5] S. P. Chavan, S. H. Sawant, and D. A. Tamboli, "Experimental Verification of Passive Quarter Car Vehicle Dynamic System Subjected to Harmonic Road Excitation with Nonlinear Parameters," 2013. [6] S. Prabhakar and K. Arunachalam, "Simulation and analysis of passive suspension system for different road profiles with variable damping and stiffness parameters," Journal of Chemical and Pharmaceutical Sciences, Special, vol. 3, no. 7, 2015. [7] T. Gillespie, Fundamentals of vehicle dynamics. SAE international, 2021. [8] K. Song, X. Chen, and Y. Lin, "Wheelbase Filtering Effect on Vehicle Ride Dynamics," Berlin, Heidelberg, 2013: Springer Berlin Heidelberg, in Proceedings of the FISITA 2012 World Automotive Congress, pp. 1183-1195. [9] D. Cao, A. Khajepour, and X. Song, "Wheelbase filtering and characterization of road profiles for vehicle dynamics," in International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2010, vol. 44120, pp. 275-285. [10] W. Fu, F. Ling, M. Peng, and Y. Zhang, "Comparison of Wheelbase Filtering Effect and Suspension Tuning Between Twoaxle and Tri-axle Vehicle with Tandem Suspension," in 2012 International Conference on Computer Application and System Modeling, 2012: Atlantis Press, pp. 1124-1127. [11] W. F. Faris, Z. BenLahcene, and S. I. Ihsan, "Analysis of semi-active suspension systems for four-axles off-road vehicle using half model," International Journal of Vehicle Noise and Vibration, vol. 5, no. 1-2, pp. 91-115, 2009. [12] S. Vijayakumar and R. S. Chandran, "Analysis of a 4-Dof Vehicle Model Using Bond Graph and Lagrangian Technique," SAE Transactions, pp. 1225-1235, 2002. [13] M. S. Rahman and K. M. G. Kibria, "Investigation of vibration and ride characteristics of a five degrees of freedom vehicle suspension system," Procedia Engineering, vol. 90, pp. 96-102, 2014. [14] A. Soliman, S. Moustafa, and A. Shogae, "Parameters affecting vehicle ride comfort using half vehicle model," SAE Technical Paper, 0148-7191, 2008. [15] 朱庭輝, "俯仰模型於車輛乘適性能之分析與驗證," 碩士論文, 國立臺灣大學機械工程學研究所, 2007. [16] W. K. Ata, Intelligent control of tracked vehicle suspension. The University of Manchester (United Kingdom), 2014. [17] S. M. El-Demerdash and E. Rabeih, "Ride performance analysis of multi-axle combat vehicles," SAE Technical Paper, 0148-7191, 2004. [18] M. Mohsen, H. Eltaher, A. Sharaf, and S. El-Demerdash, "Investigation of the ride response of a multi-wheeled combat vehicle in pitch-bounce plane," in International Conference on Aerospace Sciences and Aviation Technology, 2015, vol. 16, no. AEROSPACE SCIENCES & AVIATION TECHNOLOGY, ASAT-16–May 26-28, 2015: The Military Technical College, pp. 1-13. [19] 傅仰銘, "多軸車輛之適乘性分析," 碩士論文, 國立臺灣大學機械工程學研究所, 2022. [20] 廖家慶, "車輛乘適性能分析與驗證," 碩士論文, 國立臺灣大學機械工程學研究所, 2004. [21] 楊智麟, "簧下質量對車輛懸吊動態性能影響之分析," 碩士論文, 國立台灣大學機械工程學研究所, 2006. [22] J. Rauh, "Virtual development of ride and handling characteristics for advanced passenger cars," Vehicle System Dynamics, vol. 40, no. 1-3, pp. 135-155, 2003. [23] A. Jolly, "Study of ride comfort using a nonlinear mathematical model of a vehicle suspension," International Journal of Vehicle Design, vol. 4, no. 3, pp. 233-244, 1983. [24] D. Hrovat, "Influence of unsprung weight on vehicle ride quality," Journal of Sound and Vibration, vol. 124, no. 3, pp. 497-516, 1988. [25] G. Verros, S. Natsiavas, and C. Papadimitriou, "Design optimization of quarter-car models with passive and semi-active suspensions under random road excitation," Journal of vibration and control, vol. 11, no. 5, pp. 581-606, 2005. [26] 黃建勳, "運用ADAMS於汽車懸吊系統之操控性分析," 碩士論文, 國立臺北科技大學車輛工程系所, 2003. [27] T. Tseng and D. Hrovat, "Some characteristics of optimal vehicle suspensions based on quarter-car models," in 29th IEEE Conference on Decision and Control, 1990: IEEE, pp. 2232-2237. [28] G. Nagaya, Y. Wakao, and A. Abe, "Development of an in-wheel drive with advanced dynamic-damper mechanism," JSAE review, vol. 24, no. 4, pp. 477-481, 2003. [29] M.-M. Dong and M. Yang, "Axial Stiffness and Damping Otimal Matching of Multi-axle O ff-road Vehicles," Vehicle & Power Technology, vol. 4, 2014. [30] A. Geweda, M. El-Gohary, A. El-Nabawy, and T. Awad, "Improvement of vehicle ride comfort using genetic algorithm optimization and PI controller," Alexandria Engineering Journal, vol. 56, no. 4, pp. 405-414, 2017. [31] S. Chen, T. Shi, D. Wang, and J. Chen, "Multi-objective optimization of the vehicle ride comfort based on Kriging approximate model and NSGA-II," Journal of Mechanical Science and Technology, vol. 29, pp. 1007-1018, 2015. [32] M. A. S. Ihsan, W. F. Faris, and E. Blancard, "Ride performance analysis of half-car model for semi-active system using RMS as performance criteria," Shock and Vibration, vol. 16, no. 6, pp. 593-605, 2009. [33] B. ISO, "8855: 2011. Road vehicles—Vehicle dynamics and road-holding ability—Vocabulary," Tech rep., ISO, 2011. [34] T. Lundberg, "Analysis of simplified dynamic truck models for parameter evaluation," ed, 2013. [35] M. Palermo, M. Guiggiani, and N. Vaughan, "Effects of a large unsprung mass on the ride comfort of a lightweight fuel-cell urban vehicle," 2009. [36] I. M. Vibration, "Road Surface Profiles–Reporting of Measured Data; ISO 8608," International Standards Organisation, Geneve, 2016. [37] M. Agostinacchio, D. Ciampa, and S. Olita, "The vibrations induced by surface irregularities in road pavements–a Matlab® approach," European Transport Research Review, vol. 6, no. 3, pp. 267-275, 2014. [38] I. ISO, "2631-1: Mechanical vibration and shock-evaluation of human exposure to whole-body vibration-Part 1: General requirements," Geneva, Switzerland: ISO, vol. 42, pp. 43-44, 1997. [39] D. Cao, "Theoretical analyses of roll-and pitch-coupled hydro-pneumatic strut suspensions," Concordia University, 2008. [40] Y. Qiu and M. Griffin, "Transmission of roll, pitch and yaw vibration to the backrest of a seat supported on a non-rigid car floor," Journal of sound and vibration, vol. 288, no. 4-5, pp. 1197-1222, 2005. [41] X. Zhao, S. Wang, M. Yu, Q. Yu, and C. Zhou, "The position of speed bump in front of truck scale based on vehicle vibration performance," Journal of Intelligent & Fuzzy Systems, vol. 34, no. 2, pp. 1083-1095, 2018. [42] 陳思財, "二自由度獨立懸吊系統機構探討," 碩士論文, 逢甲大學材料與製造工程所, 2007. [43] J. L. Meriam, L. G. Kraige, and J. N. Bolton, Engineering mechanics: dynamics. John Wiley & Sons, 2020. [44] D. E. Newland, An introduction to random vibrations, spectral & wavelet analysis. Courier Corporation, 2012. [45] A. Pal, S. Sharma, A. Jain, and C. Naiju, "Optimized Suspension Design of an Off-Road Vehicle," The International Journal Of Engineering And Science (IJES) Volume, vol. 2, pp. 57-62, 2013. [46] V. Gorelov and A. Komissarov, "Mathematical model of the straight-line rolling tire–rigid terrain irregularities interaction," Procedia Engineering, vol. 150, pp. 1322-1328, 2016. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88380 | - |
dc.description.abstract | 本研究針對多軸車輛之懸吊動態性能進行分析,主要探討各車輛參數對車輛動態之影響。並以MATLAB建立一般化之多軸車輛的數值模型,用以模擬不同軸數之車輛動態,並觀察其時間響應及頻域響應。首先,利用四分之一車模型分析車輛懸吊系統基本性質。接著,分析不同車輛軸數對懸吊動態性能之影響。本研究發現當車輛軸數增加,則軸距濾波效應會較為顯著,使其懸吊動態性能有所提升。然後,分析不同車輛參數對多軸車輛懸吊動態性能之影響,提出懸吊彈簧及阻尼係數配置與重心位置改變對車輛動態之影響的一般化結論。最後,提出最佳化懸吊動態性能之方法,提供多軸車輛底盤之設計依據,並以此驗證所提出之結論。經由本研究之分析探討,可以了解多軸車輛懸吊動態性能之一般化性質。 | zh_TW |
dc.description.abstract | The purpose of this study is to analyze the suspension dynamic performance of multi-axle vehicles, and to investigate the effects of each vehicle parameter on the vehicle dynamics. A generalized numerical model of multi-axle vehicles is developed using MATLAB to simulate the vehicle dynamics of multi-axle vehicles and to observe the time and frequency response. First, the basic properties of the vehicle suspension system are analyzed. Then, the effect of axle numbers on suspension dynamic performance is analyzed. It is found that when the number of axles increases, the wheelbase filtering effect is more significant and the suspension dynamic performance is improved. Moreover, the effects of vehicle parameters on the suspension dynamic performance of multi-axle vehicles are analyzed and a generalized conclusion on the effects of suspension parameter configurations and center of gravity position on vehicle dynamics is also proposed. Finally, a method to optimize the suspension dynamic performance is proposed to provide a basis for the design of the chassis of the multi-axle vehicle and to verify the conclusions presented. According to the analysis of this study, the generalized properties of multi-axle vehicle suspension dynamic performance is understood. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-09T16:48:21Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-08-09T16:48:21Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 謝辭 i
摘要 ii Abstract iii 目錄 iv 圖目錄 vii 表目錄 xiv 符號表 xvii 1 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.3 研究動機與目的 4 1.4 論文架構 4 2 第二章 理論基礎 5 2.1 車輛座標系統 5 2.2 車輛動力學模型 6 2.2.1 四分之一車模型 6 2.2.2 兩軸半車模型 11 2.2.3 多軸半車模型 15 2.3 軸距濾波 19 2.4 懸吊動態性能定義 21 2.4.1 粗糙路面 21 2.4.2 懸吊動態性能 22 3 第三章 數值分析方法 26 3.1 數值分析參數設定 26 3.1.1 路面輸入參數 26 3.1.2 車輛參數 28 3.2 數值分析方法 32 3.2.1 時間響應 33 3.2.2 頻率響應 38 3.3 最佳化方法 39 4 第四章 數值分析結果與討論 41 4.1 車輛懸吊系統基本性質 41 4.1.1 懸吊彈簧係數之分析 41 4.1.2 懸吊阻尼係數之分析 46 4.1.3 小結 50 4.2 車輛軸數對懸吊動態性能之影響 51 4.2.1 不同軸數之車輛模型的自然頻率 51 4.2.2 不同軸數之車輛模型通過減速丘路面的時間響應 52 4.2.3 不同軸數之車輛模型通過粗糙路面的時間響應 55 4.2.4 不同軸數之車輛模型的頻域響應 58 4.2.5 小結 62 4.3 懸吊彈簧係數對懸吊動態性能之影響 63 4.3.1 不同懸吊彈簧係數配置之車輛模型通過減速丘路面的時間響應 63 4.3.2 不同懸吊彈簧係數配置之車輛模型通過粗糙路面的時間響應 78 4.3.3 不同懸吊彈簧係數配置之車輛模型的頻域響應 91 4.3.4 小結 104 4.4 懸吊阻尼係數對懸吊動態性能之影響 105 4.4.1 不同懸吊阻尼係數配置之車輛模型通過減速丘路面的時間響應 105 4.4.2 不同懸吊阻尼係數配置之車輛模型通過粗糙路面的時間響應 120 4.4.3 不同懸吊阻尼係數配置之車輛模型的頻域響應 133 4.4.4 小結 146 4.5 車輛重心位置對懸吊動態性能之影響 147 4.5.1 不同重心位置之車輛模型通過減速丘路面的時間響應 148 4.5.2 不同重心位置之車輛模型通過粗糙路面的時間響應 156 4.5.3 不同重心位置之車輛模型的頻域響應 162 4.5.4 小結 165 4.6 車輛懸吊動態性能最佳化 166 4.6.1 三軸車輛懸吊動態性能最佳化 166 4.6.2 四軸車輛懸吊動態性能最佳化 173 4.6.3 小結 176 5 第五章 結論 177 5.1 結論 177 5.2 未來展望 181 6 參考文獻 182 | - |
dc.language.iso | zh_TW | - |
dc.title | 多軸車輛懸吊動態性能分析 | zh_TW |
dc.title | Suspension Dynamic Performance Analysis of Multi-axle Vehicles | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 尤正吉;蘇偉儁 | zh_TW |
dc.contributor.oralexamcommittee | Cheng-Chi Yu ;Wei-Jiun Su | en |
dc.subject.keyword | 多軸車輛,懸吊動態性能,車輛模型,車輛動態,MATLAB, | zh_TW |
dc.subject.keyword | Multi-axle vehicle,Suspension dynamic performance,Vehicle model,Vehicle dynamics,MATLAB, | en |
dc.relation.page | 186 | - |
dc.identifier.doi | 10.6342/NTU202302206 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2023-07-28 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 機械工程學系 | - |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf | 11.7 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。