請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8834完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 江介宏(Jie-Hong Jiang) | |
| dc.contributor.author | I-Hsin Chen | en |
| dc.contributor.author | 陳一心 | zh_TW |
| dc.date.accessioned | 2021-05-20T20:02:14Z | - |
| dc.date.available | 2009-08-20 | |
| dc.date.available | 2021-05-20T20:02:14Z | - |
| dc.date.copyright | 2009-08-20 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-08-20 | |
| dc.identifier.citation | [1] Hamid Savoj and Robert K. Brayton, “The use of observability and external don’t cares for the simplification of multi-level networks,” in Proceedings of IEEE/ACM Design Automation Conference, pp. 297-301, 1990.
[2] Hamid Savoj, Robert K. Brayton and Hervé J. Touati, “Extracting local don’t cares for network optimization, ” in Proceedings of IEEE/ACM International Conference on Computer-Aided Design, pp. 514-517, 1991. [3] Ranjit Jhala and Ken L. McMillan, “Interpolant-based transition relation approximation,” in Proceedings of IEEE/ACM International Conference on Computer Aided Verification, pp. 39-51, 2005. [4] William Craig, “Linear reasoning. A new form of the herbrand-gentzen theorem,” The Journal of Symbolic Logic, 22(3), pp250-268, 1957. [5] Ken L. McMillan, “Interpolation and sat-based model checking,” in Proceedings of IEEE/ACM International Conference on Computer Aided Verification, pp. 1-13, 2003. [6] Alan Mishchenko and Robert K. Brayton, “Simplification of Non-Deterministic Multi-Valued Networks”, in Proceedings of IEEE/ACM International Conference on Computer-Aided Design, pp557-562, 2002. [7] Alan Mishchenko and Robert K. Brayton, “A theory of non-deterministic networks”, in Proceedings of IEEE/ACM International Conference on Computer-Aided Design, pp709-716, 2003. [8] Alan Mishchenko and Robert K. Brayton, “SAT-Based Complete Don’t-Care Computation for Network Optimization”, in Proceedings of Design, Automation and Test in Europe Conference, pp412-417, 2005. [9] Ken L. McMillan, “Don’t-care computation using k-clause approximation”, in Proceedings of Internal Workshop on Logic Synthesis, 2005. [10] G. S. Tseitin, “On the complexity of derivation in propositional calculus,” Studies in Constructive Mathematics and Mathematical Logic, pp.466-483, 1970. [11] Niklas Eẻn and Niklas Sörensson, “An extensible SAT-solver”, in Proceedings of International conference on Theory and Applications of Satisfiability Testing, pp. 502-518, 2003. [12] Niklas Eẻn and Armin Biere, “Effective Preprocessing in SAT through variable and clause elimination”, in Proceedings of International conference on Theory and Applications of Satisfiability Testing, volume 3569 of LNCS, 2005. [13] Berkeley Logic Synthesis and Verification Group, “ABC: A system for sequential synthesis and verification”, http://www.eecs.berkeley.edu/~alanmi/abc/ [14] Pavel Pudlăk, “Lower bounds for resolution and cutting plane proofs and monotone computations”, Journal of Symbolic Logic, Volume 62, Number 3, September, 1997. [15] Jan Krajiček, “Interpolation theorems, lower bounds for proof systems, and independence results for bounded arithmetic,” The Journal of Symbolic Logic, 62(2), pp457-486, 1997. [16] Ken L. McMillan, “An interpolating prover,” Theoretical Computer Science, Volume 345, Issue 1, pp 101-121, November 2005. [17] Paul Beanie, Henry Kautz and Ashish Sabharwal, “Understanding the Power of Clause Learning”, in Proceedings of the International Joint Conference on Artificial Intelligence, pp. 1194-1201, 2003. [18] M. Morris Mano, Digital Design third edition, Prentice Hall, pp 17-21, 2002 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8834 | - |
| dc.description.abstract | 近年來在邏輯合成與驗證的領域中,內插法的應用與日俱增,相關範疇包括函數相依、二元分解、亞氏分解等。本研究係利用內插法針對多層次電路之節點計算邏輯無關項。
傳統上,內插可藉由可滿足性問題求解器產生之反證求得,並可利用改寫反證之結構對內插大小進行調整。但我們在研究過程發現,大部分狀況中,調整可滿足性問題求解器產生反證後所求得之內插並無太大的改變,內插法的效能因而受限。 本論文中,我們提出利用可滿足性問題求解之演算法來計算邏輯無關項,並發展出一套針對可滿足性問題求解器改變內插大小的技巧,包括調整初始變數優先序及改變布林初始值,同時利用電路結構簡化問題模型以加快求解速度。實驗結果顯示,該改變內插大小的方法讓求解邏輯無關項之演算法在可接受的時間內,較未使用該方法時求出更多的邏輯無關項。 | zh_TW |
| dc.description.abstract | In recent years, there have been a variety of applications of interpolation in logic synthesis and verification, such as functional dependency, bi-decomposition, and Ashenhurst decomposition. The goal of this research is to compute don’t-cares for a given node in a multi-level network by using interpolation.
Traditionally, an interpolant can be derived from a refutation proof given by a SAT solver, and its onset can be adjusted via rewriting the structure of the refutation proof. However, in most cases, the interpolant derived by the refutation proof generated by a SAT solver can not be adjusted too much. As a result, the application of interpolation is limited. In this thesis, we propose SAT-based don’t-care computation algorithms via interpolation. In addition, a set of techniques has been developed for a SAT solver to adjust the solution space of the interpolant. The methods include setting the initial variable activities and altering the Boolean initial values. The circuit structure has also been utilized to simplify the problem to accelerate SAT solving. Experiments show that the algorithms can get more don’t-cares while applying the interpolation sizing method to the algorithms. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-20T20:02:14Z (GMT). No. of bitstreams: 1 ntu-98-R95943159-1.pdf: 2664599 bytes, checksum: 0b2ecec00eb47d0106daa02900db4d51 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | Acknowledgements i
摘要 ii Abstract iii Contents iv List of Figures vi List of Tables viii Chapter 1 Introduction 1 1.1 The Origin of Don’t-Cares 1 1.2 Previous Work 3 1.3 Our Contributions 5 1.4 Organization of the Thesis 6 Chapter 2 Preliminaries 7 2.1 Boolean Network and Function 7 2.2 Satisfiability Problem and Solver 8 2.3 Resolution and Refutation Proof 9 2.4 Craig Interpolation Theorem 10 2.4.1 Interpolant Strengthen 12 2.5 Circuit to CNF Conversion 14 Chapter 3 Don’t-Care Computation Algorithms 15 3.1 CDC Computation Method 1 (CDCC1) 16 3.2 CDC Computation Method 2 (CDCC2) 18 3.3 CNF Simplification 20 3.4 Adjustable Interpolation 21 3.4.1 Swap Rules 21 3.4.2 Initial Variable Activities 26 3.4.3 Boolean Initial Values 28 3.5 Verification 28 3.5.1 Combinational Equivalence Checking 28 3.5.2 Absorbing Checking 29 Chapter 4 Experimental Results 30 4.1 Variable Decision Order 30 4.2 Adjustable Interpolation on CDCC1 33 4.3 Adjustable Interpolation on CDCC2 40 Chapter 5 Conclusions and Future Work 46 Bibliography 47 | |
| dc.language.iso | zh-TW | |
| dc.title | 利用可調整內插法計算邏輯無關項 | zh_TW |
| dc.title | Don't-Care Computation via Adjustable Interpolation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王凡(Farn Wang),李建模(Chien-Mo Li),王俊堯(Chun-Yao Wang) | |
| dc.subject.keyword | 內插法,邏輯網路,邏輯無關項,可滿足性問題求解,可調整內插, | zh_TW |
| dc.subject.keyword | Craig interpolation,logic network,SAT solving,adjustable interpolant, | en |
| dc.relation.page | 49 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2009-08-20 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf | 2.6 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
