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Abstract

In recent years, there have been a variety of applications of interpolation in logic
synthesis and verification, such as functional dependency, bi-decomposition, and
Ashenhurst decomposition. The goal of this research is to compute don’t-cares for a
given node in a multi-level network by using interpolation.

Traditionally, an interpolant can be derived‘ from a refutation proof given by a SAT
solver, and its onset can be adjusted via rewriﬁﬁg the-structure of the refutation proof.
However, in most cases, thezinterpolant derived by the refutation proof generated by a

SAT solver can not be adjusted too much=As a-result, the application of interpolation is

i

=y

limited. ‘& | E»n; ¥

In this thesis, we propose S;AT—baée-‘,;l ddn?t—care computation algorithms via
interpolation. In addition, a set.of‘techniques has béen developed for a SAT solver to
adjust the solution space of the interpolant. The methods include setting the initial
variable activities and altering the Boolean initial values. The circuit structure has also
been utilized to simplify the problem to accelerate SAT solving. Experiments show that

the algorithms can get more don’t-cares while applying the interpolation sizing method

to the algorithms.

Keywords: Craig interpolation, logic network, don’t-care, SAT solving, adjustable

interpolant
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Chapter 1

Introduction

As the focus of logic synthesis and verification shifted to multi-level networks,
computing don’t-cares of a given node in a Boolean network becomes more and more
important. Such don’t-care information can be used to provide additional flexibility to
simplify a Boolean expression. In- ‘addition, using. don’t-cares for technology
independent logic synthesis of multi-level networks has been a major technique in the
area of logic optimization. As'a result, ;fﬁcient methodsto compute don’t-cares are

1 —

necessary for these logic nianipulations. Iitfﬁis chapter, we first give the introduction to
M
don’t-cares and exam previous work related to dom’t-care computation. We then

|
1

summarize our contributions; and finally,.outline.this.thesis:

1.1  The Origin of Don’t-Cares

Don’t-cares allow a node in a logic network to have a flexible output value either 0
or 1 under an input assignment. Moreover, such don’t-care conditions are the
combinations of external don’t-cares (XDCs), observability don’t-cares (ODCs) and
satisfiability don’t-cares (SDCs). External don’t-cares are given by assigning the
minterms at the primary input. For instances, the values 1010 through 1111 in binary, or
10 through 15 in decimal, never happen on a binary coded decimal (BCD) [18] function.

Therefore, those values are the external don’t-cares for a function in the binary coded



decimal system.

Unlike external don’t-cares, observability and satisfiability don’t-cares exist due to
the multi-level network structures. In other words, the input assignments of an internal
node depend on the primary inputs, but not all the combination of assignments can be
generated at the internal node. Accordingly, those assignments which never appear at
the node form the satisfiability don’t-cares. On the other hand, observability don’t-cares
arise under the conditions that the output value of a node does not affect the primary
outputs. Hence, they compose the observability don’t-cares. Below we give an example

of the satisfiability and observability don’t-cares.

A Y

Figure 1.1: An example of SDCs and ODCs.

In Figure 1.1, the node A has a satisfiability don’t-cares with (m;, my) equal to (1, 0).
For the node A, if we want m; to be one, this requires X, to be one. For m; to be zero, in
the other side, this requires X, to be zero. X, could not be different values
simultaneously. As a consequence, the combination (1, 0) never appears at (m;, m;) and
this becomes the satisfiability don’t-care. In addition, the node C has observability
don’t-cares in the global space with X; or X, equals to zero. While X, or X, equals to
zero, it leads m; to be zero. Zero is the controlling values of AND-gate, so Y, is also

zero whatever the value m; is. As a result, (0, 0) and (0, 1) form the observability



don’t-cares of node C in the global space (X3, X3).

Satisfiability and observability don’t-cares are together called complete don’t-cares
(CDCs) [8]. Complete don’t-cares form a superset of the compatible observability
don’t-cares (CODCs) [7]. Compatible observability don’t-cares and satisfiability
don’t-cares conventionally are the forms used in logic optimization [1]. Furthermore,
the amount of don’t-cares computed for complete don’t-cares is larger than for
compatible observability don’t-cares. Moreover, substituting a node’s function by a
completely specified function compatible with its complete don’t-cares does not change
the network’s output. Therefore, complete don’t-cares are important for logic

optimization.

1.2  Previous Work

| —
—
-

There are some previous effqrt;s V\'/ig#ch present! circuit optimization using the
don’t-cares. The strategies of .these LmLthodg include the-image computation via binary
decision diagrams (BDDs), quantiﬁér elimination‘ through SAT-based algorithm, and
image approximation utilizing clause limited to fixed length. We summarize them as
follow.

First, observability don’t-cares are often too large to be efficiently computed in the
optimization process. Therefore, Savoj and Brayton [1] used compatible observability
don’t-cares (CODCs) instead of observability don’t-cars to avoid the computation on
redundant observability don’t-cares.

Second, Savoj and Brayton [2] computed don’t-care information using an image
computation approach based on binary decision diagrams. This method computes

compatible observability don’t-care sets, which allow simultaneous modification on



multiple nodes. However, it sacrifices the optimization flexibility.

Furthermore, Mishchenko and Brayton [8] proposed the concepts of complete
don’t-cares (CDCs), a superset of compatible observability don’t-cares. They showed
that the complete don’t-cares computation is comparable to compatible observability
don’t-cares in runtime and memory consumption, and the number of don’t-cares is
larger than that of compatible observability don’t-cares. The work used Boolean
satisfiability solvers instead of binary decision diagrams to avoid the memory explosion
problem, which often happens in BDD-based algorithms. They also introduced a
windowing technique which restricts the environment to a local subset of the entire
circuit to achieve don’t-caresapproximation. This restriction makes it feasible to
evaluate the care-set of every ndde independently,sanid avoids the need for compatible
observability don’t-cares. They also" :introd‘ucie-d the \use of SAT-based quantifier

| — B ¢ ¥ .
elimination combined with*random sampling.~T he‘ idea is established on constructing a
‘ p “
- - | e
miter to characterize the care-set Oflt e node, as|shown in"Figure 1.2. Therefore, they
| ' ‘:

Ty | | |
can obtain the complete don’t-cares of thefiode by-complement.

C(x)

T
Y-
T 4 [

'\\ / /‘Cﬁ
FAF 4 7 O

Figure 1.2: Mishchenko proposed the miter charactering the care-set.

Besides, they showed such construction is more robust than the BDD-based
4



quantifier elimination if the number of node inputs is less than about ten. However,
because this method enumerates the minterms of the care-set, it cannot be applied to
nodes with a large number of inputs. Our experience suggests that it is not scalable to
large-scale circuits without the windowing technique.

McMillan [9] proposed a method of approximate quantifier elimination to compute
the strongest over-approximation. This method uses a Boolean satisfiability solver in the
machine-learning framework with clauses confined to a given length. The advantage of
this approach is that it does not require enumerating the minterms of the care-set. For
that reason, it can be applied when the number of node inputs is relatively large. They
showed it remains robust in some cases'while the BDD-based image computation and
minterm enumeration methods fail.dHowever, the réstriction of the clause length lost the
precision for the computation‘ results/

| g—
—
-

Il m
1.3  Our Contributions | |

1 |

In this thesis, we present two ﬁovel algoritﬁrﬁs. Different from prior work, our
work brings the following distinct features:

- The algorithms are based on SAT solving, but take advantage of the efficiency
and scalability of interpolation.

- The computation results of complete don’t-cares can be further enhanced through
the adjustable interpolation algorithms.

- This is the first work considering the adjustability of interpolation in the early
stage of Boolean satisfiability solving processes.

To summarize, our work is based on the Boolean satisfiability solving. Unlike prior

methods, we take advantage of interpolation to enhance the scalability of don’t-care



computation while maintaining efficiency. Further, we propose practical solutions to
adjust interpolation to gain better results on don’t-care computation. Our proposed
methods including setting initial variable activities and altering the Boolean initial
values are useful to modify the solution space of the interpolant. These methods raise
the capacity of adjustable interpolation algorithms, and then benefit those algorithms

based on interpolation.

1.4  Organization of the Thesis

The rest of the thesis is structured @as follows. Chapter 2 provides the required
preliminaries and background, including' Boolean network and functions, don’t-cares,
Boolean satisfiability solving, .and Craig interpolation., Chapter 3 describes our

don’t-care computation methods and the adjustable interpolation algorithms. Chapter 4
T

reports the experimental results, and Challi-’;ﬁ:r 5 concludes the thesis and outlines future

1| ==
work. L i



Chapter 2

Preliminaries

2.1 Boolean Network and Function

A Boolean network or a circuit is a directed acyclic graph (DAG), where nodes
correspond to logic gates and directedredges correspond to wire connections between
the gates. A node has zero orimore fanins. Faniﬁ's of a node are other nodes that driving
this node. A node has zero or more fanouts. Fanouts of .a node are other nodes that
driven by this node. The nodes without fém_ins_ are called primary inputs (PIs). The nodes
without fanouts are called primary qputpu{'g;;Os). For registers in a sequential circuit,
their inputs and outputs are trggted :asf addi‘c:i-c)nal POs’and.Pls. For instance, a Boolean

| ‘
network and its corresponding DAG'drawn by ABC [137 are shown in Figure 2.1.

Figure 2.1: A Boolean network and the corresponding DAG.
7



Boolean function is composed of Boolean variables. A completely Boolean
function has the definition as follow.

Definition. A completely specified Boolean function (CSF) is a mapping from
n-dimensional (n>0) Boolean space into a single-dimensional one: {0,1}" —{0,1}
[8].

If a function with at least one input combination such that the output function is a

don’t-care, it is an incompletely specified Boolean function (ISF).

2.2 Satisfiability Problem and Solver

The Boolean satisfiability problem, known as SAT, is determining if there exists a

satisfying variable assignment for a given Boolean formula. We begin with required

definitions. Let ¥ ={v,..,v,} be a finite set of Boolean variables. A literal is a

variable v, or its negation —v,. A clause c is a disjunction of literals. We assume

that all the clauses are non-tautological so that there would never be a variable and its
negation in a same clause and produce a true. A SAT instance is a conjunction of clauses,
or a conjunctive normal form (CNF). For instance, Figure 2.2 shows a conjunctive

normal form with three clauses, four variables, and six literals.

(a+b+c)b+—c)—d)

Figure 2.2: There are three clauses, four variable, and six literals in the CNF.

A solver for the Boolean satisfiability problem is called a SAT solver. When

solving a problem, a SAT solver assigns Boolean values to those variables in turn if they
8



were not assigned until a satisfiable instance occurs or the unsatisfiability happens. In
some modern SAT solvers, such as MiniSat [11], heuristics such as variable activity are
used to choose variable for assigning value. Activity heuristic is a dynamic variable
ordering mechanism. Each variable comes with a value called activity, and the activity
varies upon the frequency of variable appearing in the conflict clauses.

A SAT solver gives a satisfying assignment when the given clause set is satisfiable,
otherwise it is unsatisfiable. Some modern SAT solvers produce a refutation proof when
the problem is unsatisfiable. The refutation proof proves the problem is unsatisfiable,

and it can be used to generate interpolants.

2.3 Resolution and Refutation Proof

Resolution is a rule of inference leading to/a'refutation proof. In propositional logic,
the resolution rule is a single valid i,_nfere&(;e-.}ule. It produces a new clause implied by
two clauses containing complement;ry ﬁ?erals} ‘The mew_ clause produced by the
resolution rule is called the resolvenf of the input‘ clauses. A resolvent of two clauses

¢,=vvA and c¢,=—vvB is ‘the clause Av B , provided that AvB is
non-tautological. We call v the pivot variable of ¢; and c¢,. In fact, if there exists a
resolvent of ¢; and c,, we can write the resolvent as the form3(c, Ac,) .

Then we have the definition of an unsatisfiability refutation proof []. Given the
set of clauses C, [I is a directed acyclic graph (V;;, £};), where ¥}, is a set of clauses.
For every vertex ce Vy, it must be one of the following conditions: (1)ce C = cis

a root, or (2) ¢ has exactly two predecessors, ¢; and ¢c; = c is the resolvent of ¢; and ¢,
and (3) the empty clause is the unique leaf. Following the refutation proof, we can get

the empty clause by resolution rule, and prove the unsatisfiability of the clause set C.

9



2.4  Craig Interpolation Theorem

We describe the definition of an interpolant. It was proposed by Craig in 1957 [4].
An interpolant for the unsatisfiable pair (4, B) is a formula P with the following three
properties:

— A implies P

—  PAB isunsatisfiable

— P refers only to the common variables of 4 and B

Figure 2.3: The interpolant P is an approiimation of 4, and disjoints B.

Figure 2.3 illustrates the concept of interpolant. In fact, we can consider the
interpolant as an over-approximation of formula 4, while P maintains the feature that

disjoints with B. There is an intuition to stats the existence of interpolants. That is, the

smallest interplant is3x“(A4), where x° stands for those variables appear in A but not

appear in B. In the other way, the largest interplant is Vy“(B), where y° stands for those

variables appear in B but not appear in A.
Pudlak [14] and Krajicek [15] proposed methods that if given a proof of
unsatisfiability of 4A B, P can be derived in linear time. Multiplexers are used to

generator the interpolant. Here we use the method proposed by McMillan in 2005 [5].
10



We divide the clauses into two sets, namely 4 and B, and then we obtain the

refutation proof [I of AAB via SAT solving. We say a variable is global if it

appears both in 4 and B, and a variable is local to 4 if it appears only in A. Here we use

g(c) to denote the disjunction of the global literals in a clause ¢ and use /(c) to denote

the disjunction of the literals local to 4 in a clause c.

Let (4, B) be the division of clause sets and [[ be a refutation proof of its

unsatisfiability and the leaf vertex is given FALSE. Let p(c) be a Boolean formula

where c is any vertices in V, and then ITP-Function is defined in Figure 2.4.

ITP-Function( )

1
2
3
4
5
6
7
8

for each ve ),

do if c is a root
then if ce 4
then p(c) < g(c)
else p(c)«—TRUE
else if v is local to 4
then p(c) < p(c,)V p(c,)
else p(c) < p(c) A p(c,)

Figure 2.4: The ITP computation.

Note that ¢; and ¢, are two predecessors of ¢, and v is the pivot variable. Thus the

[1 -interpolant of (4, B) is p(FALSE). McMillan gave the detail proof about this method

[16]. In the other way, interpolant indeed is a circuit following the structure of the

refutation proof. Figure 2.5 gives an example of such interpolant.

11



A = (b)(-bv c)B=(-cvd)(~d)
(b (mb v C) (_I:

(c( (-}/ d) w !
()@ L 9

N »

Figure 2.5: The mapping of refutation proof and the interpolant.
) .,._.-1:_.Jj[-?I-:.*..."J,"»f:*;g-,_. Ze

This approach d1recb§~ HW co \ngerpo‘lgnt simply. However, the
<}
interpolants derived by Ehls,:m sual};f‘bveak d: may not be good enough in

2.4.1 Interpolant Streggﬁl’ey *%
P Wi f\'

r'-' 2
In our algorithms, we neeﬁ a pr }cess to deﬁve qhﬁ'erent strength interpolants. For
'_.l" -\-j
example in Figure 2.6, P and P’ are implied by A, and both are unsatisfiable with B, but

they have different strength.

Figure 2.6: There could be more than one interpolant in different strength.
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In other words, a method to adjust the interpolant to generator interplant with
difference strength, or different solution space is necessary.

Jhala and McMillan [3] presented a method to compute strong interpolants. This
method is mainly using swap rules to rewrite the refutation proof to derived different
strength interpolant.

Overall, to strengthen the interpolant, we would better move the local resolutions
toward the hypothesis in a refutation proof, meanwhile, the global resolutions go
downward to the conclusion. In such way we move the OR gates toward the inputs of
the interpolant circuit and the AND gates toward the output, thus we strengthen the

interpolant. To achieve this, two rules:in'Figure'2.7 are applied to rewrite the refutation

proof.
pv—qv6l —pvo, qV‘ﬂ; p\v—qv@l qv 0, Vo,
—qVv o vo, 1 l pV oo,
6,v 6, v, il S5 | GV 6,V 6,
(D
pv—qv6l —pv—qvo, v pv—qvl qvO, —pv—gvl qgvo,
—qVv o vo, % N pvovo, -pvo,vo,
6, vo,vo, 6, vo,vo,
)

Figure 2.7: Two swap rules used to adjust the interpolant.

Applying these two rules throughout the refutation proof structure, we can
basically raise the resolutions with local pivot variables to the top of the refutation proof,
and the resolutions with global pivot variables to the bottom. But the price is that it may
expand the size of the refutation proof exponentially. Instead, Jhala and McMillan

adopted a limited approach to keep the size of refutation proof linear.
13



First, mark all the resolution steps in the refutation proof whose consequent is used
as the antecedent in more than one subsequent step. Then, traverse the refutation proof
from antecedents to consequents topologically, and apply the rewrite rules on every
local atoms q until meet the marked steps or hypothesis. Although this approach do
increase the size of the refutation proof every time when the second rewrite rule is
applied, the final number of occurrences of a step s is bounded by the number of

occurrences of —¢g in the original refutation proof that were resolved by s. As a result,

the number of resolutions we obtain after raising all the resolutions on local atoms is
linear in the size of the original refutation proof, so as the interpolant. However, our
experiments show that such method has its limitation. In Section 3.4, we explore the
reason and present our heuristic to.achieve effective adjustable interpolation.

2.5 Circuit to CNF Converét;;ﬁ

Given a circuit netlist, it ‘can be converted t0 a CNF.formula by a way preserving

the satisfiability. The conversion is achievable: in'linear time by introducing extra
intermediate variables [10]. In the consequence, we shall assume that the clause set of a
Boolean formula is available from such conversion. Figure 2.8 shows the transformation

of an AND gate to a CNF representation.

C c=ab
= (c <> ab)
= (¢ —> ab)(ab — ¢)
= (—c+(ab))(—(ab)+c)
ab = (—c+a)(—c+b)(—a+—-b+c)

Figure 2.8: An AND gate transfers to a CNF representation.

14



Chapter 3

Don’t-Care Computation Algorithms

This chapter presents two novel algorithms based on interpolation to compute
complete don’t-cares (CDCs). We fast review that complete don’t-cares consist of
satisfiability don’t-cares and observability don’t-cares. Satisfiability don’t-cares are
terms that never appear at the inputs of.a node, and observability don’t-cares are terms
for which changes to a node’s input§ are not obsetvable in the primary outputs. Figure
3.1 shows an example where (x, y) equals H(O, 9] ofFis a satisfiability don’t-care, and all

j— |
input assignments of G are ‘observability d;Fﬂ’faéarés if (a; b) equals to (1, 1).
R |

Figure 3.1: Example of SDCs and ODC:s.

Traditional way to compute complete don’t-cares usually involves image
computation. The process of image computation is often slow. In this chapter, we

introduce the algorithms using interpolation to compute complete don’t-cares.
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3.1 CDC Computation Method 1 (CDCC1)

As introduced in Chapter 2, interpolant of (4, B) is an over-approximation of set 4.
Therefore, if an over-approximate care-set is available, an under-approximate complete
don’t-cares can be derived by complement.

The strategy of method 1 is to construct a miter that characterizes the on set of the
care-set, as the left-hand side shown in Figure 3.2. On the other hand, another miter is
constructed to characterize the off set of the care-set, as the right-hand side shown in
Figure 3.2. Since the on set and off set of the care-set are disjoint to each other, the final
network shown in Figure 3.2 must be unsatisfiable.

Thus the interpolation algorithm éan sirﬁltbly treat the clauses of left-hand side
network belong to A4, other- clauses belong to B. A and B are unsatisfiable. Then

interpolant of (4, B) is an over approxirﬁq.tebﬂﬁet of the care-set. In similar way, an

over approximate off sef of the eare:set ca}l'élso' be obtained. Consequently, we obtain
IV :

o T

the under approximate complete don"trcare's.
N |
|

|
1

1
i

Figure 3.2: The miter of CDCCI1 algorithm.
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Note that if only basic interpolant is used, the computed on set and off set of the
care-set could be complement to each other, and the computed complete don’t-cares are
empty. Therefore, CDCCI requires a process to derive different strength interpolants.
We introduce the rewrite rules and our proposed methods to get strong interpolants in

Section 3.4. Finally, Figure 3.3 summarizes the algorithm of CDCCI1.

CDC Computation Method 1 ()

1. Construct the network

A «clauses of left-hand side network
B« other clauses in the network
onset < interpolant of (A4, B) -

A’ « clauses-of right-hand side networkr
B’ « other clauses in the network

offset ~interpolant of ()f’: B

NS kN

8. return (onsetUOfﬂ"et)‘

Figure 3.3: Algorithm of ‘method 1.
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3.2 CDC Computation Method 2 (CDCC2)

The CDCCI1 proposed in previous section runs in good speed, however, the
experiments do not show promising results. The amount of computed don’t-cares is less.
Hence, we developed the other similar algorithm, and we call it the CDCC2.

Our strategy in CDCC?2 is similar to that in CDCCI1. First, we construct a miter that
characterizes the care-set followed by a miter that characterizes don’t-care set and

probably some overlap with care-set. Figure 3.4 shows the final network.

Figure 3.4: The miter of CDCC2 algorithm.

In Figure 3.4, X is global care-set, and X’ is global don’t-care set. Although x and
x’ are different, but they could generate the same value at y and y’. As a result, the
overlapping occurs. Since the left-hand side network may overlap the right-hand side
network in y. the whole network may be satisfiable. To make use of the interpolation
algorithm, the overlap part must be excluded. This can be simply done by iteratively

adding the overlap instances as conflict clauses to the solver. In practice, the overlap

18



part rarely happens, thus this process can be done efficiently.

As soon as the miter is unsatisfiable, the interpolation algorithm can treat the
clauses of the left-hand side network belong to 4, other clauses belong to B. Then we
get the interpolant of (4, B) as an approximate care-set. As a result, approximate
complete don’t-cares can be obtained.

Note that in the process of overlap instances exclusion, some don’t-care set
instances are excluded from the network, thus the approximate care-set obtained by
interpolation algorithm could be an over-approximation of the exact care-set. Thus
completed don’t-cares obtained by CDCC2 could be an under-approximation. Figure

3.5 summarizes the algorithm of CDCE2:

CDC Computation Method 2 ()

1. Construct the network

2. A« clauses of left—hand%:hsri-dc network
3. B« other clauses in ‘;[he ri%jtwork

4. F« AnNB |

5. S<¢

S

while (ie SAT instance of F # @)
7. do S SUi

F « FuUi
8. careset —interpolant of (4, BUS)

9. return careset

Figure 3.5: Algorithm of CDCC2.

To summarize, CDCCI needs two SAT solving and interpolation, and CDCC2 may

need to run SAT solving several times.
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3.3 CNF Simplification

The time needed to solve a Boolean satisfiability problem depends on the
complexity of the problem. It has been shown that minimizing the size of the CNF
representation and removing unnecessary variables effectively improve SAT run time
[12]. We utilize the symmetric structure of the miter to simplify the CNF representation
in our algorithms. When constructing the CNF representation, we do following two
rules, elimination and sharing variable to minimize the CNF representation.

First we define some terms. 7arget node is the node which we compute the
don’t-cares. The effective node set Ngy is a set of nodes that affect the don’t-care
computation result of the target node. The unidﬁ set of node set Nrro and Nrror 1 Neg;,
where Nrro are the nodes in. the transitivity fanout of the target node, and Nzpo; are the

nodes in the transitivity fanin of nodessin Ayrof There are the illustrations in Figure 3.6.
| L“'-’-" 3 |

| - - |
The red circle is the target node, and the bqu area 1s TEO, while the pink area is TFOL.

|

1 1

111

oTFO
OTFOI

TTTTT M

Figure 3.6: The illustration of target node, TFO and TFOL.

—  Elimination: We eliminate those nodes not in N,y from CNF representation,
20



—  Sharing variable: For the nodes in N4 but not in Nzro, they share variables
with the repeat part in the miter.
For the nodes not in effective network N4, that is, the nodes in the white area in the

Figure 3.6 are dropped from the CNF representation.

\ A

|
X

e
-

Figure 3.7: The nodes,in the T'IE_PI"arca share the same variables.

|

Thus, the size of CNF présentation is reduced' 'dramatically, and the run time

improves considerably.

3.4 Adjustable Interpolation

In Chapter 2, we described the fundamental of interpolation and the theorem to
strengthen the interpolant. Here we present the techniques used for computing strong

interpolants obtained from a refutation proof in this thesis.

3.4.1 Swap Rules

As McMillan mentioned [3], we can use rule (1) and rule (2) in Figure 2.7 to
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strengthen the interpolant. We give the detail descriptions here. For the clarity, we

re-express the rule 1 with the same notation used here in Figure 3.8 (a).

—gve gvivo,

Ve, —gv O gvive, =lvo,

Ivo Vo, N gvo,vo,
6 vo,vo, 6 vo,vo,
(a)

—|g+91 g+|+92 g+|+62 —|+05
g ‘ I
[+64+6, —|+63 —g+64 g+0,+03
| "._.r-.-_‘ i i | g
ol Gi—wY ko
01+02+63 ‘: } n | 01+6,+03
| |

(b)

Figure 3.8: The relation between (a) swap rule 1 and (b) the corresponding refutation

proof structure.

Figure 3.8 (b) is a direct acyclic graph representing a part of a refutation proof. The
nodes represent the clauses which could be a root or a resolvent. Under each node, a
CNF represents the content of the resolvent. The orange word represents the pivot
variable used to derive the resolvent. One should be noticed that the node 4 is destroyed

after swapping. A new node 4’ replaces the original node with different resolvent.
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(@) MN+K (b) MN + MK

Figure 3.9: The solution space of (a) original interpolant, if we use rule 1, then (b) a

stronger interpolant.can be gotten.

Figure 3.9 shows the e¢ffect of rule, 1. The-eircuitiin Figure 3.9 (a) is the original
interpolant derived by the refutation prodf%'mi_cture of the left part in Figure 3.8, assume

the function corresponding-to node! 1 is 1\31, and node 2 is7N, and node 3 is K. The

resolvent resolving on global Variabic. is replaced with an"AND-gate; the one resolving
on local variable is replaced by an OR-gate. As a resﬁlt, the function of the interpolant is
MN + K. The minterm number of the space is six, for the (M, N, K) pair equals to (110),
(111), (001), (011), (101), and (111). In the other way, the interpolant in Figure 3.9 (b) is
MN + MK, the corresponding minterms are (110), (101), and (111). Thus, after applying
the rule 1, the solution space of the interpolant shrinks from six to three.

For the clarity, we also re-expressed rule 2 and the corresponding refutation proof

structure in Figure 3.10.
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—gvive gvive, —gvive =lvl, gvive, =lvo,

=l v 93

v ve, N —gVvo v, gvo, v,

o, vo,vo, o, vo,vo,

(a)

—|g+l+91 g+|+92 —|g+l+91 —[+063 g+|+62

g I I

[+64+6, —|+05 —|g+61+63 g+62+63
| n g
OTARTTANNO

04+06,+03 01+0,+0;
2t )
| | :’;pl" |
Figure 3.10: The relation between ()| swaﬁrule 2 and (b) the corresponding refutation

‘pr:oof structure.

Figure 3.10 (b) is a direct acyclic graph representing a part of a refutation proof.
Different from rule 1, rule 2 is used when the node 1 and node 2 have the same local
variable / simultaneously. At the process of raising a local variable, an extra node need
to be generator in order to ensure the resolvent remain the same at node 5. Also, node 4
is destroyed and new node 4’ and node 4’ are generated.

A problem occurs if the resolvent of the original node 4 were used in other
resolution step. In other words, the node 4 is a multiple fanout node. When encountering
multiple fanout in the refutation proof, McMillan adopts a method that marking the

multiple fanout nodes and skipping those marked nodes. By such strategy, they avoid
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the possible exponential expansion of the refutation proof size but sacrifice the
interpolation adjustability.

In our cases, we proposed a different way. We partial duplicate the structure of
multiple fanout nodes. We copy only the parent nodes of the multiple fanout nodes in
the refutation proof. In Figure 3.11, we preserve the original node 4 in the new structure,

and keep the connection to the other nodes.

@ ORENONENO

=g+0, g+l+06, —g+04 g+l+06; —l+03

1+8, g+02+0;

Multiple-Fanout! [

(s) )

61+92+63.‘r ! | ; | 01+0,+03

Figure 3.11: The illustration of swap rule 1. with multiple fanouts.

For the rule 2, the same thought is adopted. Figure 3.12 describes the swapping for
the multiple output case for rule 2.

Thus, for single output node in rule 1, no new node will be added. For single
output node in rule 2, one new node will be added. For the multiple output cases, rule 1

and rule 2 increase one and two new nodes, respectively.
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OO OO O,

—g+1+61 g+l+6; —g+1+64 g+l+6; ~l+63
g I I
1+02 ~+63 1+62—g+61+0; g+02+03
Multiple-Fanout! | g
(5) Rl 2 (s)
04+06,+03 04+0,+03

Figure 3.12: The illustration of swap rule 2 with multiple fanouts.

However, the two rules both-fail if the gl(;;t)lal pivot variable appears in the node 3.
The failure arises because: fheappearance of-globalivariable changes the resolvent
content of the node 5. As a consequ?nc:fé;.':t;_fll;e;different content destroys the refutation
proof correctness. This cendition ﬁa%)per-liﬁi :often ‘and largely decreases the effect of

|

strengthening interpolants. . s ™ [ | 1

3.4.2 Initial Variable Activities

We known the way to strengthen the interpolant is letting local variable appears
early in the refutation proof. From previous section, it shows difficulty to adjust the
interpolant via rewriting the refutation proof because the rules fail often. Instead of
rewriting the refutation proof already generated, we propose a heuristic algorithm to
affect the Boolean satisfiability solver to produce a good refutation proof in advance.

As introduced, MiniSat, the modern SAT solver, makes decision by considering
variable activity heuristics. In the other way, if a variable were decided earlier in the

process of SAT solving, it appears later in the refutation proof. This can be shown from
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the production of the conflict clauses [17]. Figure 3.13 give an explanation. For the

conjunction normal form (a+b)(a+—b)(—a+b)(—a+—-b), if we make decision on
variable a by assigning it to be 0, then we produce clauses (b)(—b) and generate an
unsatisfiability. Thus we learn a conflict clause (@), which means assigning a to be 0

produces an unsatisfiability. However, the production of this conflict clause in the
refutation proof is derived by resolving on the pivot variable b, and the resolution on

variable a appears later than b. As a result, if the variable is decided earlier, it resolves

later.
(a+b) (a+—b).—“(—a+b) (—a+—b)
b ‘ ,, b
1| =
N A § _
Conflict clause learned by dE

assigning a=0

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 3.13: Decision and learned clause in a refutation proof.

Thus, by controlling the variable activities in the MiniSat, somehow we affect the
variable appearing in the refutation proof in proper order. At the beginning, we changed
the decay ratio of local variable in MiniSat, but the results were not good. Hence, we
decided to set higher initial variable activities for the local variable before the SAT

solving starts. We found that this heuristic worked effective and had good results.
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3.4.3 Boolean Initial Values

We have known that affecting the Boolean satisfiability problem solver by proper
ways help produce better refutation proof. The structure of the refutation proof depends
on the internal procedures of the SAT solver, such as decision order and Boolean
constraint propagation. Thus, we try to change the Boolean value when a decision is
made. In MiniSat, the decision of a variable always is false then true. We change the
decision order by trying true first then false. An interesting thing is that this heuristic
dose work. The detail research and the reason why will be our future work. It is sure
that different decision generates different implication graph, and somehow this strategy

help the SAT solver generate better reftitation prbof.

3.5 Verification .‘,-...p i

o
g

|
| - |

The derived don’t-cares appeéir! as a;]"form ofiBoolean function with a single
primary output. Where the inputs altejlthe node faning and:the only output is one when
the input combinations are the don’t-care sets of the node. For such don’t-cares form,

we propose a method to verify its correctness.

3.5.1 Combinational Equivalence Checking

When getting the circuit representing the don’t-care terms, we do formal
verification on the don’t-care terms to make sure the result is correct. Our method is to
construct a miter to check the correctness of don’t-cares. The first part of the miter is the
original circuit. The second part of the miter is the modified circuit where the target
node is replaced by an exclusive OR gate. The two fanins of the exclusive OR gate are

the target node and the primary output of the don’t-care circuit. The miter is shown in
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Figure 3.14. When the input of the node is a don’t-care, the output of the don’t-care
circuit is 1. Further, the exclusive OR gate inverts the original node output. This makes
the two circuits have different value on the target node. If they are equivalence, the
input of the node must be a don’t-care, and the correctness of the don’t-care circuit is

proved.

A A \

AYidiN
1 ) y

|
X

Figure 3.14: The miter for den’t-care verification.

3.5.2 Absorbing Checking

Another way we call absorbing checking. After we checked the don’t-care
correctness by combinational equivalence checking, we get the correct don’t-care
libraries. After that, each time when we need to check our computation results, we just
check if the circuit is absorbed by the don’t-care library. This reduces the verification

process.
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Chapter 4

Experimental Results

Our experiments were implemented using C++ in ABC, a system for sequential
synthesis and verification [13]. The proof-logging version of MiniSat was used as the
underlying solver [11]. All experiments were performed on a workstation with Xeon

3.4GHz CPUs and 6 GB RAM.iThe benchmark €ircuits were ISCAS 85 and ISCAS 89.

4.1 Variable Decision Order

A preliminary experiment targe%t:s f&%‘&iséussing the relation between variable
decision order and the resoluti.on ordeEr, as ‘n:l-entio;ncd inSection 3.4.2. Five CNFs were
chosen as the benchmarks. In the foilowing ﬁguréé; each line represents the variable
counts in the corresponding level. For the refutation proofs have different number of
levels, we normalized the number of levels from one to ten. When no extra constraints
were set, as shown in Figure 4.1, there is no trend of the variable counts in the refutation
proof levels. However, in Figure 4.2, we let variables with small ID have higher priority
when solver makes the decision. We found those variables appear more frequently in the
higher level, as our expectation. In contrast, variables with large ID rise in the lower
level. In Figure 4.3, we did the reverse setting for the variables, and the situation of

variable counts was opposite to those in Figure 4.2. Variables with small id are decided

later, and the result shows they appear in the early levels, as our expectation.
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Figure 4.2: Variable count vs. levels by small variable ID decision first.
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4.2  Adjustable Interpolation on CDCC1

The experiments are designed to show following features via the don’t-care

computation algorithm.

1. The scalability and capability of interpolation algorithm.

2. The efficiency of our methods to adjust the interpolation.

For each don’t-care computation algorithm, we ran two different settings, the
algorithm combined with McMillan’s rewriting. rules (CDCC + M), and the one
combined with our sizing algorithms (CDCC-+1T + D), both results are compared with
the basic algorithm (CDCC) without using the interpolant sizing algorithms. The

don’t-care computation algorithms are-designedfor an arbitrary node in networks. For

each network, we reported the avq:;-r;age '"ﬁ%ﬁ}:irrie and memory usage per node, and
recorded the maximum Value.qf eeu;;hE terrh;moﬁg all the nodes. We also set a fifteen
seconds time out for the Boolean satisﬁability solve‘r."r

First, we present the results of CDCCl algorithm on benchmark ISCAS-85 and
ISCAS-89.

Table 4.1 shows the results of the basic CDCC1 algorithm without applying any
sizing interpolant method. In the title of the tables, “M” stands for the McMillan’s swap

rules, and “I” represents our initial variable activity heuristic, while “D” describes as

our decision value heuristic.
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Table 4.1: McMillan’s adjustable method (CDCC1 + M).

Average Maximum
Name #Node
Time Mem(Mb) Time Mem(Mb)

C17 6 0.05 7.94 0.16 7.94
C432 160 0.04 8.93 0.20 8.96
C499 202 0.05 9.16 0.20 9.18
C880 383 0.04 9.46 0.22 9.52
C1355 546 0.06 10.47 0.26 10.51
C1908 880 0.09 11.32 0.17 11.62
C2670 1253 0.09 12.62 0.19 12.74
C3540 1669 0.17 14.31 0.31 14.42
C5315 2297 0.10 16.35 0.39 16.79
C6288 2416 0.32 17.76 0.58 18.23
C7552 3510 0.16 21.84 0.66 22.14
Average 0.141 12.74 0.30 12.91

Table 4.2: Our adjustable method!(EDCEC1 +1 + D).

Average Maximum
Name #Node
Time Mem(Mb) Time Mem(Mb)

C17 6 0.02 7.81 0.03 7.94
C432 160 0.04 8.92 0.09 8.97
C499 202 0.05 9.16 0.07 9.20
C880 383 0.04 9.46 0.07 9.55
C1355 546 0.06 10.50 0.11 10.59
C1908 880 0.10 11.39 0.17 11.71
C2670 1253 0.10 12.63 0.20 12.96
C3540 1669 0.18 14.31 0.31 14.62
C5315 2297 0.10 16.36 0.39 16.89
C6288 2416 0.32 17.77 0.58 18.28
C7552 3510 0.18 21.84 0.67 22.04
Average 0.11 12.74 0.24 12.98

34




Table 4.3: McMillan’s adjustable method (CDCC1 + M).

Average Maximum
Name #Node
Time Mem(Mb) Time Mem(Mb)

s27 10 0.02 7.86 0.02 7.93
s208 104 0.02 8.26 0.03 8.38
s298 119 0.02 8.37 0.03 8.48
s344 160 0.03 8.35 0.05 8.74
s349 161 0.03 8.44 0.05 8.65
s382 158 0.03 8.75 0.05 8.80
s386 159 0.03 8.63 0.06 8.95
s400 162 0.03 8.58 0.06 8.84
s420.1 218 0.03 8.56 0.05 8.74
s444 181 0.03 8.84 0.06 8.87
s499 152 0.03 8.91 0.07 9.14
s510 211 0.03 8.72 0.07 8.99
s526 193 0.03 8.50 0.06 8.69
s526n 194 0.03 8.50 0.06 8.67
s635 286 0.04 9,43 0.08 9.77
s641 380 0.04 9.63 0.09 9.74
s713 393 0.04 976 0.11 9.91
s820 289 0.03 9.26 0.08 9.95
s832 287 0.03 9.30 0.09 9.82
s$838.1 446 0.04 043 0.08 9.61
s938 446 0.03 9.34 0.08 9.60
s953 395 0.03 9.68 0.07 9.91
s967 394 0.03 9.61 0:07 9.91
s991 519 0.05 10.29 0.14 10.92
s1196 529 0.05 10.14 0.12 10.25
s$1238 508 0.05 9.91 0.12 10.27
s1269 569 0.06 10.15 0.14 10.83
s1423 657 0.05 10.90 0.15 11.07
s1488 653 0.03 10.35 0.08 11.26
s1494 647 0.03 11.00 0.08 11.21
s1512 780 0.03 10.98 0.08 11.76
3271 1573 0.03 11.51 0.06 11.96
s3330 1789 0.04 13.37 0.14 14.13
s3384 1702 0.04 12.36 0.09 12.57
s4863 2374 0.08 14.51 0.22 15.06
s5378 2794 0.06 15.52 0.17 15.52
s6669 3148 0.11 15.86 0.26 16.92
$9234.1 5597 0.11 23.59 0.69 24.98
s13207 8027 0.09 25.90 0.39 27.24
s15850 9786 0.12 33.35 0.63 36.27
s35932 16065 0.13 38.81 0.48 42.39
s38417 22397 0.20 48.02 0.62 52.77
s38584 19407 0.20 59.41 2.49 76.11
Average 0.05 13.97 0.20 14.97
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Table 4.4: Our adjustable method (CDCC1 + I+ D).

Average Maximum
Name #Node
Time Mem(Mb) Time Mem(Mb)

s27 10 0.01 7.86 0.02 7.93
s208 104 0.02 8.27 0.02 8.38
s298 119 0.02 8.37 0.03 8.48
s344 160 0.03 8.35 0.05 8.68
s349 161 0.03 8.44 0.05 8.66
s382 158 0.03 8.75 0.05 8.84
s386 159 0.03 8.63 0.07 8.95
s400 162 0.03 8.58 0.06 8.87
s420.1 218 0.03 8.58 0.05 8.76
s444 181 0.03 8.84 0.06 8.90
s499 152 0.03 8.92 0.06 9.16
s510 211 0.03 8.72 0.06 9.02
s526 193 0.03 8.50 0.06 8.72
s526n 194 0.03 8.50 0.05 8.70
s635 286 0.04 9.44 0.09 9.79
s641 380 0.04 9.63 0.11 9.76
s713 393 0.05 976 0.11 9.96
s820 289 0.03 9.27 0.08 10.00
s832 287 0.03 9.30 0.09 9.86
s$838.1 446 0.04 043 0.08 9.72
s938 446 0.04 9.35 0.09 9.73
s953 395 0.03 9.69 0.07 9.91
s967 394 0.03 9.61 0:09 9.91
s991 519 0.05 10.31 0.14 10.96
s1196 529 0.05 10.15 0.12 10.35
s$1238 508 0.05 9.92 0.12 10.35
s1269 569 0.06 10°16 0.14 10.91
s1423 657 0.05 10.90 0.16 11.20
s1488 653 0.03 10.36 0.08 11.32
s1494 647 0.03 11.00 0.08 11.28
s1512 780 0.04 10.99 0.08 11.57
3271 1573 0.04 11.52 0.07 12.06
s3330 1789 0.05 13.37 0.14 14.56
s3384 1702 0.05 12.37 0.10 13.07
s4863 2374 0.09 14.52 0.18 15.11
s5378 2794 0.07 15.52 0.21 15.98
s6669 3148 0.12 15.87 0.28 16.92
$9234.1 5597 0.13 23.60 0.72 25.46
s13207 8027 0.12 25.90 0.56 28.92
s15850 9786 0.17 33.37 0.66 37.50
s35932 16065 0.22 38.82 0.53 42.39
s38417 22397 0.32 48.03 0.75 54.18
s38584 19407 0.30 59.42 2.54 79.65
Average 0.06 13.97 0.21 15.22

36




Table 4.1 and Table 4.2 show that for the ISCAS-85 benchmark, most of the nodes
can be conquered within 0.5 second and the average memory usage is within 13 Mb.
Table 4.3 and Table 4.4 show that for the ISCAS-89 benchmark, most of the nodes can
be conquered within 1 second and the average memory usage is within 15 Mb. The
short runtime shows the efficiency of the interpolation algorithms.

We compared the effect of adjustable interpolation by evaluating the solution space
of don’t-cares. From Figure 4.4 to Figure 4.7, the value is a normalized don’t-care
minterm number which ranges from 0 to 1. While 1 means the don’t-care computed at
the node is the optimal value, 0 means the algorithm dose not get any result due to
timeout or the intrinsic limitation. The Y axis is the basic don’t-care computation
algorithm, while the X axis represents the algorithm combined with the adjustable
interpolation algorithm, \

As the results show, although the alg;ﬁ‘thm runs with high efficiency, fewer nodes

Il B
were influenced by the sizing algorithms:=Whatever the ' McMillan’s method or our

|
1

proposed algorithms do not gét ideal resulfshAs a consequence, we proposed CDCC2

algorithm.
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Figure 4.4: Interpolant on set changing by CDCCL+ M on benchmark ISCAS-85.
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Figure 4.5: Interpolant on set changing by CDCC1 + I + D on benchmark ISCAS-85.
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Figure 4.6: Interpolant on set changing by CDCCL+ M on benchmark ISCAS-89.
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Figure 4.7: Interpolant on set changing by CDCC1 + I + D on benchmark ISCAS-89.
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4.3 Adjustable Interpolation on CDCC2

In order to gain better results on don’t-care computation, we proposed CDCC2 in
Section 3.2. Following are the experiments of CDCC2. The environment is identical to
the setting in CDCCI.

For the ISCAS-85 benchmark, the average runtime and memory usage of our
method (CDCC2 + I +D) are 0.16 seconds and 15.97 Mb, while McMillan’s swap rules
(CDCC2 + M) need 0.19 seconds and 15.92 Mb. For the ISCAS-89 benchmark, our
values are 0.21 seconds and 11.09Mb, while the McMillan ones are 0.27 seconds and
11.02 Mb in average. At the aspectyof adjustable interpolation algorithm, for the
ISCAS-85 circuits, no node-can be improved by the. McMillan method among the all
13,322 nodes. However, by Qur methods, there are 296 nodes improved with 153 nodes
becoming worse. Moreover, for the casesf:in ISCAS-89 ciréuits, there are 1667 nodes
being improved by our methods,among tﬁ?i105,019 nodes with 329 bad nodes, while
only 16 nodes have improvemgnt byil\/EIcMiliz-;ln method.

Finally, we summarize the ratio ‘of amount of optimal nodes to the amount of all
nodes computed by proposed method with different adjustable interpolation algorithms
in Table 4.5. It should be noticed that for some nodes, CDCC2 did not get optimal
results. This is because that the constructed don’t-care set miter is naturally unsatisfiable,

such as the case at primary output node. Sometimes the miter becomes unsatisfiable

after adding the overlapping part as the conflict clauses.
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Table 4.5: The optimal ratio of don’t-care computation via adjustable interpolation.

Bench | Method B M +D
1 55.8% 55.8% 55.8%
ISCAS-85 2 83.4% 83.4% 84.2%
1 71.8% 71.8% 71.8%
ISCAS-89 2 92.8% 92.8% 94.1%
Overall 1 70.0% 70.0% 70.0%
2 91.7% 91.7% 92.9%

B: Basic algorithms, M: McMillan’s methods, [+D: Our methods.

Table 4.6: McMillan’s adjustable method (CDCC2 + M).

Average Maximum
NAME #NODE
Time Mem(Mb) Time Mem(Mb)

C17 6 0.041 ‘.74 0.01 7.86

C432 160 0.02 9.02 0.08 9.21

C499 202 0.02 9.09 0.12 9.29

C880 383 0.02 9.10 0.84 9.11
C1355 546 0.06 =+ 12.69 0.56 12.74
C1908 880 0.10 = 11100 1.39 15.08
C2670 1253 0.04 |\ 10l27 0:23 11.83
C3540 1669 0.14 12,98 24.54 14.37
C5315 2297 0.05 1125 0.97 14.20
C6288 2416 1.59 6977 105.04 348.83
C7552 3510 0.09 12:31 1.30 17.87
Average 0.19 15.92 12.28 42.76

Table 4.7: Our adjustable method (CDCC2 + 1+ D).

Average Maximum
Name #Node
Time Mem(Mb) Time Mem(Mb)
C17 6 0.01 7.74 0.01 7.86
C432 160 0.02 9.02 0.09 9.21
C499 202 0.02 9.09 0.05 9.29
€880 383 0.02 9.10 0.29 9.11
C1355 546 0.04 12.69 0.14 12.74
C1908 880 0.06 10.99 0.37 15.23
C2670 1253 0.05 10.36 0.21 12.20
C3540 1669 0.10 12.94 3.21 13.76
C5315 2297 0.05 11.40 0.40 14.21
C6288 2416 1.34 69.78 144.03 348.83
C7552 3510 0.10 12.52 0.67 17.70
Average 0.16 15.97 13.59 42.74
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Table 4.8: McMillan’s adjustable method (CDCC2 + M).

Average Maximum
Name #Node
Time Mem(Mb) Time Mem(Mb)
s27 10 0.01 7.87 0.01 7.93
s208 104 0.01 8.20 0.02 8.28
s298 119 0.01 8.24 0.02 8.29
s344 160 0.01 8.26 0.03 8.33
s349 161 0.01 8.43 0.04 8.49
s382 158 0.01 8.38 0.02 8.68
s386 159 0.01 8.38 0.02 8.68
s400 162 0.01 8.34 0.02 8.72
s420.1 218 0.01 8.27 0.02 8.49
s444 181 0.01 8.82 0.03 8.83
s499 152 0.01 8.45 0.04 8.72
s510 211 0.01 8.43 0.03 8.59
s526 193 0.01 8.43 0.03 8.46
s526n 194 0.041 8.55 0.03 8.57
s635 286 0.02 925 0.05 9.27
s641 380 0.03 8.58 0.14 9.34
s713 393 0.03 8.63 0.14 10.29
s820 289 0.02 912 0.05 9.16
s832 287 0.01 8.68 0.04 9.18
s$838.1 446 0.02 8.63 0.07 9.20
s938 446 0.03 8.64 0:06 9.05
s953 395 0.02 8.89 0.10 9.33
s967 394 0.02 9.34 0.06 9.34
s991 519 0.04 9.68 0.11 10.21
s1196 529 0.03 8.81 0.19 10.19
s1238 508 0.04 9.47 0.14 9.62
s1269 569 0.05 10.14 0.40 10.66
s1423 657 0.05 10.86 0.84 11.89
s1488 653 0.03 9.36 0.21 10.46
s1494 647 0.03 10.32 0.19 10.47
s1512 780 0.03 9.23 0.19 10.66
s3271 1573 0.03 9.76 0.35 11.73
s3330 1789 0.04 10.37 0.29 12.39
s3384 1702 0.05 10.39 2.12 11.71
s4863 2374 3.83 11.96 1848.54 19.39
s5378 2794 0.05 12.56 0.65 13.16
s6669 3148 5.88 13.46 927.92 2361.00
$9234.1 5597 0.11 13.65 60.05 37.48
s13207 8027 0.14 16.47 90.03 41.28
s$15850 9786 0.25 19.12 360.95 61.45
$35932 16065 0.20 26.01 2.75 29.19
s38417 22397 0.27 27.59 2.06 32.59
38584 19407 0.29 28.04 154 .47 60.55
Average 0.27 11.02 80.31 69.29
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Table 4.9: Our adjustable method (CDCC2 + 1+ D).

Average Maximum
Name #Node
Time Mem(Mb) Time Mem(Mb)
s27 10 0.01 7.87 0.01 7.93
s208 104 0.01 8.20 0.02 8.28
s298 119 0.01 8.24 0.02 8.29
s344 160 0.01 8.26 0.02 8.35
s349 161 0.01 8.43 0.02 8.49
s382 158 0.01 8.38 0.02 8.57
s386 159 0.01 8.38 0.03 8.68
s400 162 0.01 8.35 0.02 8.68
s420.1 218 0.01 8.29 0.02 8.50
s444 181 0.01 8.82 0.02 8.83
s499 152 0.01 8.46 0.04 8.73
s510 211 0.01 8.43 0.03 8.61
s526 193 0.02 8.43 0.04 8.46
s526n 194 0.041 8.55 0.03 8.57
s635 286 0.02 925 0.05 9.28
s641 380 0.03 8.61 0.08 9.17
s713 393 0.03 8.65 017 9.24
s820 289 0.02 912 0.06 9.20
s832 287 0.02 8.60 0.03 9.21
s$838.1 446 0.02 8.66 0.06 9.18
s938 446 0.03 8.66 0106 9.14
s953 395 0.03 8.89 0.08 9.34
s967 394 0.02 9.34 0.07 9.34
s991 519 0.04 9.69 0.15 10.20
s1196 529 0.03 8.87 0.10 10.20
s1238 508 0.04 9.47 0.10 9.67
s$1269 569 0.05 10.14 0.53 10.66
s1423 657 0.05 10.87 0.31 11.53
s1488 653 0.03 9.37 0.11 10.50
s1494 647 0.03 10.32 0.22 10.51
s1512 780 0.03 9.28 0.13 10.70
s3271 1573 0.04 9.90 0.19 11.23
s3330 1789 0.04 10.43 0.21 12.50
s3384 1702 0.05 10.45 0.39 11.80
s4863 2374 2.77 12.21 689.77 19.39
s5378 2794 0.06 12.57 0.26 13.59
s6669 3148 3.89 12.43 792.86 16.32
$9234.1 5597 0.12 14.08 0.88 25.73
s13207 8027 0.11 16.82 2.26 36.78
s15850 9786 0.20 19.45 7.81 35.42
$35932 16065 0.25 26.24 2.36 32.05
s38417 22397 0.37 29.25 1.73 40.25
s38584 19407 0.35 28.16 9.64 68.38
Average 0.21 11.09 35.14 14.17
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Figure 4.8: Interpolant on set changing by CDCC2.+ M on benchmark ISCAS-85.
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Figure 4.9: Interpolant on set changing by CDCC2 + I + D on benchmark ISCAS-85.

44



1

0o} r

4
o.at o *
* *
07t
*ﬁ
.*.

0.6F 4 +
3 £
0 05) * *
b i

al ﬁgk# +

** *
0.3} *
#
&
o2t &
01} ﬁ
|:| 1 1 1 1
0 0.2 0.4 0.6 0.5 1
ACDC2 + I

Figure 4.10: Interpolant on set ¢hanging by CDCC2 + M_on benchmark ISCAS-89.
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Figure 4.11: Interpolant on set changing by CDCC2 + I + D on benchmark ISCAS-89.

45



Chapter 5

Conclusions and Future Work

The primary distinctive aspects of our work are providing solutions for the
adjustable interpolation and developing two novel algorithms for the don’t-care
computation. As compared with the previous work, which adopts strengthening the
interpolant after the creation of a refutation proof, our-algorithms direct the solver to
generate desired one in the early 'stage of Boolean satisfiability solving. Such adjustable
interpolation techniques effectively help .the ¢omputation“gain. much more don’t-care

p— ]

minterms far beyond the capability of pri-(;yfrhethods. Experimental results demonstrate
that among all the nodes, our algori“thms i.::nprove 1,936 nodes while previous method
only has 16 nodes improved..Ih ad(tiition, CDC(£2 is=ableto get optimal solutions for
92.9% of all nodes. Furthermore, our -approach is scalable to large designs without
losing efficiency. To conclude, our developments may benefit several areas of logic
synthesis and verification, especially for those methods utilizing interpolation
algorithms.

Future work includes integrating our technique in logic synthesis and generalizing
it for other applications. Such as functional decomposition with don’t-cares is a good

topic. Also, exploring new applications of our adjustable interpolation algorithm is a

potential subject.
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