請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88216完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王弘毅 | zh_TW |
| dc.contributor.advisor | Hurng-Yi Wang | en |
| dc.contributor.author | 曾奕承 | zh_TW |
| dc.contributor.author | Yi-Cheng Tseng | en |
| dc.date.accessioned | 2023-08-08T16:49:20Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-08 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-07-14 | - |
| dc.identifier.citation | 1. W.H.O. and UNICEF, Global vector control response 2017-2030. 2017.
2. Bogoch, I.I., O.J. Brady, M.U. Kraemer, et al., Anticipating the international spread of Zika virus from Brazil. The Lancet, 2016. 387(10016): p. 335-336. 3. Weaver, S.C. and M. Lecuit, Chikungunya virus and the global spread of a mosquito-borne disease. New England Journal of Medicine, 2015. 372(13): p. 1231-1239. 4. Delatte, H., G. Gimonneau, A. Triboire, et al., Influence of temperature on immature development, survival, longevity, fecundity, and gonotrophic cycles of Aedes albopictus, vector of chikungunya and dengue in the Indian Ocean. Journal of medical entomology, 2009. 46(1): p. 33-41. 5. Teng, H.-J. and C.S. Apperson, Development and survival of immature Aedes albopictus and Aedes triseriatus (Diptera: Culicidae) in the laboratory: effects of density, food, and competition on response to temperature. Journal of medical entomology, 2000. 37(1): p. 40-52. 6. Carrington, L.B., M.V. Armijos, L. Lambrechts, et al., Effects of fluctuating daily temperatures at critical thermal extremes on Aedes aegypti life-history traits. PloS one, 2013. 8(3): p. e58824. 7. Marinho, R.A., E.B. Beserra, M.A. Bezerra‐Gusmão, et al., Effects of temperature on the life cycle, expansion, and dispersion of Aedes aegypti (Diptera: Culicidae) in three cities in Paraiba, Brazil. Journal of Vector Ecology, 2016. 41(1): p. 1-10. 8. 交通部中央氣象局. 臺灣氣候特徵簡介. Available from: http://www.cwb.gov.tw/V7/climate/climate_info/taiwan_climate/taiwan_1.html. 9. 陳易呈、陳彥圻、鄧華真等, 埃及斑蚊及白線斑蚊之生態特性及傳播病毒能力的文獻回顧. 疫情報導, 2013. 35(13): p. 172-86. 10. 羅林巧、王智源和鄧華真, 2009-2011 年臺灣地區登革熱病媒蚊分布調查. 疫情報導, 2014. 30(15): p. 304-310. 11. Chang, L.-H., E.-L. Hsu, H.-J. Teng, et al., Differential survival of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) larvae exposed to low temperatures in Taiwan. Journal of medical entomology, 2007. 44(2): p. 205-210. 12. Hansen, J., M. Sato, R. Ruedy, et al., Global temperature change. Proceedings of the National Academy of Sciences, 2006. 103(39): p. 14288-14293. 13. Tran, B.-L., W.-C. Tseng, C.-C. Chen, et al., Estimating the threshold effects of climate on dengue: a case study of Taiwan. International journal of environmental research and public health, 2020. 17(4): p. 1392. 14. W.H.O, Global strategy for dengue prevention and control 2012-2020. 2012, Geneva: World Health Organization. 15. Focks, D.A., R.J. Brenner, J. Hayes, et al., Transmission thresholds for dengue in terms of Aedes aegypti pupae per person with discussion of their utility in source reduction efforts. 2000: p. 11-18. 16. Hoffmann, A.A., B. Montgomery, J. Popovici, et al., Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature, 2011. 476(7361): p. 454-457. 17. Barton, N.H. and M. Turelli, Spatial waves of advance with bistable dynamics: cytoplasmic and genetic analogues of Allee effects. The American Naturalist, 2011. 178(3): p. E48-E75. 18. Yan, G., D.D. Chadee, and D.W. Severson, Evidence for genetic hitchhiking effect associated with insecticide resistance in Aedes aegypti. Genetics, 1998. 148(2): p. 793-800. 19. Moyes, C.L., J. Vontas, A.J. Martins, et al., Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans. PLoS neglected tropical diseases, 2017. 11(7): p. e0005625. 20. Sánchez C, H.M., J.B. Bennett, S.L. Wu, et al., Modeling confinement and reversibility of threshold-dependent gene drive systems in spatially-explicit Aedes aegypti populations. BMC biology, 2020. 18(1): p. 1-14. 21. Marshall, J.M. and O.S. Akbari, Can CRISPR-based gene drive be confined in the wild? A question for molecular and population biology. ACS chemical biology, 2018. 13(2): p. 424-430. 22. Kramer, L.D. and G.D. Ebel, Dynamics of flavivirus infection in mosquitoes. Adv Virus Res, 2003. 60: p. 187-232. 23. Harrington, L.C., T.W. Scott, K. Lerdthusnee, et al., Dispersal of the dengue vector Aedes aegypti within and between rural communities. The American journal of tropical medicine and hygiene, 2005. 72(2): p. 209-220. 24. Reiter, P., Oviposition, dispersal, and survival in Aedes aegypti: implications for the efficacy of control strategies. Vector-Borne and Zoonotic Diseases, 2007. 7(2): p. 261-273. 25. Trpis, M. and W. Hausermann, Dispersal and other population parameters of Aedes aegypti in an African village and their possible significance in epidemiology of vector-borne diseases. The American journal of tropical medicine and hygiene, 1986. 35(6): p. 1263-1279. 26. Bergero, P.E., C.A. Ruggerio, R.J. Lombardo Berchesi, et al., Dispersal of Aedes aegypti: field study in temperate areas using a novel method. Journal of Vector Borne Diseases, 2013. 50(3): p. 163-170. 27. Dickens, B.L. and H.L. Brant, Effects of marking methods and fluorescent dusts on Aedes aegypti survival. Parasites & Vectors, 2014. 7(1): p. 1-9. 28. Winskill, P., D.O. Carvalho, M.L. Capurro, et al., Dispersal of engineered male Aedes aegypti mosquitoes. PLoS neglected tropical diseases, 2015. 9(11): p. e0004156. 29. Trewin, B.J., D.E. Pagendam, M.P. Zalucki, et al., Urban landscape features influence the movement and distribution of the Australian container-inhabiting mosquito vectors Aedes aegypti (Diptera: Culicidae) and Aedes notoscriptus (Diptera: Culicidae). Journal of medical entomology, 2020. 57(2): p. 443-453. 30. Marcantonio, M., T. Reyes, and C.M. Barker, Quantifying Aedes aegypti dispersal in space and time: a modeling approach. Ecosphere, 2019. 10(12): p. e02977. 31. Wu, H., Y. Lin, H. Pai, et al., Insecticide resistance status in Aedes aegypti (L.) adults from Southern Taiwan. Form. Entomol, 2014. 33: p. 253-270. 32. Lin, Y., H. Wu, E. Hsu, et al., Insecticide resistance in Aedes aegypti (L.) and Aedes albopictus (Skuse) larvae in southern Taiwan. Formos. Entomol, 2012. 32: p. 107-121. 33. Gorrochotegui-Escalante, N., C. Gomez-Machorro, S. Lozano-Fuentes, et al., Breeding structure of Aedes aegypti populations in Mexico varies by region. The American journal of tropical medicine and hygiene, 2002. 66(2): p. 213-222. 34. Bosio, C.F., L.C. Harrington, J.W. Jones, et al., Genetic structure of Aedes aegypti populations in Thailand using mitochondrial DNA. The American journal of tropical medicine and hygiene, 2005. 72(4): p. 434-442. 35. Urdaneta-Marquez, L., C. Bosio, F. Herrera, et al., Genetic relationships among Aedes aegypti collections in Venezuela as determined by mitochondrial DNA variation and nuclear single nucleotide polymorphisms. The American journal of tropical medicine and hygiene, 2008. 78(3): p. 479-491. 36. Hlaing, T., W. Tun‐Lin, P. Somboon, et al., Spatial genetic structure of Aedes aegypti mosquitoes in mainland Southeast Asia. Evolutionary applications, 2010. 3(4): p. 319-339. 37. Wright, S., Isolation by distance. Genetics, 1943. 28(2): p. 114. 38. Schmidt, T.L., I. Filipović, A.A. Hoffmann, et al., Fine-scale landscape genomics helps explain the slow spatial spread of Wolbachia through the Aedes aegypti population in Cairns, Australia. Heredity, 2018. 120(5): p. 386-395. 39. Moreira, L.A., I. Iturbe-Ormaetxe, J.A. Jeffery, et al., A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium. Cell, 2009. 139(7): p. 1268-1278. 40. Bian, G., Y. Xu, P. Lu, et al., The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti. PLoS pathogens, 2010. 6(4): p. e1000833. 41. Blagrove, M.S., C. Arias-Goeta, A.-B. Failloux, et al., Wolbachia strain w Mel induces cytoplasmic incompatibility and blocks dengue transmission in Aedes albopictus. Proceedings of the National Academy of Sciences, 2012. 109(1): p. 255-260. 42. Mousson, L., K. Zouache, C. Arias-Goeta, et al., The native Wolbachia symbionts limit transmission of dengue virus in Aedes albopictus. PLoS neglected tropical diseases, 2012. 6(12): p. e1989. 43. Tsai, C.-H., T.-H. Chen, C. Lin, et al., The impact of temperature and Wolbachia infection on vector competence of potential dengue vectors Aedes aegypti and Aedes albopictus in the transmission of dengue virus serotype 1 in southern Taiwan. Parasites & vectors, 2017. 10(1): p. 1-11. 44. Goubert, C., G. Minard, C. Vieira, et al., Population genetics of the Asian tiger mosquito Aedes albopictus, an invasive vector of human diseases. Heredity, 2016. 117(3): p. 125-134. 45. Peterson, B.K., J.N. Weber, E.H. Kay, et al., Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PloS one, 2012. 7(5): p. e37135. 46. Rašić, G., N. Endersby-Harshman, W. Tantowijoyo, et al., Aedes aegypti has spatially structured and seasonally stable populations in Yogyakarta, Indonesia. Parasites & vectors, 2015. 8: p. 1-12. 47. Rašić, G., R. Schama, R. Powell, et al., Contrasting genetic structure between mitochondrial and nuclear markers in the dengue fever mosquito from Rio de Janeiro: implications for vector control. Evolutionary applications, 2015. 8(9): p. 901-915. 48. Rašić, G., N.M. Endersby, C. Williams, et al., Using Wolbachia‐based release for suppression of Aedes mosquitoes: insights from genetic data and population simulations. Ecological Applications, 2014. 24(5): p. 1226-1234. 49. Rašić, G., I. Filipović, A.R. Weeks, et al., Genome-wide SNPs lead to strong signals of geographic structure and relatedness patterns in the major arbovirus vector, Aedes aegypti. BMC Genomics, 2014. 15(1): p. 275. 50. Li, B., Q. Gao, L. Cao, et al., Conserved profiles of digestion by double restriction endonucleases in insect genomes facilitate the design of ddRAD. 動物分類學報, 2018. 43(4): p. 341-355. 51. Rochette, N.C., A.G. Rivera‐Colón, and J.M. Catchen, Stacks 2: Analytical methods for paired‐end sequencing improve RADseq‐based population genomics. Molecular Ecology, 2019. 28(21): p. 4737-4754. 52. Li, H., Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv: Genomics, 2013. 53. Jolliffe, I.T. and J. Cadima, Principal component analysis: a review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016. 374(2065): p. 20150202. 54. Kamvar, Z.N., J.F. Tabima, and N.J. Grünwald, Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ, 2014. 2: p. e281. 55. Pritchard, J.K., M. Stephens, and P. Donnelly, Inference of population structure using multilocus genotype data. Genetics, 2000. 155(2): p. 945-959. 56. Pritchard, J.K., W. Wen, and D. Falush, Documentation for STRUCTURE software: Version 2. 2003. 57. Pichler, V., P. Kotsakiozi, B. Caputo, et al., Complex interplay of evolutionary forces shaping population genomic structure of invasive Aedes albopictus in southern Europe. PLOS Neglected Tropical Diseases, 2019. 13(8): p. e0007554. 58. Slatkin, M., Linkage disequilibrium—understanding the evolutionary past and mapping the medical future. Nature Reviews Genetics, 2008. 9(6): p. 477-485. 59. Pritchard, J.K. and M. Przeworski, Linkage disequilibrium in humans: models and data. The American Journal of Human Genetics, 2001. 69(1): p. 1-14. 60. McVean, G.A., A genealogical interpretation of linkage disequilibrium. Genetics, 2002. 162(2): p. 987-991. 61. Wigginton, J.E., D.J. Cutler, and G.R. Abecasis, A note on exact tests of Hardy-Weinberg equilibrium. The American Journal of Human Genetics, 2005. 76(5): p. 887-893. 62. Danecek, P., A. Auton, G. Abecasis, et al., The variant call format and VCFtools. Bioinformatics (Oxford, England), 2011. 27(15): p. 2156-2158. 63. Hardy, O.J. and X. Vekemans, SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Molecular ecology notes, 2002. 2(4): p. 618-620. 64. Loiselle, B.A., V.L. Sork, J. Nason, et al., Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae). American journal of botany, 1995. 82(11): p. 1420-1425. 65. Filipović, I., H.C. Hapuarachchi, W.-P. Tien, et al., Using spatial genetics to quantify mosquito dispersal for control programs. BMC biology, 2020. 18(1): p. 104-104. 66. Iacchei, M., T. Ben‐Horin, K.A. Selkoe, et al., Combined analyses of kinship and FST suggest potential drivers of chaotic genetic patchiness in high gene‐flow populations. Molecular Ecology, 2013. 22(13): p. 3476-3494. 67. Delignette-Muller, M.L. and C. Dutang, fitdistrplus: An R package for fitting distributions. Journal of statistical software, 2015. 64: p. 1-34. 68. Rousset, Genetic differentiation between individuals. Journal of Evolutionary Biology, 2000. 13(1): p. 58-62. 69. Shirk, A., E. Landguth, and S. Cushman, A comparison of individual‐based genetic distance metrics for landscape genetics. Molecular Ecology Resources, 2017. 17(6): p. 1308-1317. 70. Goslee, S.C. and D.L. Urban, The ecodist package for dissimilarity-based analysis of ecological data. Journal of Statistical Software, 2007. 22: p. 1-19. 71. Oksanen, J., R. Kindt, P. Legendre, et al., The vegan package: community ecology package. R package version, 2007. 1: p. 1-190. 72. Legendre, P. and M.J. Anderson, Distance‐based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecological monographs, 1999. 69(1): p. 1-24. 73. Cingolani, P., A. Platts, L.L. Wang, et al., A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly, 2012. 6(2): p. 80-92. 74. Djiappi-Tchamen, B., M.S. Nana-Ndjangwo, K. Mavridis, et al., Analyses of insecticide resistance genes in aedes aegypti and aedes albopictus mosquito populations from cameroon. Genes, 2021. 12(6): p. 828. 75. Melo Costa, M., K.B. Campos, L.P. Brito, et al., Kdr genotyping in Aedes aegypti from Brazil on a nation-wide scale from 2017 to 2018. Scientific reports, 2020. 10(1): p. 1-12. 76. David, J.-P., H.M. Ismail, A. Chandor-Proust, et al., Role of cytochrome P450s in insecticide resistance: impact on the control of mosquito-borne diseases and use of insecticides on Earth. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013. 368(1612): p. 20120429. 77. Sene, N.M., K. Mavridis, E.H. Ndiaye, et al., Insecticide resistance status and mechanisms in Aedes aegypti populations from Senegal. PLoS neglected tropical diseases, 2021. 15(5): p. e0009393. 78. Danecek, P., J.K. Bonfield, J. Liddle, et al., Twelve years of SAMtools and BCFtools. GigaScience, 2021. 10(2). 79. Wright, S., Evolution and the Genetics of Populations. IV. Variability within and among natural populations., 1978. 80. Chang, C.C., C.C. Chow, L.C. Tellier, et al., Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience, 2015. 4(1). 81. Bowman, A.W. and A. Azzalini, Applied smoothing techniques for data analysis: the kernel approach with S-Plus illustrations. Vol. 18. 1997: OUP Oxford. 82. Degner, E.C. and L.C. Harrington, Polyandry depends on postmating time interval in the dengue vector Aedes aegypti. The American journal of tropical medicine and hygiene, 2016. 94(4): p. 780. 83. Helinski, M.E., L. Valerio, L. Facchinelli, et al., Evidence of polyandry for Aedes aegypti in semifield enclosures. The American journal of tropical medicine and hygiene, 2012. 86(4): p. 635. 84. Poupardin, R., W. Srisukontarat, C. Yunta, et al., Identification of carboxylesterase genes implicated in temephos resistance in the dengue vector Aedes aegypti. PLoS Neglected Tropical Diseases, 2014. 8(3): p. e2743. 85. Lee, S.F., V.L. White, A.R. Weeks, et al., High-throughput PCR assays to monitor Wolbachia infection in the dengue mosquito (Aedes aegypti) and Drosophila simulans. Applied and environmental microbiology, 2012. 78(13): p. 4740-4743. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88216 | - |
| dc.description.abstract | 埃及斑蚊(Aedes aegypti)是登革熱(Dengue fever)等蚊媒傳染病(Mosquito-Borne Diseases)主要傳播的媒介。瞭解埃及斑蚊的分布及散播有益於控制病媒蚊的散播。本研究採集了台南市、高雄市和屏東縣等地168個具有明確座標的埃及斑蚊樣本,利用雙切限制酶片段DNA定序法(ddRAD-seq)生成的核酸多態性資料,研究台灣南部埃及斑蚊的族群結構和親屬關係。結果顯示,各行政區埃及斑蚊的有效族群量約為兩萬,族群間的遺傳分化程度低。親屬關係分析顯示,表親關係(Loiselle's k: 0.093875 > k > 0.046875)的蚊蟲最遠可相距42.8公里,遠超文獻記錄的自然情況下斑蚊可移動的距離。
另外在小尺度地理範圍(約4平方公里)內,不僅在不同行政區間的基因距離(Rousset’s a scores)有顯著差異,且地理距離與基因距離也呈現顯著的正相關。然而,在橫跨三個縣市的大尺度地理範圍內,本研究預期基因距離與地理距離間的關係可能因為人為活動的影響,而無顯著相關,但結果依然呈現顯著的正相關。但因有相距42.8公里的表親關係埃及斑蚊存在,表示人為的交通因素仍然可能影響埃及斑蚊的擴散能力,只是無法從基因距離與地理距離的顯著與否中得知。 | zh_TW |
| dc.description.abstract | This study aims to understand how Aedes aegypti spreads and different populations are interlinked. 168 samples were chosen from a dengue vector monitoring network in rural areas of southwestern Taiwan, in combination with the current urban ovitrap system, both of which were established by our team. We used single-nucleotide polymorphisms (SNPs) obtained from double-digest restriction-site associated DNA sequencing (ddRAD-seq) to study the population structure and phylogenetic relationships of Ae. aegypti in southern Taiwan. The results indicated that the effective population size of the Ae. aegypti in each administrative district is approximately 20,000, with low genetic differentiation between districts.
For understanding the dispersal range of Ae. aegypti, I used Spatial Pattern Analysis of Genetic Diversity (SPAGeDi) to calculate the kinship relationship. Then a pairwise relatedness across geographic distance plot was produced with the coordinates of collected samples. The results show that although the separation distances were up to 42.8 km, the pairwise relatedness of first cousin (Loiselle’s k: 0.093875 > k > 0.046875) still can be found. Additionally, within a small geographical scale (approximately 4 square kilometers), not only is there a significant difference in genetic distance (Rousset’s a scores) between different administrative districts, there is also a significant positive correlation between geographical distance and genetic distance. However, across a large geographical scale spanning across three counties, contrary to our expectation that there may be no significant correlation between genetic and geographical distance due to human activities, the genetic and geographical distance show a significant positive correlation. However due to the presence of Ae. aegypti with cousin relationships as far apart as 42.8 kilometer, indicating that human transportation factors could have an effect on the dispersal ability of the Ae. aegypti. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-08T16:49:20Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-08T16:49:20Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 摘要 iii ABSTRACT iv 表目錄 viii 圖目錄 ix 第一章 前言 1 埃及斑蚊的有效擴散距離 2 小尺度的族群分化模式 2 抗藥性基因 3 沃爾巴克氏體 3 第二章 材料與方法 5 1. 研究材料 5 1.1. 樣本採集 5 1.1.1. 國內樣本採集 5 1.1.2. 國外樣本收集 5 1.1.3. 實驗室樣本 5 1.2. DNA 萃取 6 1.3. 雙限制酶切位點標定法 6 1.4. 序列處理與遺傳多樣性分析 7 1.5. 主成分分析 8 1.6. 族群結構分析 8 2. 親屬關係 9 2.1. 親屬關係與地理距離 9 2.2. 可能的有效散佈距離分布 10 3. 基因距離 11 3.1. 基因距離與地理距離 11 3.2. 擴散屏障的評估 11 3.2.1. 以不同路寬探討道路屏障影響 11 3.2.2. 以行政區分群探討行政區是否影響擴散 12 4. 抗藥性基因 12 5. 沃爾巴克氏體 12 第三章 結果 13 資料庫整理 13 吸血過的埃及斑蚊對分析之影響 13 1.1. 遺傳多樣性分析 14 1.2. 主成分分析與族群結構分析 14 2. 親屬關係與地理距離 16 2.1. 可能的有效散佈距離分布 17 3. 基因距離與地理距離 17 3.1. 擴散屏障的評估 18 4. 抗藥性基因 18 5. 沃爾巴克氏體 18 第四章 討論 19 1. 遺傳多樣性分析與族群結構 19 2. 親屬關係與地理距離 19 3. 基因距離與地理距離 20 3.1. 擴散屏障的評估 20 4. 抗藥性基因 21 5. 沃爾巴克氏體 21 第五章 結論 22 第六章 參考文獻 23 表 28 圖 38 附錄 55 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 親屬關係係數 | zh_TW |
| dc.subject | 埃及斑蚊 | zh_TW |
| dc.subject | 有效族群數量 | zh_TW |
| dc.subject | 遺傳分化指數 | zh_TW |
| dc.subject | 基因距離 | zh_TW |
| dc.subject | genetic distance | en |
| dc.subject | effective population size | en |
| dc.subject | FST | en |
| dc.subject | kinship coefficient | en |
| dc.subject | Aedes aegypti | en |
| dc.title | 透過全基因組核酸多態型資料研究台灣南部埃及斑蚊在小尺度的族群結構 | zh_TW |
| dc.title | Fine-scale population structure of Aedes aegypti in southern Taiwan inferred by genome-wide SNPs | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 黃旌集 | zh_TW |
| dc.contributor.coadvisor | Chin-Gi Huang | en |
| dc.contributor.oralexamcommittee | 陳錦生;陳維鈞;蔡坤憲;李承叡 | zh_TW |
| dc.contributor.oralexamcommittee | Chin-Seng Chen;Wei-June Chen;Kun-Hsien Tsai;Cheng-Ruei Lee | en |
| dc.subject.keyword | 埃及斑蚊,有效族群數量,遺傳分化指數,親屬關係係數,基因距離, | zh_TW |
| dc.subject.keyword | Aedes aegypti,effective population size,FST,kinship coefficient,genetic distance, | en |
| dc.relation.page | 59 | - |
| dc.identifier.doi | 10.6342/NTU202301499 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-07-17 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 生態學與演化生物學研究所 | - |
| 顯示於系所單位: | 生態學與演化生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf | 2.89 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
