請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88196完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡協澄 | zh_TW |
| dc.contributor.advisor | Hsieh-Chen Tsai | en |
| dc.contributor.author | 林靜得 | zh_TW |
| dc.contributor.author | Ching-Te Lin | en |
| dc.date.accessioned | 2023-08-08T16:43:56Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-08-08 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-07-18 | - |
| dc.identifier.citation | [1] S. Bao, S. Chen, Z. Liu, J. Li, H. Wang, and C. Zheng. Simulation of the flow around an upstream transversely oscillating cylinder and a stationary cylinder in tandem. Physics of Fluids, 24(2):023603–023603–20, Feb. 2012.
[2] H. Choi, P. Moin, and J. Kim. Active turbulence control for drag reduction in wall-bounded flows. Journal of Fluid Mechanics, 262:75–110, 1994. [3] J. Choi, T. Colonius, and D. R. Williams. Surging and plunging oscillations of an airfoil at low reynolds number. Journal of Fluid Mechanics, 763:237–253, 2015. [4] T. Colonius and K. Taira. A fast immersed boundary method using a nullspace approach and multi-domain far-field boundary conditions. Computer Methods in Applied Mechanics and Engineering, 197(25):2131–2146, 2008. Immersed Boundary Method and Its Extensions. [5] E. A. Deem, L. N. Cattafesta, M. S. Hemati, H. Zhang, C. Rowley, and R. Mittal. Adaptive separation control of a laminar boundary layer using online dynamic mode decomposition. Journal of Fluid Mechanics, 903:A21, 2020. [6] S. Endrikat, D. Modesti, R. García-Mayoral, N. Hutchins, and D. Chung. Influence of riblet shapes on the occurrence of kelvin–helmholtz rollers. Journal of Fluid Mechanics, 913:A37, 2021. [7] N. Fabbiane, B. Simon, F. Fischer, S. Grundmann, S. Bagheri, and D. S. Henningson. On the role of adaptivity for robust laminar flow control. Journal of Fluid Mechanics, 767:R1, 2015. [8] T. L. B. Flinois and A. S. Morgans. Feedback control of unstable flows: a direct modelling approach using the eigensystem realisation algorithm. Journal of Fluid Mechanics, 793:41–78, 2016. [9] D. Gatti and M. Quadrio. Reynolds-number dependence of turbulent skin-friction drag reduction induced by spanwise forcing. Journal of Fluid Mechanics, 802:553–582, 2016. [10] K. Glover and D. C. McFarlane. Robust stabilization of normalized coprime factor plant descriptions with h/sub infinity /-bounded uncertainty. IEEE Transactions on Automatic Control, 34:821–830, 1989. [11] G. Gómez-de Segura and R. García-Mayoral. Turbulent drag reduction by anisotropic permeable substrates–analysis and direct numerical simulations. Journal of Fluid Mechanics, 875:124–172, 2019. [12] X. Hu and A. S. Morgans. Attenuation of the unsteady loading on a high-rise building using feedback control. Journal of Fluid Mechanics, 944:A10, 2022. [13] J. I. Ibrahim, A. Guseva, and R. Garcia-Mayoral. Selective opposition-like control of large-scale structures in wall-bounded turbulence. Journal of Physics: Conference Series, 1522(1):012015, apr 2020. [14] P. Ioannou and B. Fidan. Adaptive Control Tutorial. Society for Industrial and Applied Mathematics, Philadelphia, PA, 2006. [15] B. Jin, S. J. Illingworth, and R. D. Sandberg. Feedback control of vortex shedding using a resolvent-based modelling approach. Journal of Fluid Mechanics, 897:A26, 2020. [16] C. Leclercq, F. Demourant, C. Poussot-Vassal, and D. Sipp. Linear iterative method for closed-loop control of quasiperiodic flows. Journal of Fluid Mechanics, 868:26–65, 2019. [17] T.-Y. Lin, H.-Y. Hsieh, and H.-C. Tsai. A target-fixed immersed-boundary formulation for rigid bodies interacting with fluid flow. Journal of Computational Physics, 429:110003, 2021. [18] Q. Liu, Y. Sun, C.-A. Yeh, L. S. Ukeiley, L. N. Cattafesta, and K. Taira. Unsteady control of supersonic turbulent cavity flow based on resolvent analysis. Journal of Fluid Mechanics, 925:A5, 2021. [19] M. Luhar, A. S. Sharma, and B. J. McKeon. Opposition control within the resolvent analysis framework. Journal of Fluid Mechanics, 749:597–626, 2014. [20] B. J. McKEON and A. S. SHARMA. A critical-layer framework for turbulent pipe flow. Journal of Fluid Mechanics, 658:336–382, 2010. [21] A. Padovan, S. E. Otto, and C. W. Rowley. Analysis of amplification mechanisms and cross-frequency interactions in nonlinear flows via the harmonic resolvent. Journal of Fluid Mechanics, 900:A14, 2020. [22] E. Pickering, G. Rigas, O. T. Schmidt, D. Sipp, and T. Colonius. Optimal eddy viscosity for resolvent-based models of coherent structures in turbulent jets. Journal of Fluid Mechanics, 917:A29, 2021. [23] M. QUADRIO, P. RICCO, and C. VIOTTI. Streamwise-travelling waves of spanwise wall velocity for turbulent drag reduction. Journal of Fluid Mechanics, 627:161–178, 2009. [24] J. Rabault, M. Kuchta, A. Jensen, U. Réglade, and N. Cerardi. Artificial neural networks trained through deep reinforcement learning discover control strategies for active flow control. Journal of Fluid Mechanics, 865:281–302, 2019. [25] D. Sipp. Open-loop control of cavity oscillations with harmonic forcings. Journal of Fluid Mechanics, 708:439–468, 2012. [26] C. S. Skene, C.-A. Yeh, P. J. Schmid, and K. Taira. Sparsifying the resolvent forcing mode via gradient-based optimisation. Journal of Fluid Mechanics, 944:A52, 2022. [27] D. Son and H. Choi. Iterative feedback tuning of the proportional-integral differential control of flow over a circular cylinder. IEEE Transactions on Control Systems Technology, 27(4):1385–1396, 2019. [28] C.-A. Yeh and K. Taira. Resolvent-analysis-based design of airfoil separation control. Journal of Fluid Mechanics, 867:572–610, 2019. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88196 | - |
| dc.description.abstract | 本研究旨在應用閉迴路流場控制降低圓柱於均勻流場中進行簡諧震盪產生的升力波動。通過此不可壓縮流的數值模擬的時間平均基流,可將於圓柱附體座標系下的納維-斯托克斯方程式進行線性化。再利用預解分析推導出此流場的線性系統模型,藉此設計出兩個線性反饋控制方案。首先,採用迴路整型法(loop-shaping method)設計出可最大化穩定裕度及抵抗來自週期性邊界條件的干擾的強韌控制器。數值模擬結果顯示, 此控制方案可減少升力波動達5.7%。再者,引入模型參考自適性控制(model reference adaptive control)以處理系統因加入控制器帶來的時變化。本研究採用直接型控制以直接更新時變的自適應控制增益。結果顯示,自適應控制成功降低了30.9%的升力波動。 | zh_TW |
| dc.description.abstract | In this study, closed-loop flow control is implemented in order to attenuate the lift fluctuation of a circular cylinder oscillating harmonically in a uniform stream. Through the numerical simulation of the incompressible flow around the oscillating cylinder, a time-invariant base flow is obtained by averaging the flow over time to linearize the incompressible Navier-Stokes equations in the cylinder-fixed frame. A resolvent-analysis-based model derived from the linearized equations is used to design two linear feedback control schemes. First, the loop-shaping method is adopted to design a robust controller that maximizes the stability margin and rejects the disturbance imposed by the periodic boundary condition. The simulation shows this control scheme can reduce the lift fluctuation by 5.7%. Furthermore, the model reference adaptive control is introduced to deal with time-varying linear plant due to the addition of the controller. A direct approach of this control is adopted to directly update the time-varying adaptive control gains. The results show that the adaptive controller successfully reduce the lift fluctuation by 30.9%. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-08T16:43:56Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-08-08T16:43:56Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgements i
摘要 iii Abstract v Contents vii List of Figures ix Denotation xi Chapter 1 Introduction 1 1.1 Flow Control Methods . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Resolvent Analysis in Fluid Dynamics . . . . . . . . . . . . . . . . . 3 1.3 Model-based Feedback Flow Control . . . . . . . . . . . . . . . . . 4 Chapter 2 Plunging Oscillation of a Circular Cylinder at a Low Reynolds Number 7 2.1 Problem Setup and Numerical Method . . . . . . . . . . . . . . . . . 8 2.2 Lift and Drag Coefficient . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3 Lock-in Phenomenon . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Chapter 3 Modal Analysis and Control Methods 15 3.1 Resolvent Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.2 Dynamic Model of SISO system . . . . . . . . . . . . . . . . . . . . 20 3.3 Characteristics of Closed-Loop Transfer Functions and Loop-shaping Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.4 Model Reference Adaptive Control . . . . . . . . . . . . . . . . . . 26 Chapter 4 Result and Discussion 29 4.1 Loop-Shaping Method . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.2 Model Reference Adaptive Control . . . . . . . . . . . . . . . . . . 33 4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Chapter 5 Conclusions and remarks 39 References 43 | - |
| dc.language.iso | en | - |
| dc.subject | 強韌控制 | zh_TW |
| dc.subject | 流場控制 | zh_TW |
| dc.subject | 預解分析 | zh_TW |
| dc.subject | 自適性控制 | zh_TW |
| dc.subject | Adaptive control | en |
| dc.subject | Flow control | en |
| dc.subject | Resolvent analysis | en |
| dc.subject | Robust control | en |
| dc.title | 簡諧震盪圓柱流場之閉迴路流體控制 | zh_TW |
| dc.title | Closed-loop Flow Control on Harmonic Oscillation of a Circular Cylinder | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 周逸儒;張鈞棣;李宇修 | zh_TW |
| dc.contributor.oralexamcommittee | Yi-Ju Chou;Chun-Ti Chang;Yu-Hsiu Lee | en |
| dc.subject.keyword | 流場控制,預解分析,強韌控制,自適性控制, | zh_TW |
| dc.subject.keyword | Flow control,Resolvent analysis,Robust control,Adaptive control, | en |
| dc.relation.page | 46 | - |
| dc.identifier.doi | 10.6342/NTU202301391 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-07-19 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf | 3.55 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
