
doi: 10.6342/NTU202301391

國立臺灣大學工學院機械工程學系

碩士論文

Department of Mechanical Engineering

College of Engineering

National Taiwan University

Master Thesis

簡諧震盪圓柱流場之閉迴路流體控制

Closed-loop Flow Control on Harmonic Oscillation of a
Circular Cylinder

林靜得

Ching-Te Lin

指導教授: 蔡協澄博士

Advisor: Hsieh-Chen Tsai, Ph.D.

中華民國 112年 6月

June, 2023



doi: 10.6342/NTU202301391





doi: 10.6342/NTU202301391

Acknowledgements

能夠準時完成畢業論文是每個研究生的夢想，但在碩一結束跟老師提出這篇論文的初步想

法時，我其實心中可以說是毫無把握，原因無他，想要在圓柱流場實現閉迴路控制是一個我從大

四就想要實現的作法，但翻遍論文跟反覆檢視任何可能發生錯誤的地方後，我依然連最基本的

Vortex Shedding都無法完全控制。因此有幸按照文章內的方法達成初步的結果，雖然結果仍然不

近完美，依然有改進的空間，但能夠達成這個里程碑，肯定要感謝很多人。首先要感謝從大學專

題就開始指導我的蔡協澄老師，也可以說是我踏入計算流體以及流體控制研究的啟蒙者，沒有老

師每週 meeting的鼓勵跟建議我應該沒有辦法完成這篇論文，更不用說在寫完這篇致謝文的一個

月後去讀博了。

另外也要感謝這次論文口試的口委教授們，感謝周逸儒教授、張鈞棣教授以及李宇修教授願意在

百忙之中撥空擔任我的口試委員，非常感謝教授們在學術上的建議，以及寫作上的改進方向，讓

我有機會將這篇論文完整出版。感謝實驗室學長學弟妹們的協助，謝謝新雨學長帶我進入 CFD的

世界，謝謝丁豪學長跟我一起完成大四時的研究，以及昱銘學長在實驗室協助大大小小的事情。

感謝旻霖學長一起完成了碩一的研究，也在申請的路上互相鼓勵，祝我們都可以順利完成博班學

業。感謝昱豪，王昱，哲維，立瑄這兩年一起在實驗室討論研究，以及給我在教學上的建議。

感謝遠在員林的父母以及家人，沒有你們 24 年的支持這條路我不可能走得下去。

林靜得謹記

中華民國 112年 7月 15日

i



doi: 10.6342/NTU202301391ii



doi: 10.6342/NTU202301391

摘要

本研究旨在應用閉迴路流場控制降低圓柱於均勻流場中進行簡諧震盪產生

的升力波動。通過此不可壓縮流的數值模擬的時間平均基流，可將於圓柱附體

座標系下的納維-斯托克斯方程式進行線性化。再利用預解分析推導出此流場

的線性系統模型，藉此設計出兩個線性反饋控制方案。首先，採用迴路整型法

(loop-shaping method)設計出可最大化穩定裕度及抵抗來自週期性邊界條件的干擾

的強韌控制器。數值模擬結果顯示,此控制方案可減少升力波動達 5.7%。再者，

引入模型參考自適性控制 (model reference adaptive control)以處理系統因加入控制

器帶來的時變化。本研究採用直接型控制以直接更新時變的自適應控制增益。結

果顯示，自適應控制成功降低了 30.9%的升力波動。

關鍵字：流場控制、預解分析、強韌控制、自適性控制
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Abstract

In this study, closed-loop flow control is implemented in order to attenuate the lift

fluctuation of a circular cylinder oscillating harmonically in a uniform stream. Through

the numerical simulation of the incompressible flow around the oscillating cylinder, a

time-invariant base flow is obtained by averaging the flow over time to linearize the in-

compressible Navier-Stokes equations in the cylinder-fixed frame. A resolvent-analysis-

based model derived from the linearized equations is used to design two linear feedback

control schemes. First, the loop-shaping method is adopted to design a robust controller

that maximizes the stability margin and rejects the disturbance imposed by the periodic

boundary condition. The simulation shows this control scheme can reduce the lift fluctua-

tion by 5.7%. Furthermore, the model reference adaptive control is introduced to deal with

time-varying linear plant due to the addition of the controller. A direct approach of this

control is adopted to directly update the time-varying adaptive control gains. The results

show that the adaptive controller successfully reduce the lift fluctuation by 30.9%. 。

Keywords: Flow control, Resolvent analysis, Robust control, Adaptive control
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Chapter 1 Introduction

Flow control is a new-rising research topic due to its applications in a wide range

of engineering systems (such as drag reduction of the bluff body and channel flow, lift

enhancement of aircraft design, and laminar-turbulent transition). Particularly, feedback

flow control has the potential to achieve the goals of robustness and adaptiveness in prac-

tical application. To accomplish the performance requirement, feedback flow control uti-

lizes multidisciplinary knowledge, including dynamic systems, control theory, and fluid

mechanics. To my best knowledge, this field’s research effort mainly focuses on flow

fields with stationary boundaries. However, most engineering systems are regarding mov-

ing boundaries, such as a rotating wind turbine. Hence, there is an urge to explore possible

flow control methods for such cases. Considering the complexity of free-moving rigid

body boundaries and the computational cost of the required fluid-structure-interaction

(FSI) simulation, a periodic moving boundary is chosen to study in this thesis.

1.1 Flow Control Methods

Flow control can be, in general, divided into two categories: passive and active con-

trol. Passive flow control utilizes the modification of surfaces to achieve control require-

1
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ments. Several researchers utilized passive methods for the drag reduction of the channel

flow. Endrikat et al.[6] showed the optimal shape of riblets to achieve drag reduction with

the Kelvin-Helmholtz instability. In addition, Gómez-de-Segura & García-Mayoral. [11]

showed that permeable substrates are a possible solution to reduce turbulent drag.

On the other hand, active flow control methods alter the flow field by employing actuators

normally placed on the boundaries. Open-loop controls, which apply harmonic forcing via

direct body forces or thermal actuators, have shown profound success in drag reduction.

Gatti & Quadrio[9] investigated the influence of increasing Reynolds number on the skin-

friction drag reduction via a spanwise-harmonic forcing on the walls of a channel flow.

Moreover, Quadrio et al. [23] reported that only a proper speed of forward-traveling wave

of the wall oscillation affects drag reduction. Conversely, the backward-traveling wave

has the reducing-drag effect at any speed. Besides the application of the internal flow,

previous studies also showed the potential of the external flow. Sipp [25] indicated that

the high-frequency harmonic forcing on the laminar cavity flow is capable of stabilizing

the global mode, which behavior is described by the Stuart–Landau equation.

Moreover, the actuator output could also be determined by the feedback laws about

a chosen measurement, such as the transverse velocity in the cylinder wake. These feed-

back flow control methods could be designed based either on model-free approaches or

an identified plant, which captures the major dynamics of the fluid flows. First of all, the

model-free approaches are widely used in either the internal flow or the external flow.

In internal flow, the most well-known feedback flow control was the opposition control,

which sets up a blow/suction wall boundary condition to oppose the wall-normal velocity

at a certain distance from the wall [2][13]. The methodology creates a ”virtual” wall in the

2
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near-wall region to lift the near-wall cycle and successfully reduce drag. As for the exter-

nal flow, Son and Choi [27] performed the iterative tuning on the proportional-integral-

differential (PID) controller to suppress the vortex shedding behind the circular cylinder

under the Reynolds number of 60 and 100. With the optimization process, they ended

with successful results in attenuating lift fluctuation and reducing mean drag. Recently,

neural-network-based methods are gaining more attention due to the rising of computa-

tional power in the past decade. Rabault et al.[24] proposed a deep reinforcement learning

scheme to discover the control strategies capable of stabilizing the Kármán vortex with

the Reynolds number of 100. They achieved the desired outcome of stabilization of vortex

shedding and the drag reduction of 8% with limited input mass flow rates of the actuators

on the circular cylinder.

Secondly, the model-based controller synthesis relies on the identification of the plant to

characterize the input-output relation of a given flow field. Typically, a linear model is

preferred due to the commensurate control theories compared to the nonlinear control.

In this thesis, the Resolvent operator, widely adopted in the community of flow control

groups, is utilized to quantify the linear model in the wake flow. Hence, in the next sec-

tion, Resolvent analysis will be introduced along with the reviews of previous research

works done by this method.

1.2 Resolvent Analysis in Fluid Dynamics

Resolvent analysis has been proven as a powerful tool for identifying the amplifica-

tion mechanism in the fluid system. McKeon and Sharma [20] first treated the nonlinear

convective term in the linearized Navier-Stokes equation as nonlinear forcing to formu-

late the Resolvent analysis of a turbulent pipe flow. In this way, Resolvent analysis can be

3
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represented as an input-output relation between nonlinear forcing and flow response. By

examining the pseudo spectrum of Resolvent operator, they revealed the most amplified

mode of wall-bound turbulence. This concept was also used in the study of opposition

control to interpret the control capacity based on the mode revealed by Resolvent analysis

[19]. Yeh and Taira [28] further extended this method to separation flow over an airfoil.

They presented an open-loop control methodology for a thermal actuator on the leading

edge, which implements periodic excitation on the optimal frequency based on the Resol-

vent analysis of time-averaged flow. Similar methods [18] [22] were also performed in the

cavity flow and turbulent jets. Padovan et al. [21] purposed harmonic Resolvent to tackle

the issue of a time-periodic base flow. The paper indicated the cross-frequency structure

with the harmonic Resolvent. Recently, Skene et al. [26] proposed the L1 norm-based

optimization on figuring out the spatially sparse forcing mode, providing the choice of

actuator locations.

According to the former studies, the Resolvent analysis can reveal the critical structure of

the fluid system and indicate the optimal frequency and position to implement open-loop

control. Furthermore, the method provides a critical linear plant for the feedback con-

troller design in the next section.

1.3 Model-based Feedback Flow Control

Model-based feedback flow control is advantageous for stability analysis with the

understanding of the system. Therefore, this study focuses on designing a feedback con-

troller based on the linear model. However, the intrinsic characteristics of fluid dynamics

consist of high dimensions and nonlinearity. For an actual system, these properties result

4
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in unmodeled dynamics and disturbance. Consequently, robust control and adaptive con-

trol are often utilized to adjust the controller to react with the real fluid system. First, robust

control is favored in the flow control community for being able to reject disturbance from

either the unmodeled nonlinearity in the predetermined linear plant or the measurement

noise in the experimental studies. In recent decades, researchers leveraged this theory to

develop a robust flow controller in various fluid flows. Flinois and Morgans (2016)[8]

obtained the linear reduced-order model by the Eigensystem Realization Algorithm to

design the controller for the unsteady flow of a bluff body. With the linear model, the

controller was then devised via the H∞ loop-shaping method. Jin et al.[15] showed that

the Resolvent-based model was also available for the controller synthesis. They presented

a loop-shaping approach to the vortex shedding suppression’s controller design problem.

Leclercq et al. (2019)[16] developed an iterative algorithm by updating the mean flow

required for the Resolvent-based linear model. They successfully suppressed the intrinsic

oscillation in the open cavity flowwithin five stages. The idea of updating the linear model

to adjust to the unknown plant is similar to the adaptive control concept. Hence, several

previous studies of adaptive flow control have been conducted to investigate the capacity

of adaptive control when interacting with fluid dynamics. Fabianne et al. [7] obtained

an adaptive controller via the adaptive filtered-X least-mean-squares (FXLMS) algorithm

to adapt to various Reynolds numbers to diminish the two-dimensional TS wave growth.

Hu and Morgans[12] presented an alternative adaptive algorithm, the LMS algorithm, for

attenuating the unsteady loading of high-rising buildings immersed in the atmospheric

boundary layer. Furthermore, online-estimating models were explored to enhance the

adaptivity of the controller. Deem et al. [5] applied the online Dynamic Mode Decompo-

sition (DMD) to adjust the estimated model for the boundary layer separation control. To

5
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summarize, these successes in applying advanced control theory motivate us to explore

effective control approaches by extending the well-studied cases of stationary boundaries

to the periodic-oscillating boundaries .

This paper will focus on designing a feedback flow controller on a plunging cylinder under

the Reynolds number of 100. This research aims to attenuate the additional lift fluctuation

caused by the plunging motion. In chapter 2, the complete analysis of the flow response

of a plunging cylinder will be presented, including the mean and fluctuation of the force

coefficients. In chapter 3, the estimated model and corresponding control methods will be

introduced. The modal analysis of the given flow field is first analyzed by the Resolvent

analysis. The instability will be investigated through the analysis to provide modeling

information for control designing problems in the next stage. Moreover, two control the-

ories have been applied to fulfill the objective: robust and adaptive control. In chapter

4, the comprehensive comparative study between the two control approaches and the un-

controlled flow will be examined thoroughly. Lastly, chapter 5 concludes this thesis and

proposes future works.

6
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Chapter 2 Plunging Oscillation of a

Circular Cylinder at a Low

Reynolds Number

In this thesis, a transversely oscillating circular cylinder is chosen as an example

of periodic-moving boundaries. The harmonic motions of the boundaries introduce addi-

tional fluctuation to the flow field, which is originally unsteady due to the vortex shedding.

Overall, the proposed control schemes in the following chapter aim to alleviate the fluctua-

tion. Before designing the suitable controller, the flow physics behind a plunging cylinder

should be examined to determine the proper setting for the numerical experiment.

In this chapter, the parametric study regarding the plunging cylinder is discussed in order

to determine suitable examples to implement feedback actuators on the cylinder. Har-

monic oscillations of bluff bodies have been widely investigated to understand their un-

steady response in various industrial applications. Choi et al.[3] demonstrated the surging

and plunging oscillations of an airfoil at a Reynolds number of 300. They showed the

lock-in phenomenon in two types of harmonic motions, as well as its effect on the force

coefficient. Bao et al.[1] further examined the effect of a transversely oscillating cylin-

der and of two tandem cylinders. However, the data in the paper about a single oscillating

cylinder is inadequate in the search for ideal parameters of plunging motions to implement

7
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control on it. Therefore, it is inevitable that a detailed investigation regarding the plunging

amplitudes and frequencies has to be performed for the completeness of this thesis. The

force and unsteady flow structure under harmonic oscillation are presented in the paper in

order to quantify the uncontrolled flow. The result is then compared with the controlled

flow in the following two chapters. In section 2.1, the problem setup is discussed, and the

applied numerical method is also presented. In section 2.2, the mean forces and the fluctu-

ation are shown, which are significantly altered by the unsteady motion of the rigid-body

boundary. Lastly, in section 2.3, the lock-in phenomenon is discussed. Within the lock-in

region, the flow response of the circular cylinder synchronizes with the unsteady motion

under a specific setting.

2.1 Problem Setup and Numerical Method

A circular cylinder plunging in an unbounded free stream serves as an example of

periodic motion in this paper. Numerical simulation is utilized to obtain the flow field at

a low Reynolds number Re = U∞D/ν = 100, where U∞ is the incoming flow velocity,

D is the diameter of the cylinder, and ν is the kinematic viscosity. Among a plethora of

industry-oriented cases of periodic-moving boundaries, the case of plunging cylinder is

a simple but general case to study as it possesses several features of an unsteady flow,

including separation, vortex shedding, and shear layer. Therefore, one could expect that

the result of this paper can be applied to various other flow fields at lowReynolds numbers.

Due to the lowReynolds number, the flow around the cylinderwas quasi-two-dimensional.

Hence, the simulation could be conducted in two dimensions, which is set to be the cross-

section of the cylinder. For the numerical method, the immersed boundary projection

method (IBPM) developed by Colonius and Taira[4] is adopted, which utilizes a null space

8
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Figure 2.1: Schematic figure of 3-level multi-domain method

approach and multi-domain far-field boundary condition. IBPM is implemented to solve

the two-dimensional incompressible Navier-Stokes in the non-inertial frame of the cylin-

der derived by Lin et al.[17]. Vorticity is chosen as the primary variable to solve, and the

no-slip boundary condition was satisfied by exerting body forces on the boundary points.

The far-field boundary condition is by setting the vorticity as zero.

∂ωn

∂t
= ∇×

[
(un − Up)× ωn

]
− 1

Re
∇× (∇× ωn)

un = Up on the cylinder

un → x̂, ωn → 0 at infinity

,

(2.1)

where Up is the plunging velocity to be described below, and x̂ is the unit vector. The

simulation is performed in six levels of the computation domain, with the grid-coarsifying

factor of 2 at each level. Figure 2.1 shows the schematic graph of the multi-domain. The

periodically plunging cylinder with diameter D in uniform incoming flow U∞ is placed

9
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in the first (finest) domain with a length of 6D in the streamwise direction and a width

of 3D in the transverse direction. The center of the cylinder is placed at 1D from the left

boundary and 1.5D from the bottom boundary. The numerical scheme is discretized with

an equal grid spacing ∆x = ∆y = 0.05D. The time-marching step ∆t is set to keep the

CFL number, C = umax∆t
∆x

, less than 0.4.

The periodic motion of the cylinder is defined by the plunging amplitude σp and frequency

fp. The Strouhal number for plunging is defined as Stp = fpD/U∞. Hence, the kinematic

equation of the cylinder isUp = σpωp cos(ωpt)ŷ, whereωp = 2πStpwas the dimensionless

angular velocity, and ŷ was the transverse unit vector. In sections 2.2 and 2.3, the effect of

different settings of σp and fp on the force coefficient and the lock-in phenomenon, will

be discussed.

2.2 Lift and Drag Coefficient

In this section, the induced force exerted on the cylinder due to the plunging motion

is investigated. In general, the force response is greatly influenced by the lock-in phe-

nomenon from the perspective of lift or drag coefficient. The lift CL and drag coefficient

CD are defined as

CL =
Fy

1
2
ρU2

∞
, CD =

Fx

1
2
ρU2

∞
, (2.2)

where Fx, Fy are the total forces exerted on the cylinder in the x and y directions, respec-

tively, and ρ stands for the density. To eliminate the transient response in computation,

the data is collected for 50 periods of plunging oscillation after the first 10 periods.

Discussion of the time-series data would focus mainly on the time average and its stan-

dard deviations. The two statistics figures represent the total forces and the fluctuation
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Figure 2.2: Time-average C̄L C̄D and standard deviation σL, σDof lift and drag coefficient
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respectively, which could later be indicated as the objective of controlled flow.

First, considering the time-average force coefficient, it is apparent that the time-average

lift coefficient C̄L in figure 2.2 does not show a significant trend regarding the various

sets of plunging amplitudes and frequencies. This result could be expected due to the

symmetry oscillating motion in the transverse direction. Therefore, the long-term mean

of the lift force is expected to approach zero regardless of plunging amplitudes and fre-

quencies. However, the drag force shows a disparate outcome. Mean drag force reaches

its maximum around the shedding frequencies Stvs at various amplitudes. Then, a grad-

ual increment can be seen when the plunging frequency Stp is larger than the shedding

frequency, especially in the plunging amplitude σp of 0.6.

Second, the standard deviation in figure 2.2 also shows different stories on lift and drag

coefficients. The standard deviation of lift force, denoted as σL, amplifies greatly while

the plunging frequency is larger than the natural shedding frequency. Moreover, the am-

plification mechanism strengthens with respect to the increase in the plunging amplitudes.

The deviation of drag force has an overall increase across different frequencies. Although

two peaks are observed near natural shedding frequency Stvs and the 0.7 of Stvs, the

absolute value is far smaller than the deviation of the lift coefficient. The result shows

that the major fluctuation induced by the oscillating motion strengthens the lift coefficient

fluctuation. To conclude, the fact provides a solid reason to set the control objective as

attenuating lift coefficient fluctuation over the control horizon.

2.3 Lock-in Phenomenon

In the previous section, I have shown that both force coefficients strongly correlate

with the natural shedding frequency. This effect is known as the lock-in phenomenon.
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Figure 2.3: Plunging cases with lock-in (a,b) and without lock-in(c). Plunging amplitude
σp is fixed to 0.1, and the phase portrait and the spectrum of lift coefficient are shown with
respect to various plunging frequencies, where (a) Stp/Stvs = 0.9375,(b) Stp/Stvs =
1.0625,(c) Stp/Stvs = 1.5. Stvs = 0.16

In general, the lock-in phenomenon is defined as the dominant frequencies of the flow

response are only the harmonics of the oscillating frequency. In figure 2.3, three repre-

sentative cases are displayed. The cases of normalized plunging frequency Stp/Stvs =

0.9375 and 1.0625 are examples of limit-cycle-type trajectories in the phase portrait of

the lift coefficient versus the normalized displacement y(t)/D. The two cases are cate-

gorized as the lock-in phenomenon. Conversely, the cases of Stp/Stvs = 1.5 showed a

quasi-periodic-type trajectory in the phase portrait. Apparently, the flow response con-

sists of more than a single harmonic frequency. It is also revealed in the spectrum of the

lift coefficient. In the lock-in case, the dominant frequencies are only located in the har-

monics of the plunging frequencies, while the non-lock-in case shows multiple dominant

frequencies along the whole spectrum.

For further discussion on the lock-in phenomenon, a criterion based on the dominant fre-

quencies as follows is adopted. The dominant frequencies are chosen based on the mag-

nitude of the lift spectrum, which is larger than 0.001. If the differences between the

dominant frequencies and the harmonics of the plunging frequencies are less than 0.001,

the case is defined as the lock-in phenomenon. Figure 2.4 shows the region of the lock-in

13



doi: 10.6342/NTU202301391

0.5 1 1.5
0

0.2

0.4

0.6

0.8

Lock-in

Non Lock-in

Figure 2.4: Lock-in area with respect to amplitudes σp and normalized frequencies
Stp/Stvs

cases with respect to the plunging amplitudes and frequencies. The lock-in region con-

centrated at the natural shedding frequency Stvs. The area widens with the increase of the

plunging amplitude σp. In general, the oscillation of the circular cylinder only induces a

lock-in phenomenon near the shedding frequency.

To conclude, since the aim of this thesis is to show the capability of feedback control to

stabilize the unsteady flow, a non-lock-in case is preferred with its intrinsic complexity and

generality compared to the lock-in cases. Hence, the case of σp = 0.1 and Stp/Stvs = 1.5

is chosen to demonstrate the effect of the control laws proposed in the following chapters.
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Chapter 3 Modal Analysis and

Control Methods

In this chapter, the linear model analysis and control methods for the plunging cylin-

der are elucidated in detail. First, the modal analysis of the plunging cylinder wake flow

is demonstrated and displayed in section 3.1. Specifically, for modal analysis, the Resol-

vent analysis is conducted to study the linear amplification mechanism of the flow field.

Psuedospectrum and corresponding modes are shown in the section. After formulating

the Resolvent operator, the dynamic model based on the operator can thus be constructed

and forms a single-input-single-output system in section 3.2 for the following discussion.

Furthermore, the control methods utilized in this thesis are elucidated in section 3.3 and

3.4. In section 3.3, the closed-loop characteristics are first shown with the critical transfer

functions from the disturbance input to the system output. The result can thus be applied

in the robust controller design via the loop shaping method. Lastly, the model reference

adaptive control is introduced in section 3.4 to achieve the adaptive control for the oscil-

lating flow field.
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3.1 Resolvent Analysis

Resolvent analysis is utilized to establish the input-output relation of a linear system.

Resolvent analysis is able to reveal the amplifying mechanism of the system under differ-

ent frequencies of external forcing. In this paper, the linear system is constructed based

on the linearization of non-inertial vorticity equation. In a non-inertial frame, the vorticity

equation (2.1 ) was shown in the previous chapter. With averaged flow un(x), ωn(x) and

given velocities of boundaries Up(t), we can decompose the nonlinear PDE in equation(

2.1 )to linear periodic part and nonlinear part as equation( 3.1).

∂ω′
n

∂t
= L(un, ωn)ω

′
n +N(un, ωn, ω

′
n, Up), (3.1)

where L(un, ωn)ω
′
n = ∇×

[
un × ω′ + u′n × ωn − 1

Re
∇× ω′

n

]
and N(un, ωn, ω

′
n, Up) =

∇×
[
(un − Up)× ω + (u′n − Up)× ω′

n − 1
Re
∇× ωn

]
. If we further regard the nonlinear

term N(un, ωn, ω
′
n) in equation( 3.1 ) as a forcing term in the linear system, the nonlinear

system can be modeled as a linear system coupled with a nonlinear forcing fu shown in

equation (3.2).

∂ω′
n

∂t
= L(un, ωn)ω

′
n + fu

u′n(xb) = Up, ω
′
n, u

′
n → 0, |xr| → ∞,

(3.2)

where xb is the solid boundary. Therefore, by spatially discretizing the vorticity field, the

system can be denoted as the standard state-space form of the dynamic system.

dx

dt
= Ax+ f

where x = ωi,

(3.3)
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Since the linear system matrix A is time-invariant, the frequency response can be estab-

lished by taking the Fourier transform of the linear system. Hence, the input-output rela-

tion between flow response and forcing at the given frequency could be constructed.

x̂(ω) = (−iω − A)−1f̂(ω)

x(t) =

∫ ∞

−∞
x̂(ω)e−iωtdω

f(t) =

∫ ∞

−∞
f̂(ω)e−iωtdω

(3.4)

By evaluating the Resolvent matrix R(ω) = (iω − A)−1 in equation (3.4), the maximal

amplification mechanism can be revealed via singular value decomposition (SVD) of the

Resolvent matrix. Through SVD, the low-rank structure of the Resolvent matrix can be

further built to shed light on the dominant amplifying modes and frequencies in the given

flow field. Thus, the Resolvent can be approximated as the following equation.

R(ω) = (−iω − A)−1 ≈ ϕm×kσ(ω)k×kψ
∗
k×m (3.5)

ϕ : first k columns of right singular vector , acting as response mode

σ(ω) : first k terms of singular value , acting as gain of transfer function

ψ∗ : first k columns of left singular vector , acting as forcing mode

In general, the linear operatorA, which is linearized based on the Navier-Stokes equation,

is non-normal. The non-normality causes the shift of the gain of the pseudospectrum from

the eigenspectrum. This outcome leads to different amplifying frequencies compared with

the most unstable eigenvalue of the linear operator A. Therefore, Resolvent analysis is

essential to discover the response perturbed by the forcing, instead of simply computing

the eigenspectrum and its mode. However, due to the low-Reynolds number constraint in
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Figure 3.1: Contour plot of σ in different ω = ωr + iωi. The red dash line denotes the
peak frequency St∗ in Resolvent gain

.

this thesis, the pseudospectrum of the Resolvent operator presented in figure 3.1 does not

possess a strong non-normal property. For the cases with a high-Reynolds number, the

non-normal effect will be expected to be revealed with a similar analyzing procedure.

By examining the pseudospectrum and the modes, several characteristics of the flow field

are revealed , which are keys to the control design in the following section. First, the

first singular value σ1 on the complex plane is compared with the second singular value

σ2. Apparently, the magnitude of σ1 is an order larger than σ2. It shows that the input-

output relation could be approximated as the product of the first response and forcing

mode times the gain σ1ϕ1ψ
∗
1 . Second, the distribution of σ1 shows a local maximum near

the most unstable eigenvalue of linear operator A and stretches along the ωi axis with a

gradual descent. On the other hand, the magnitude of σ1 decays fast along the ωr axis.

Lastly, one thing should be clarified. Since the system is still stable, there is no need to

perform the finite-time approach, which is adopted in the study of the Resolvent analysis

on a separated flow by Yeh and Taira (2019) [28].

The response modes and forcing modes are shown in figure 3.2. From the forcing mode

of St/St∗ = 1 at which the input force amplifies the most, the peak in the contour plot is
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Figure 3.2: The leading response and forcing modes’ real part at various perturbed fre-
quencies St for Im(ω) = 0, St/St∗ = (a)0.4, (b)1.0, ; and (c)1.9 with St∗ = 0.1822.
Positive and negative vorticity contour levels are plotted respectively in solid and dash-
dotted curves.
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close to the trailing separation point. This fact supports the choice of actuation position

on the separation point, θ = 110◦ , from the stagnation point to the actuating position.

Moreover, the response mode on the peak frequency indicates a wake-type structure of

the perturbed system. The structure implies the von-Karman wake behind the plunging

cylinder.

To conclude, the linearized model sheds light on the critical amplification mechanism

in the flow system to excite the instability phenomenon. However, due to its intrinsic

characteristic of spatially discretized schemes, the system is high-dimensional, which is

hard to apply in the control synthesis. Therefore, A reduced-order model is required to

approximate the response of the high-dimensional system. The method will be presented

in the section 3.2.

3.2 Dynamic Model of SISO system

In this section, the single-input-single-output (SISO) system is established to synthe-

size a controller to reject the disturbance introduced by the periodic motion of the rigid

bodies. Forcing input in the given system will be modeled as body forces exerted on the

fluid grids via a Gaussian function. In the control setup, the fluid system is forced by a

pair of antisymmetric forces on the top and bottom sides of the cylinder, which mimics

the effect of zero-net-mass actuators. The two body forces of blow/suction actuators are

written in the following form.

f = B(x, y)fa,

B(x, y) =

cos θc(g(σg, r, θc)− g(σg, r,−θc))

sin θc(g(σg, r, θc) + g(σg, r,−θc)),

 (3.6)

20



doi: 10.6342/NTU202301391

Figure 3.3: Schematic graph and computational domain with plunging cylinder

where fa is the control amplitude generated by the feedback controller. θc is the angle

between the actuators and the leading edge. g(σ, r, θc) is the unit 2D Gaussian function

with width σg and centered at (r, θc).

g(σg, r, θc) =
1

2πσ2
exp

(
− (x− r cos θc)2 + (y − r sin θc)2

2σ2
g

)
(3.7)

In this thesis, the actuator is located near the separation point of (r, θc) = (0.6, 110◦),

while the sensor is placed at x = 1.0D. The sensor is a velocity sensor to feedback

the transverse velocity v to the designed controller. To simplify the discussion regarding

various control methods, the sensor location is fixed at location 1D behind the cylinder.

Since the state-space model is derived in the form of vorticity, output matrices C should

be constructed by solving the Poisson equation. Lastly, the SISO system can be denoted

as the following form.

dx

dt
= Ax+Bfa

y = Cx

ŷ(s) = P (s)f̂a(s)

(3.8)
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In general, the transfer function P (s) is high-dimensional due to the spatial discretiza-

tion. However, it causes potential difficulties when computing control designing prob-

lems. Consequently, the reduced-order model (ROM) can be derived from the frequency

response data obtained by the Resolvent analysis. MATLAB toolbox fidfrd is applied to

identify the ROM P̃ (s) with the dimension of N , which is limited to the order of 10.

With the ROM P̃ (s), robust control theory can then be introduced to design the feedback

controller in the next section 3.3.

3.3 Characteristics of Closed-LoopTransfer Functions and

Loop-shaping Method

The core concept of robust control is to design an optimal linear controller which is

able to reject the disturbance caused by the uncertainty of the model. The method is espe-

cially widely used in the area of flow control because of the intrinsic nonlinear property

of fluid dynamics. Our model is built based on the linearization of a nonlinear governing

equation while treating the nonlinear part as an internal forcing. Therefore, the model is

born to interact with the uncertainty of nonlinearity. By decomposing the forcing f into

the external and internal forcing, fa and fu, the nonlinear system can be represented by a

linear system coupled with uncertainty.

dx

dt
= Ax+Bfa + fu

y = Cx

Y (s) = C(iω − A)−1
(
Bfa(s) +N∆(x)

) (3.9)

The block diagram of the uncertain model is shown in figure 3.4. By connecting the con-
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Figure 3.4: Block diagram of the model with uncertainty

K(s) P (s)
ur e

d
y

+

Figure 3.5: Block diagram of the closed-loop system

troller in the positive feedback loop, the uncertainty can be treated as the input disturbance

d. The block diagram with the controllerK is illustrated in figure 3.5, where

u = K(r − y). (3.10)

With the positive feedback loop, the frequency response can be given by

Y =
1

1− PK
(Kr + Pd) (3.11)

In order to suppress the self-sustained oscillation due to the interaction between the Re-

solvent operator and the nonlinear forcing term, we have to first investigate the four key

transfer functions to quantify the effect of the controller to reject disturbance in the frame-

work of a positive closed-loop system. The closed loop is characterized by the four transfer
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functions, y
u

 =

 T PS

KS T


r
d

 , (3.12)

which links the two inputs r, d, to two outputs y, u. The four transfer functions are not in-

dependent of each other. Instead, they are a combination of plant P and controller block

K. To be more specific, two functions are introduced to compose the four transfer func-

tions.

S =
1

1− PK
, T =

PK

1− PK
, (3.13)

where S is called the sensitivity function, and T is called the complementary sensitivity

function. The two functions play important roles in quantifying the amplifying mecha-

nism of the chosen system in response to various frequencies of disturbance. Therefore,

by evaluating the frequency responses of the two functions, one could easily predict the

effect of the linear controller, which will be constructed in the next section.

Specifically, in the paper, the controller’s goal is to attenuate the fluctuation of the lift

coefficient. In the formulation of the Resolvent operator, the nonlinear term along the pe-

riodic term caused by the periodic-oscillating motions is collected in the input disturbance

d. The transfer function from d to y is

Td→y = PS (3.14)

By investigating the spectrum of the nonlinear forcing N∆(x), the goal of attenuating

fluctuation can be achieved by minimizing the gain of Td→y in the identified frequencies,

whereas the nonlinear forcing resulted in peaks in the spectrum of amplitude. The goal of

gain-minimization can be accomplished through the method of loop shaping.

In the loop shaping method, the controllerK is designed to achieve the specific character-
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istics of the four closed-loop transfer functions in the equation (3.12). Before elucidating

the method in the application, theH∞-norm has to be first defined to continue the discus-

sion. The H∞-norm is defined as the maximum modulus of the frequency response. The

infinity norm is established to quantify the robustness of the controlled system considering

various disturbances.

||H||∞ = max
ω∈R

|H(iω)| (3.15)

In this thesis, I adopt the loop-shaping method of Glover & McFarlane (1989) [10]

to design the controller by maximizing the coprime stability margin b.

b = ||

K
I

 (I + PK)−1

[
P I

]
||−1
∞ (3.16)

In general, the margin b represents the robust characteristic of rejecting disturbance input

to the controlled system. Hence, the larger the value is, the more robust the system is

with the designed controller, which is expected to resist the disturbance introduced by the

nonlinear forcing under the Resolvent formulation and, hence, attenuate the fluctuation

sustained by the nonlinear forcing.

The optimization process is performed by the MATLAB toolbox ncfsyn. For the SISO

plant, a compensator weight W should be determined prior to weight the plant with the

control objective.

W (s) = k
a2

(s+ a)2
(3.17)

, where k is the gain of the weighting function, and a is the peak frequencies of the second-

order filter. The parameters, k and a, are devised to achieve a sufficiently low gain of the

closed-loop response on the dominant frequencies of the uncontrolled system, which are

expected to be plunging frequency and its harmonics. The form of the compensator has
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Figure 3.6: Schematic block diagram ofMRAC

been utilized on a stationary circular cylinder in the previous research to attenuate the lift

fluctuation [15].

3.4 Model Reference Adaptive Control

Model reference adaptive control (MRAC) is one class of adaptive control. MRAC

applies the adaptive law to the parameter tuning based on the structure ofModel reference

control (MRC). In MRC, a linear time-invariant system (LTI system) is chosen as the ref-

erence model for a desired output ym under the reference input r. Figure 3.6 shows the

relation between the reference model and the real plant. If the plantGp is a known transfer

function, the model reference control problem becomes a model-matching problem. On

the other hand, if the plant Gp is unknown or we only have mere knowledge about the

relative degree of the transfer function, the adaptive law has to be introduced to solve the
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design problem. Since the Resolvent operator is initially computed based on the uncon-

trolled time average baseflow, the operator is expected to change concerning the additional

controller. This concept is similar to the idea of iterative control performed by Leclercq et

al.(2019)[16]. They updated the controller with respect to the new equilibrium state after

appending the old controller. In MRAC, the concept is similar. The plant is supposed to

be unknown, but a controller will be designed adaptively to minimize the tracking error

e1 = yp − ym for the given reference input r. The Resolvent operator based on the lin-

earization of the baseflow of the stationary cylinder is designated as the reference model.

It is expected that the adaptive controller can synchronize the mean flow of the plunging

case with the unplugging one. Consequently, the fluctuation of the lift coefficient could

be diminished due to the change in the average base flow.

Before examining the effect of adaptive control, an effective adaptive law for estimat-

ing control parameters has to be established. The direct adaptive algorithm is adopted

here, which directly updates the controller parameters θc = [c0, θ
T
1 , θ

T
2 , θ3]

T without first

estimating the unknown plant parameters. The corresponding control law is written as

follows.

up = c0(t)r + θT1 (t)
α(s)

Λ(s)
up + θT2 (t)

α(s)

Λ(s)
yp + θ3(t)yp (3.18)

where up is the control input, yp is the plant output, and the α(s)
Λ(s)

represents the stable filter.

The state-space realization of the equation (3.18) is

ω̇1 = Fω1 + gup,

ω̇2 = Fω2 + yup,

up = θTc ω, ω = [r, ωT
1 , ω

T
2 , yp]

(3.19)
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, where (F, g) is the state-space realization of α(s)
Λ(s)

, which can be conducted by various

canonical forms. Ioannou and Fidan [14] further defined the cost function J , which should

be minimized to achieve the goal of tracking model reference signal.

J(ρ, θ) =
(e∗1 − e1)

2

2m2
s

=
(e∗1 − e1)

2

2(1 + ϕTϕ+ (Wm(s)up)2)
, (3.20)

where ϕ = −Wm(s)ω and e∗1 is the desired error output with the desired feedback gain θ∗c .

By applying the gradient method, the normalized adaptive laws can be written as

θ̇c = −Γ∇Jθ = Γ
e1 − ρ(θTc ϕ+Wmup)

1 + ϕTϕ+ (Wmup)2
ϕsgn(

kp
km

)

ρ̇ = −γ∇Jρ = γ
e1 − ρ(θTc ϕ+Wmup)

1 + ϕTϕ+ (Wmup)2
(θTc ϕ+Wmup)

ϕ = −Wm(s)ω

(3.21)

, where e1 = yp − ym is the tracking error of the plant output. More specifically, the

hyperparameters, Γ and γ, should be positive-definite matrices in the adaptive control.

It will result in a high-dimensional optimization problem. To simplify the optimization

process, diagonal matrices composed of Γ and γ as the diagonal terms are adopted. That

is to say, Γ and γ, which are now two scalar constants, must be chosen primarily as the

learning rate of the adaptive laws. The two parameters, therefore, could be used to obtain

the optimal control performance. In summary, the above adaptive laws provide a way to

directly tune the control variables θc to adapt to the unknown plant in the flow system to

minimize the difference between the plant output and reference output.
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Chapter 4 Result and Discussion

In this chapter, the control results conducted via the loop-shaping method and model-

reference active control will be presented and comparedwith each other. This chapter aims

to elucidate the detail of the controller synthesis and the control results in the nonlinear

flow field. The content is organized as follows. In section 4.1, the result of the robust

control is presented. In the section 4.2, the outcome of model reference adaptive control

is shown. Lastly, the overall discussion regarding the two approaches is included in the

section 4.3.

4.1 Loop-Shaping Method

In the loop shaping method, the objective is to achieve the desired shape of the open-

loop transfer function PK in the frequency spectrum. Throughout the synthesis proce-

dure, the closed-loop characteristic is expected to reject the input disturbance to achieve

the ideal robust control performance. Specifically, the sensitivity function S will be in-

vestigated because the transfer function between the nonlinear forcing to the output is

Td→y = PS. If the transfer function Td→y consists of lower gain across the frequency

spectrum, the flow field is more likely to be suppressed because of the weaker amplifying

mechanism of the nonlinear forcing. In this thesis, the robust controllers are designed by
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Figure 4.1: The relative fluctuation reduction and the stability margin predicted by the
loop-shaping method. (a) The relative transverse velocity fluctuation reduction. (b) The
infinite norm of the sensitivity function (c)The relative lift fluctuation reduction. (d) the
normalized coprime stability margin b

choosing the parameters, k and a, in the weight functionW . Since there are only two pa-

rameters, the optimization can be displayed visually with a two-dimensional contour plot

shown in figure 4.1.

First of all, the graph of the stability margin shows that the gain of the weight function k

plays a significant role in the robustness of the controlled system compared with the peak

frequency a. The margin increases with the increment of the gain. Moreover, the trend is

similar concerning theH-infinity norm of the sensitivity function S. The norm decreases

with the increasing gain. The fact demonstrates that the closed-loop system is more capa-

ble of rejecting the disturbance if the weight function is set up with a large enough gain

k. However, it is worth noticing that the controller would become unstable with the in-

creasing gain, even with a lower H-infinity norm and larger stability margin. Hence, to

implement the controller in the nonlinear flow, the design of the weight function should
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be considered to have the upper bound for the gain. Nonetheless, the above analysis is

basically linear based on the loop-shaping method. Since the control objective is the fluc-

tuation reduction for the cylinder in a nonlinear flow field, the result should eventually be

examined under the nonlinear simulation.

The control results in a nonlinear simulation are also presented in figure 4.1. The control

effect on the fluctuation reduction is quantified by the new variable Rx for a time-series

data x defined as follows.

Rx =
Sbase
x − Scontrol

x

Sbase
x

, Sx =

√√√√ 1

N − 1

N∑
i=1

(xi − x̄)2, (4.1)

where the Sx is the standard deviation of the time-series data x with its average x̄. In or-

der to minimize the transient effect from the additional external forcing, time-series data

x is collected after the control is appended for five plunging periods. According to the

definition,Rx is positive when the fluctuation of the controlled flow has been suppressed

by adding the controller. Two types of time-series data are shown here: the sensor output

Ry, which is the transverse velocity at the sensing location, and the lift coefficientRL. In

summary, the two quantities should be maximized to accomplish the goal of fluctuation

alleviation.

The fluctuation reduction of the transverse velocity, Ry , is reduced with a maximum of

21.8% while the lift fluctuation reduction RL is attenuated by 5.7%. The optimal case is

shown in figure 4.2. After the actuator is turned on at the 10th period, the fluctuations

of both velocity and lift have been reduced gradually. The lift coefficient fluctuation has

been alleviated at most peaks. Moreover, the control input power is also needed to inves-

tigate to quantify the efficiency of the controller. For the optimal case displayed in figure

4.2, even with the optimal control performance, the power coefficientCp of the two actua-
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Figure 4.2: Lift and transverse velocity time-sequence data with the optimal loop-shaping-
based controller. RL = 5.7%, Ry = 21.8% (a) The transverse velocity y(t). (b) The lift
coefficient CL(t) (c) The total power coefficient Cp of the two actuators with respect to
the normalized time t∗/T , T is the plunging period. The red line represents the controlled
case. The blue one denotes the base flow

tors is limited to 5% of the inflow power per unit area 1
2
ρU3. This low input power shows

that the controller has efficiently utilized the intrinsic instability mechanism existing in

the flow field to achieve the objective. This outcome agrees with the Resolvent analysis

presented in section 3.1. The dominant forcing mode in Resolvent analysis implies that

the external forcing on the angle θc = 110◦ is more likely to amplify throughout the linear

operator.

Besides the optimal cases, the trends are also significant to demonstrate the efficacy of

the control method for the periodic-oscillating boundary. With the increasing gain of the

weight function, both fluctuation reduction quantities Ry, and RL decrease accordingly.

This trend is similar to the H-infinity norm of the sensitivity function and the stability

margin b predicted prior by the linear control theory. This discovery offers the potential

of robust control theory on flow control with harmonic-oscillating boundaries. Instead
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of optimizing throughout the heavy-cost nonlinear simulation, the optimal control perfor-

mance can be predicted by the fast algorithm of the linear control design problem.

To summarize, I have proposed an effective control approach based on the robust control

theory to stabilize the flow field with an oscillating boundary. The optimal fluctuation

reduction can be achieved 21.8% for the transverse velocity in the wake and 5.7% for the

lift exerted on the cylinder. Moreover, the result conducted in the nonlinear simulation is

consistent with the linear analysis predicted prior with the H-infinity norm of sensitivity

function and the stability margin for the closed-loop system. This outcome provides sup-

port for the further control design for the flow field with harmonic-oscillating boundaries.

Although the flow field is highly nonlinear and high-dimensional, we could still rely on

the reduced-order linear model to design an effective controller to attenuate the fluctuation

and predict its efficacy. However, the linear plant is only valid to model the dynamics not

far from the linearization point. That is to say that, due to the limit of the linear plant,

the goal of fluctuation alleviation is constrained to around 5%. To further suppress the

oscillation, an adaptive control method is introduced to solve the issues mentioned above

in section 4.2.

4.2 Model Reference Adaptive Control

In the controller synthesis viaMRAC , the reference model has to be determined prior.

In this section, the resolvent operator of the stationary case is chosen as the linear refer-

ence model for the following design problem. The reason behind this choice lies in the

motivation of the fluctuation reduction. Since the resolvent operator obtained from the

stationary cylinder flow is a Hurwitz matrix, it is expected the response of the linear plant

is bounded. Moreover, in the formulation of the resolvent operator, the nonlinear forcing
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Figure 4.3: The relative fluctuation reductionR via the model reference adaptive control.
(a) The fluctuation reduction of transverse velocity at sensing points. (b) The fluctuation
reduction of lift on the circular cylinder

plays a role in sustaining the harmonic oscillation of the flow response in the plunging

cylinder flow. The nonlinear forcing includes the periodic terms originating from the os-

cillating boundaries. Therefore, since the input of the reference model does not include

the nonlinear forcing, the adaptive controller is expected to suppress the contribution of

nonlinear forcing in the real system by minimizing the error between the plant output and

the reference output. As a result, the fluctuation of lift and velocity will be reduced. Fur-

thermore, in the feedback structure shown in figure 3.6, the filter α(s)
Λ(s)

is also needed to be

determined. The filter is set to be 1
s+1

for the requirement of the adaptive control theory

[14].

Secondly, the two hyperparameters, Γ and γ, should also be determined before the control

implementation. Specifically, the parameter Γ represents the learning rate of the adaptive

gains θ. As stated in the chapter 3, the parameter Γ generally is a positive-definite matrix,

which represents the weight of each adaptive gain and the interaction among them. How-

ever, to simplify the discussion, a single learning rate is assigned to all the adaptive gains.

Therefore, the parameter Γ is reduced to a scalar, as well as the parameter γ. Hence, the
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Figure 4.4: Lift and transverse velocity time-sequence data with the optimal adaptive
controller. The control outcomes with the parameter pair (Γ, γ) = (10.7, 10−4) are RL

= 30.9%, Ry = 37.2% (a) The transverse velocity. (b) The lift coefficient (c) The total
power coefficient Cp of the two actuators with respect to the normalized time t�/T , T is
the plunging period. The red line represents the controlled case. The blue one denotes the
base flow

optimization result can be shown in a two-dimensional graph with the two learning rates.

It is worth noticing that, in order to compare the two control methods, the definition of

the relative fluctuation reduction Ri is set to be the same as the one in the section of the

loop-shaping method, as well as the control horizon and the data collection interval. By

conducting a plethora of control experiments with various parameter settings, a contour

plot of control results with respect to the two parameters can be constructed as figure 4.3.

First, the optimal result is clearly shown with a maximum of relative lift fluctuation reduc-

tion RL = 30.9% with a parameter pair (Γ, γ) = (10.7, 10−4). The velocity fluctuation

is also alleviated with a relative improvement of 37.2%. Second, the contour plot shows

that the parameter γ should be limited to 0.2 to achieve fluctuation reduction. The trend is

similar in both the velocity and lift fluctuation. Nonetheless, the effect of parameter Γ is
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Figure 4.5: The time-series data of adaptive gains θ across the control horizon with the
optimal setting (Γ, γ) = (10.7, 10−4). θc = [θ1, θ2, θ3, c0] in the equation 3.18

different in terms of the lift and the transverse velocity. The lift fluctuation attenuation is

concentrated near Γ = 10.7, while the velocity alleviation reaches its maximum atΓ = 50.

By evaluating the optimal case shown in figure 4.4, several details of an adaptive con-

troller can be demonstrated. First of all, the low learning rate of γ reflects on the transient

data after the control implementation on t∗/T = 10. The controller has a minor influence

on the flow field in the first three periods. However, around the third period, there is a

burst in the power input, which means that a large amount of body force is required to be

applied by the actuators. An adaptive controller’s maximum power input requirement is

larger than the one of a robust controller. This might be a drawback of the adaptive con-

troller due to its constraint on the choice of actuators in the practical application. Nonethe-

less, the adaptive control approach delivers better performance on the lift fluctuation after

the transient response. In figure 4.4, most peaks of the lift coefficient can be alleviated,

which is hardly achieved by the robust control method.
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Furthermore, the adaptive gains are investigated to study the convergence of the control

method. The adaptive gains, θc = [θ1, θ2, θ3, c0] represent respectively the feedback gain

of the filtered control input, filtered plant output, unfiltered plant output, and the refer-

ence input. Theoretically, the gains will be able to converge to a static gain with which

the closed-loop system can have the same output as the reference model. The theory

guarantees that the statement is held for the linear plant. However, the real flow sys-

tem consists of a great proportion of contribution from the nonlinearity. This disturbance

will introduce uncertainty for the linear formulation of adaptive laws, leading to a non-

asymptotically stable error signal. This conjecture can be supported by the gains in figure

4.5. For the gain of the reference input c0, the adaptive laws guide the gain to converge

to a single value. Nonetheless, the rest of the gains, θ1, θ2, θ3, do not converge. This out-

come explains why the fluctuation could not be further attenuated as the reference output.

The disturbance introduced by the nonlinearity and periodic forcing near the boundaries

affects the convergence process of the adaptive gains.

4.3 Discussion

Two control methods are presented above, including robust control and adaptive con-

trol. For the loop-shaping method, since robust control theory only guarantees the max-

imum stability margin for the linearized nominal plant, the distance between the system

states, and the equilibrium point is expected to limit the control performance. Once the

states are shifted far enough from the original linearized state, the controller will lose its

efficacy. Therefore, the maximum performance on attenuating lift fluctuation will be con-

strained. This concept is verified by the control result of the maximum 5.7% improvement

in the fluctuation alleviation. But how can we break this limit to reduce the fluctuation
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further? In this thesis, I believe that adaptive control will be the solution. The adaptive

control theory design the controller to adapt to the different nominal plants. Since the plant

is derived by linearizing the Navier-Stokes equation for the baseflow, the plant is expected

to shift concerning the additional control input. That is to say that the adaptive algorithm

supposes to, therefore, offer an approach to adjust the controller with respect to the new

linear model. This conjecture is verified by the improvement in the fluctuation attenuation

of 30.9 % by applying the MRAC. Although the adaptive control has better performance

on the objective of fluctuation reduction, the higher demand for the actuator’s maximum

power input brings drawbacks to the method. On the other hand, the loop-shaping method

provides a mild controller which has a lower maximum power input compared to the adap-

tive one.
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Chapter 5 Conclusions and remarks

In this thesis, I have proposed two flow control approaches for a periodic-plunging

cylinder wake flow. One is the loop-shaping method, and the other is the model refer-

ence adaptive control. My work mainly focuses on designing an effective controller that

utilizes the two branches of control theory to attenuate the fluctuation induced by the os-

cillating motion of the boundary. The example presented in this thesis is a non-locking

plunging cylinder. Due to the plunging motion in the transverse direction, the lift fluctua-

tion is intensified more than the drag fluctuation. Consequently, the objective of the flow

control is set to lift fluctuation reduction. First, the Resolvent operator based on the time-

average flow is treated as the linear plant of the flow system. For the plunging cylinder

wake flow, the Resolvent analysis provides support for the choice of actuator locations

on the cylinder. The forcing mode suggests that the employment of external force near

the separation point, which is 110◦ from the stagnation point to the actuating position on

the cylinder, can be amplified most via the Resolvent operator and, therefore, achieve an

energy-efficient controller.

With the result of the Resolvent analysis, I first develop a robust controller via the loop-

shaping method. The approach optimizes the stability margin of the closed-loop system

with a designated weighted open-loop transfer function. In the structure of the Resolvent-

based linear system, the optimization leads to the ability to reject disturbance from the
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nonlinear forcing and periodic boundary forcing. In figure 4.1, I have shown that the trend

of sensitivity function obtained from the linear analysis is similar in the fully-nonlinear

simulation. This result shows that the linear plant obtained via Resolvent analysis is capa-

ble of designing a feedback controller. To conclude, the outcome of the robust controller

synthesis not only results in the optimal lift fluctuation reduction of 5.7% but also shows

that we can rely on the prediction based on the Resolvent operator via a simple linear anal-

ysis instead of a time-consuming nonlinear simulation.

To improve the control performance, the limit of a robust controller has to be examined.

The robust controller is designed based on a known linear plant which is linearized upon

the equilibrium state of the uncontrolled flow. However, the equilibrium state is expected

to vary with the addition of actuators. Hence, the controller should be adaptively mod-

ified in different stages of control. To overcome this conundrum, the direct model ref-

erence adaptive control (MRAC) is introduced as the adaptive control scheme. With the

directMRAC, the control parameters can be directly adjusted for an unknown linear plant

to track reference output. In this thesis, the unknown plant is the time-varying Resolvent

operator in different stages of control. The optimal fluctuation reduction of this approach

can achieve over 30% compared to the base flow. Nonetheless, one drawback must be

mentioned. The maximum power requirement for an adaptive controller is larger than the

one designed via robust control.

In summary, the two control methods proposed in this study have been verified to be effec-

tive in the fluctuation suppression for a flow field with harmonic oscillating boundaries. I

first show that the Resolvent operator derived from a constant base flow could be used in

the first stage of the control design. Furthermore, the limitation of the linear plant can be

improved by introducing adaptive control. Nonetheless, the combination of the two ap-
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proaches needs to be investigated to achieve both robustness and adaptiveness in a single

controller.
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