請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88175
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 白奇峰 | zh_TW |
dc.contributor.advisor | Chi-Feng Pai | en |
dc.contributor.author | 陳冠豪 | zh_TW |
dc.contributor.author | Kuan-Hao Chen | en |
dc.date.accessioned | 2023-08-08T16:38:28Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-08-08 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-07-18 | - |
dc.identifier.citation | [1] K v Klitzing, Gerhard Dorda, and Michael Pepper. New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance. Physical review letters, 45(6):494, 1980.
[2] Robert B Laughlin. Anomalous quantum hall effect: an incompressible quantum fluid with fractionally charged excitations. Physical Review Letters, 50(18):1395, 1983. [3] Markus Konig, Steffen Wiedmann, Christoph Brune, Andreas Roth, Hartmut Buhmann, Laurens W Molenkamp, Xiao-Liang Qi, and Shou-Cheng Zhang. Quantum spin hall insulator state in hgte quantum wells. Science, 318(5851):766–770, 2007. [4] Cui-Zu Chang and Mingda Li. Quantum anomalous hall effect in time-reversalsymmetry breaking topological insulators. Journal of Physics: Condensed Matter, 28(12):123002, 2016. [5] Edwin H Hall et al. On a new action of the magnet on electric currents. American Journal of Mathematics, 2(3):287–292, 1879. [6] Robert Karplus and JM Luttinger. Hall effect in ferromagnetics. Physical Review, 95(5):1154, 1954. [7] NA Sinitsyn. Semiclassical theories of the anomalous hall effect. Journal of Physics: Condensed Matter, 20(2):023201, 2007. [8] Naoto Nagaosa, Jairo Sinova, Shigeki Onoda, Allan H MacDonald, and Nai Phuan Ong. Anomalous hall effect. Reviews of modern physics, 82(2):1539, 2010. [9] NA Sinitsyn, AH MacDonald, T Jungwirth, VK Dugaev, and Jairo Sinova. Anomalous hall effect in a two-dimensional dirac band: The link between the kubo-streda formula and the semiclassical boltzmann equation approach. Physical Review B, 75(4):045315, 2007. [10] T Jungwirth, Qian Niu, and AH MacDonald. Anomalous hall effect in ferromagnetic semiconductors. Physical review letters, 88(20):207208, 2002. [11] Masaru Onoda and Naoto Nagaosa. Topological nature of anomalous hall effect in ferromagnets. Journal of the Physical Society of Japan, 71(1):19–22, 2002. [12] Ming-Che Chang and Qian Niu. Berry phase, hyperorbits, and the hofstadter spectrum: Semiclassical dynamics in magnetic bloch bands. Physical Review B, 53(11):7010, 1996. [13] Ganesh Sundaram and Qian Niu. Wave-packet dynamics in slowly perturbed crystals: Gradient corrections and berry-phase effects. Physical Review B, 59(23):14915, 1999. [14] Luc Berger. Side-jump mechanism for the hall effect of ferromagnets. Physical Review B, 2(11):4559, 1970. [15] Ph Nozieres and CJJPF Lewiner. A simple theory of the anomalous hall effect in semiconductors. Journal de Physique, 34(10):901–915, 1973. [16] J Smit. The spontaneous hall effect in ferromagnetics i. Physica, 21(6-10):877–887, 1955. [17] Jan Smit. The spontaneous hall effect in ferromagnetics ii. Physica, 24(1-5):39–51, 1958. [18] Axel Hoffmann. Spin hall effects in metals. IEEE transactions on magnetics, 49(10):5172–5193, 2013. [19] JE Hirsch. Spin hall effect. Physical review letters, 83(9):1834, 1999. [20] Jairo Sinova, Sergio O Valenzuela, Jörg Wunderlich, CH Back, and T Jungwirth. Spin hall effects. Reviews of modern physics, 87(4):1213, 2015. [21] Can O Avci. Current-induced effects in ferromagnetic heterostructures due to spin-orbit coupling. PhD thesis, ETH Zurich, 2015. [22] Yuichiro K Kato, Roberto C Myers, Arthur C Gossard, and David D Awschalom. Observation of the spin hall effect in semiconductors. science, 306(5703):1910–1913, 2004. [23] G Vignale. Ten years of spin hall effect. Journal of superconductivity and novel magnetism, 23:3–10, 2010. [24] John Schliemann. Spin hall effect. International Journal of Modern Physics B, 20(09):1015–1036, 2006. [25] Tomas Jungwirth, Jörg Wunderlich, and Kamil Olejník. Spin hall effect devices. Nature materials, 11(5):382–390, 2012. [26] Hiroshi Kontani, T Tanaka, DS Hirashima, K Yamada, and J Inoue. Giant orbital hall effect in transition metals: Origin of large spin and anomalous hall effects. Physical review letters, 102(1):016601, 2009. [27] Yasutomo Omori, Edurne Sagasta, Yasuhiro Niimi, Martin Gradhand, Luis E Hueso, Felix Casanova, and YoshiChika Otani. Relation between spin hall effect and anomalous hall effect in 3 d ferromagnetic metals. Physical Review B, 99(1):014403, 2019. [28] Shigeki Onoda, Naoyuki Sugimoto, and Naoto Nagaosa. Quantum transport theory of anomalous electric, thermoelectric, and thermal hall effects in ferromagnets. Physical review B, 77(16):165103, 2008. [29] Pietro Gambardella. Introduction to spin torques and spin-orbit torques in metal layers. Spinmechanics III, 87, 2015. [30] Ioan Mihai Miron, Kevin Garello, Gilles Gaudin, Pierre-Jean Zermatten, Marius V Costache, Stéphane Auffret, Sébastien Bandiera, Bernard Rodmacq, Alain Schuhl, and Pietro Gambardella. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature, 476(7359):189–193, 2011. [31] Luqiao Liu, Chi-Feng Pai, Y Li, HW Tseng, DC Ralph, and RA Buhrman. Spin torque switching with the giant spin hall effect of tantalum. Science, 336(6081):555–558, 2012. [32] Luqiao Liu, Takahiro Moriyama, DC Ralph, and RA Buhrman. Spin-torque ferromagnetic resonance induced by the spin hall effect. Physical review letters, 106(3):036601, 2011. [33] Arne Brataas, Andrew D Kent, and Hideo Ohno. Current-induced torques in magnetic materials. Nature materials, 11(5):372–381, 2012. [34] Yumeng Yang, Hang Xie, Yanjun Xu, Ziyan Luo, and Yihong Wu. Multistate magnetization switching driven by spin current from a ferromagnetic layer. Physical Review Applied, 13(3):034072, 2020. [35] Noriyuki Sato, Gary A Allen, William P Benson, Benjamin Buford, Atreyee Chakraborty, Michael Christenson, Tanay A Gosavi, Philip E Heil, Nafees A Kabir, Brian J Krist, et al. Cmos compatible process integration of sot-mram with heavy metal bi-layer bottom electrode and 10ns field-free sot switching with stt assist. In 2020 IEEE Symposium on VLSI Technology, pages 1–2. IEEE, 2020. [36] Rajagopalan Ramaswamy, Yi Wang, Mehrdad Elyasi, M Motapothula, T Venkatesan, Xuepeng Qiu, and Hyunsoo Yang. Extrinsic spin hall effect in cu 1- x pt x. Physical Review Applied, 8(2):024034, 2017. [37] Chen-Yu Hu and Chi-Feng Pai. Benchmarking of spin–orbit torque switching efficiency in pt alloys. Advanced Quantum Technologies, 3(8):2000024, 2020. [38] Lijun Zhu, Daniel C Ralph, and Robert A Buhrman. Highly efficient spin-current generation by the spin hall effect in au 1- x pt x. Physical Review Applied, 10(3):031001, 2018. [39] Minh-Hai Nguyen, Mengnan Zhao, Daniel C Ralph, and Robert A Buhrman. Enhanced spin hall ratios by al and hf impurities in pt thin films. Bulletin of the American Physical Society, 61, 2016. [40] Zelalem Abebe Bekele, Xionghua Liu, Yi Cao, and Kaiyou Wang. High-efficiency spin–orbit torque switching using a single heavy-metal alloy with opposite spin hall angles. Advanced Electronic Materials, 7(1):2000793, 2021. [41] Katharina Fritz, Sebastian Wimmer, Hubert Ebert, and Markus Meinert. Large spin hall effect in an amorphous binary alloy. Physical Review B, 98(9):094433, 2018. [42] Yong Jin Kim In Ho Cha Taehyun Kim Min Hyeok Lee OukJae Lee Hionsuck Baik Soon Cheol Hong Sonny H. Rhim Gyu Won Kim, Do Duc Cuong and Young Keun Kim. Spin–orbit torque engineering in β-w/cofeb heterostructures with w–ta or w–v alloy layers between β-w and cofeb. NPG Asia Materials, 13(1):60, 2021. [43] D Qu, SY Huang, GY Guo, and CL Chien. Inverse spin hall effect in auxta 1-x alloy films. Physical Review B, 97(2):024402, 2018. [44] Tian-Yue Chen, Chun-Te Wu, Hung-Wei Yen, and Chi-Feng Pai. Tunable spin-orbit torque in cu-ta binary alloy heterostructures. Physical Review B, 96(10):104434, 2017. [45] Jun Wu, Lvkuan Zou, Tao Wang, Yunpeng Chen, Jianwang Cai, Jun Hu, and John Q Xiao. Spin hall angle and spin diffusion length in au–cu alloy. IEEE Transactions on Magnetics, 52(7):1–4, 2016. [46] Chi-Feng Pai and Denny D Tang. MAGNETIC MEMORY TECHNOLOGY: Spin-transfer-torque Mram and Beyond. John Wiley & Sons, 2020. [47] I Safi. Recent aspects concerning dc reactive magnetron sputtering of thin films: a review. Surface and Coatings Technology, 127(2-3):203–218, 2000. [48] Jon Tomas Gudmundsson. Physics and technology of magnetron sputtering discharges. Plasma Sources Science and Technology, 29(11):113001, 2020. [49] Deok Jung Kim, WG Oldham, and AR Neureuther. Development of positive photoresist. IEEE Transactions on Electron Devices, 31(12):1730–1736, 1984. [50] Hyung Suk Lee and Jun-Bo Yoon. A simple and effective lift-off with positive photoresist. Journal of Micromechanics and Microengineering, 15(11):2136, 2005. [51] Makoto Hanabata, Yasunori Uetani, and Akihiro Furuta. Design concept for a highperformance positive photoresist. Journal of Vacuum Science & Technology B: Microelectronics Processing and Phenomena, 7(4):640–650, 1989. [52] Peter J Wasilewski. Magnetic hysteresis in natural materials. Earth and Planetary Science Letters, 20(1):67–72, 1973. [53] HWF Sung and C Rudowicz. Physics behind the magnetic hysteresis loop—a survey of misconceptions in magnetism literature. Journal of magnetism and magnetic materials, 260(1-2):250–260, 2003. [54] L Tauxe, TAT Mullender, and T Pick. Potbellies, wasp-waists, and superparamagnetism in magnetic hysteresis. Journal of Geophysical Research: Solid Earth, 101(B1):571–583, 1996. [55] Madan Rao, HR Krishnamurthy, and Rahul Pandit. Magnetic hysteresis in two model spin systems. Physical Review B, 42(1):856, 1990. [56] Carina Belvin Luis Henrique Vilela-Leão D. C. Ralph Chi-Feng Pai, Minh-Hai Nguyen and R. A. Buhrman. Enhancement of perpendicular magnetic anisotropy and transmission of spin-hall-effect induced spin currents by a hf spacer layer in w/hf/cofeb/mgo layer structures. Applied Physics Letters, 104(8):082407, 2014. [57] Paul Kinsler. Faraday’s law and magnetic induction: Cause and effect. 2019. [58] Lowell T Wood, Ray M Rottmann, and Regina Barrera. Faraday's law, lenz's law, and conservation of energy. American Journal of Physics, 72(3):376–380, 2004. [59] Robert Kingman, S Clark Rowland, and Sabin Popescu. An experimental observation of faraday's law of induction. American Journal of Physics, 70(6):595–598, 2002. [60] Jared Paul Phillips, Saeed Yazdani, Wyatt Highland, and Ruihua Cheng. A high sensitivity custom-built vibrating sample magnetometer. Magnetochemistry, 8(8):84, 2022. [61] Simon Foner. The vibrating sample magnetometer: Experiences of a volunteer. Journal of applied physics, 79(8):4740–4745, 1996. [62] Wesley Burgei, Michael J Pechan, and Herbert Jaeger. A simple vibrating sample magnetometer for use in a materials physics course. American Journal of Physics, 71(8):825–828, 2003. [63] JA Gerber, WL Burmester, and David J Sellmyer. Simple vibrating sample magnetometer. Review of Scientific Instruments, 53(5):691–693, 1982. [64] V Lopez-Dominguez, Adrián Quesada, JC Guzmán-Mínguez, L Moreno, M Lere, J Spottorno, F Giacomone, JF Fernández, Antonio Hernando, and MA García. A simple vibrating sample magnetometer for macroscopic samples. Review of Scientific Instruments, 89(3):034707, 2018. [65] Chi-Feng Pai, Maxwell Mann, Aik Jun Tan, and Geoffrey SD Beach. Determination of spin torque efficiencies in heterostructures with perpendicular magnetic anisotropy. Physical Review B, 93(14):144409, 2016. [66] Kohei Ueda, Maxwell Mann, Chi-Feng Pai, Aik-Jun Tan, and Geoffrey SD Beach. Spin-orbit torques in ta/tbxco100-x ferrimagnetic alloy films with bulk perpendicular magnetic anisotropy. Applied Physics Letters, 109(23):232403, 2016. [67] Wei-Bang Liao, Tian-Yue Chen, Yari Ferrante, Stuart SP Parkin, and Chi-Feng Pai. Current-induced magnetization switching by the high spin hall conductivity α-w. physica status solidi (RRL)–Rapid Research Letters, 13(11):1900408, 2019. [68] TC Chuang, CF Pai, and SY Huang. Cr-induced perpendicular magnetic anisotropy and field-free spin-orbit-torque switching. Physical Review Applied, 11(6):061005, 2019. [69] Hao Wu, Seyed Armin Razavi, Qiming Shao, Xiang Li, Kin L Wong, Yuxiang Liu, Gen Yin, and Kang L Wang. Spin-orbit torque from a ferromagnetic metal. Physical Review B, 99(18):184403, 2019. [70] Nirvana B Caballero, Ezequiel E Ferrero, Alejandro B Kolton, Javier Curiale, Vincent Jeudy, and Sebastian Bustingorry. Magnetic domain wall creep and depinning: A scalar field model approach. Physical Review E, 97(6):062122, 2018. [71] OJ Lee, LQ Liu, CF Pai, Y Li, HW Tseng, PG Gowtham, JP Park, DC Ralph, and RA Buhrman. Central role of domain wall depinning for perpendicular magnetization switching driven by spin torque from the spin hall effect. Physical Review B, 89(2):024418, 2014. [72] Xu Zhang, Jian Mao, Meixia Chang, Ze Yan, Yalu Zuo, and Li Xi. Current-induced magnetization switching in pt/co/w and pt/co/w0. 82pt0. 18 structures with perpendicular magnetic anisotropy. Journal of Physics D: Applied Physics, 53(22):225003, 2020. [73] Qiang Hao and Gang Xiao. Giant spin hall effect and switching induced by spintransfer torque in a w/co 40 fe 40 b 20/mgo structure with perpendicular magnetic anisotropy. Physical Review Applied, 3(3):034009, 2015. [74] D Bedau, H Liu, JZ Sun, JA Katine, EE Fullerton, S Mangin, and AD Kent. Spin-transfer pulse switching: From the dynamic to the thermally activated regime. Applied Physics Letters, 97(26):262502, 2010. [75] RH Koch, JA Katine, and JZ Sun. Time-resolved reversal of spin-transfer switching in a nanomagnet. Physical review letters, 92(8):088302, 2004. [76] Tian-Yue Chen Tsung-Yu Tsai Cheng-Wei Peng Tsung-Yi Chen, Wei-Bang Liao and Chi-Feng Pai. Current-induced spin–orbit torque efficiencies in w/pt/co/pt heterostructures. Applied Physics Letters, 116(7):072405, 2020. [77] Shunsuke Fukami, T Anekawa, C Zhang, and H Ohno. A spin–orbit torque switching scheme with collinear magnetic easy axis and current configuration. nature nanotechnology, 11(7):621–625, 2016. [78] Jiazhi Quan, Xiaotian Zhao, Wei Liu, Long Liu, Yuhang Song, Yang Li, Jun Ma, Shuqiao Li, Xinguo Zhao, and Zhidong Zhang. Enhancement of spin–orbit torque and modulation of dzyaloshinskii–moriya interaction in pt100-xcrx/co/alox trilayer. Applied Physics Letters, 117(22):222405, 2020. [79] PC Van Son, H Van Kempen, and P Wyder. Boundary resistance of the ferromagnetic-nonferromagnetic metal interface. Physical Review Letters, 58(21):2271, 1987. [80] Lijun Zhu. Switching of perpendicular magnetization by spin-orbit torque. Advanced Materials, page 2300853, 2023. [81] Ting-Chien Wang, Tian-Yue Chen, Chun-Te Wu, Hung-Wei Yen, and Chi-Feng Pai. Comparative study on spin-orbit torque efficiencies from w/ferromagnetic and w/ferrimagnetic heterostructures. Physical Review Materials, 2(1):014403, 2018. [82] Kyeong-Dong Lee Younghun Jo Soonha Cho, Seung-heon Chris Baek and Byong-Guk Park. Large spin hall magnetoresistance and its correlation to the spin-orbit torque in w/cofeb/mgo structures. Scientific reports, 5(1):1–9, 2015. [83] Yari Ferrante Stuart S. P. Parkin Wei-Bang Liao, Tian-Yue Chen and Chi-Feng Pai. Current‐induced magnetization switching by the high spin hall conductivity α‐w. Rapid Research Letters, 13(11):1900408, 2019. [84] A. Ohkawara S. DuttaGupta H. Sato F. Matsukura C. Zhang, S. Fukami; K. Watanabe and H. Ohno. Critical role of w deposition condition on spin-orbit torque induced magnetization switching in nanoscale w/cofeb/mgo. Applied Physics Letters, 109(19):192405, 2016. [85] Sadamichi Maekawa, Takashi Kikkawa, Hiroyuki Chudo, Jun'ichi Ieda, and Eiji Saitoh. Spin and spin current—from fundamentals to recent progress. Journal of Applied Physics, 133(2):020902, 2023. [86] Luqiao Liu, OJ Lee, TJ Gudmundsen, DC Ralph, and RA Buhrman. Current-induced switching of perpendicularly magnetized magnetic layers using spin torque from the spin hall effect. Physical review letters, 109(9):096602, 2012. [87] ZR Tadisina, A Natarajarathinam, and S Gupta. Magnetic tunnel junctions with cobased perpendicular magnetic anisotropy multilayers. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 28(4):973–978, 2010. [88] Gouri Sankar Kar, Woojin Kim, Taiebeh Tahmasebi, Johan Swerts, Sofie Mertens, Nancy Heylen, and Tai Min. Co/ni based p-mtj stack for sub-20nm high density stand alone and high performance embedded memory application. In 2014 IEEE International Electron Devices Meeting, pages 19–1. IEEE, 2014. [89] S Ishikawa, H Sato, M Yamanouchi, S Ikeda, S Fukami, F Matsukura, and H Ohno. Magnetic properties of mgo-[co/pt] multilayers with a cofeb insertion layer. Journal of Applied Physics, 113(17):17C721, 2013. [90] Kay Yakushiji, Hitoshi Kubota, Akio Fukushima, and Shinji Yuasa. Perpendicular magnetic tunnel junctions with strong antiferromagnetic interlayer exchange coupling at first oscillation peak. Applied Physics Express, 8(8):083003, 2015. [91] C-J Lin, GL Gorman, CH Lee, RFC Farrow, EE Marinero, HV Do, H Notarys, and CJ Chien. Magnetic and structural properties of co/pt multilayers. Journal of Magnetism and Magnetic Materials, 93:194–206, 1991. [92] Jacob Torrejon, Junyeon Kim, Jaivardhan Sinha, Seiji Mitani, Masamitsu Hayashi, Michihiko Yamanouchi, and Hideo Ohno. Interface control of the magnetic chirality in cofeb/ mgo heterostructures with heavy-metal underlayers. Nature communications, 5(1):4655, 2014. [93] Lijun Zhu and Daniel C Ralph. Strong variation of spin-orbit torques with relative spin relaxation rates in ferrimagnets. Nature Communications, 14(1):1778, 2023. 86 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88175 | - |
dc.description.abstract | 隨著近年來摩爾定律已經發展到盡頭,儘管有修正的摩爾定律版本,但是仍須一些特殊的技術來支持。這時,次世代記憶體越來越受到重視以及獲得許多認可。其中,最有名的磁阻式隨機存取記憶體具有非揮發性、能量消耗較低的特性因此備受矚目,其中以自旋軌道矩式磁阻式隨機存取記憶體(SOT-MRAM) 的表現最為優異,包含了快速寫入、高耐久度以及低寫入電流的特性使它具備良好的競爭力。
利用合金供給自旋電流可以有效提升類阻尼自旋軌道矩效率。然而所使用的金屬成本都不低,這對於未來在量產磁阻式隨機存取記憶體會是一大難題。因此在本篇論文,會使用相對便宜以及自然界含量高的鎢、鈷、鈦金屬來製作合金以及多層膜,其中包含了鎢鈷合金、鎢鈷多層膜、鎢鈦多層膜。我們利用這些合金或多層膜當作自旋電流供給方並進行量測,發現在類阻尼自旋軌道矩效率擁有卓越的表現;而多層膜也擁有很小的翻轉電流,進而在較低的電壓下也能進行翻轉,避免造成元件的擊穿現象。本篇期望能帶給自旋軌道矩式磁阻式隨機存取記憶體一點啟發。 | zh_TW |
dc.description.abstract | As we approach the end of the Moore’s Law, the significance of next generation memories has become increasingly prominent in recent years. Among these, Magnetoresistive Random Access Memory (MRAM) has emerged as a promising nonvolatile memory, with spin-orbit torque MRAM (SOT-MRAM) being competitive. The SOT-MRAM possesses several desirable properties, such as high writing speed, high endurance, and low writing current. Furthermore, considering the environmental and economic concerns, a SOT-MRAM should exhibit high damping-like efficiency (ξDL), excellent thermal stability, and low power consumption.
Alloys are regarded as a promising substitution of heavy metal (HM) layer for future advancements, as they provide enhancements in both spin Hall angle (θSH) and ξDL while maintaining a moderate resistivity. Numerous experimental studies conducted by different research groups have confirmed the enhancements in θSH and ξDL achieved through the use of different alloys. However, the composition of these alloys can be costly, posing challenges for mass production. In this thesis, we explore the utilization of not only alloys but also multilayers as the HM layer. WCo alloy, WCo multilayer, WTi multilayer demonstrate enhancement in ξDL. Moreover, both multilayers possess extremely low switching currents, which effectively contributes to reducing the applied voltages across the devices. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-08T16:38:28Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-08-08T16:38:28Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | Verification Letter from the Oral Examination Committee i
Acknowledgements iii 摘要 v Abstract vii Contents ix List of Figures xiii List of Tables xix Denotation xxi Chapter 1 Introduction 1 1.1 Hall Effect 1 1.1.1 Ordinary Hall Effect 1 1.1.2 Anomalous Hall Effect 3 1.1.3 Spin Hall Effect 5 1.2 Spin Hall Conductivity 9 1.3 Spin-Orbit Torque 10 1.4 Motivation of This Work 13 Chapter 2 Sample Preparation 15 2.1 Thin Film Fabrication Techniques 15 2.1.1 Magnetron Sputtering 15 2.1.2 Alloy Recipe 17 2.2 Photolithography 18 Chapter 3 Measurement 21 3.1 Magnetic Property Characterization 21 3.1.1 Electrical Detection 21 3.1.2 Vibrating Sample Magnetometer 22 3.2 Spin-Orbit Torque Characterization 23 3.2.1 Hysteresis Loop-Shift Measurement 23 3.2.2 Current-Induced Spin-Orbit Torque Switching Measurement 26 3.3 Summary of Experiments 29 Chapter 4 Spin-Orbit Torque Characterizations of WCo Alloy and Multilayer 33 4.1 W/CoFeB Control Samples 33 4.2 SOT Characterization of WCo Alloy/CoFeB 39 4.3 SOT Characterization of WCo Multilayer/CoFeB 45 4.4 Comparison between WCo Alloy/CoFeB & WCo Multilayer/CoFeB 49 4.5 Adjusting Layer Repetition of WCo Multilayer/CoFeB 50 4.6 Thickness Issue between W/CoFeB Control Sample & WCo Multilayer/CoFeB 55 4.7 Short Summary 57 Chapter 5 Spin-Orbit Torque Characterizations of WTi Multilayer 59 5.1 SOT Characterization of WTi Multilayer/CoFeB 59 5.2 Adjusting Layer Repetition of WTi Multilayer/CoFeB 63 5.3 Comparison between WCo Multilayer/CoFeB & WTi Multilayer/CoFeB 67 5.4 Thickness Issue between W/CoFeB Control Sample, WCo Multilayer/CoFeB & WTi Multilayer/CoFeB 68 Chapter 6 Summary 71 References 75 | - |
dc.language.iso | en | - |
dc.title | 利用3d 過渡金屬提升異質結構之自旋軌道矩轉換效率 | zh_TW |
dc.title | Enhancing Spin-Orbit Torque Efficiency through 3d Transition Metal Modulation in Heavy Metal/CoFeB/MgO/Ta Heterostructure | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 宋明遠;黃榮俊 | zh_TW |
dc.contributor.oralexamcommittee | Ming-Yuan Song;Jung-Chun Huang | en |
dc.subject.keyword | 自旋電子學,自旋軌道矩式記憶體,自旋軌道矩,合金,多層膜,類阻尼自旋軌道矩效率, | zh_TW |
dc.subject.keyword | Spintronics,SOT-MRAM,Spin Hal Effect,Spin-Orbit Torque,Alloy,Multilayer,Damping-Like Spin-Orbit Torque Efficiency, | en |
dc.relation.page | 86 | - |
dc.identifier.doi | 10.6342/NTU202301664 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2023-07-19 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 材料科學與工程學系 | - |
顯示於系所單位: | 材料科學與工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf | 4.89 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。