Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88134
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃美嬌zh_TW
dc.contributor.advisorMei-Jiau Huangen
dc.contributor.author林君翰zh_TW
dc.contributor.authorChun-Han Linen
dc.date.accessioned2023-08-08T16:27:06Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-08-
dc.date.issued2023-
dc.date.submitted2023-07-12-
dc.identifier.citationArden L. Moore, Li Shi, Emerging challenges and materials for thermal management of electronics, Materials Today, Volume 17, Issue 4, 2014, Pages 163-174, ISSN 1369-7021, https://doi.org/10.1016/j.mattod.2014.04.003.
Xianping Chen, Huaiyu Ye, Xuejun Fan, Tianling Ren, Guoqi Zhang, A review of small heat pipes for electronics, Applied Thermal Engineering, Volume 96, 2016, Pages 1-17,ISSN 1359-4311, https://doi.org/10.1016/j.applthermaleng.2015.11.048.
Tengqing Liu, Wentao Yan, Wei Wu, Shuangfeng Wang, Thermal performance enhancement of vapor chamber with modified thin screen mesh wick by laser etching, Case Studies in Thermal Engineering, Volume 28,2021,101525,ISSN 2214-157X,https://doi.org/10.1016/j.csite.2021.101525.
Tong Hong Wang, Chang-Chi Lee, Yi-Shao Lai, Thermal characteristics evaluation for board-level high performance flip-chip package equipped with vapor chamber as heat spreader, Microelectronic Engineering, Volume 87, Issue 12, 2010, Pages 2463-2467, ISSN 0167-9317, https://doi.org/10.1016/j.mee.2010.05.002.
P. Naphon, S. Wiriyasart, S. Wongwises, Thermal cooling enhancement techniques for electronic components, International Communications in Heat and Mass Transfer, Volume 61, 2015, Pages 140-145, ISSN 0735-1933, https://doi.org/10.1016/j.icheatmasstransfer.2014.12.005.
Maziar Aghvami, Amir Faghri, Analysis of flat heat pipes with various heating and cooling configurations, Applied Thermal Engineering, Volume 31, Issues 14–15, 2011, Pages 2645-2655,ISSN 1359-4311, https://doi.org/10.1016/j.applthermaleng.2011.04.034.
Ji Li, Xingping Li, Guohui Zhou, Yang Liu,Development and evaluation of a supersized aluminum flat plate heat pipe for natural cooling of high power telecommunication equipment,Applied Thermal Engineering,Volume 184,2021,116278,ISSN 1359-4311,https://doi.org/10.1016/j.applthermaleng.2020.116278.
Weiping Li, Longjian Li, Wenzhi Cui, Mengting Guo, Experimental investigation on the thermal performance of vapor chamber in a compound liquid cooling system, International Journal of Heat and Mass Transfer, Volume 170, 2021, 121026, ISSN 0017-9310, https://doi.org/10.1016/j.ijheatmasstransfer.2021.121026.
Jin Sub Kim, Dong Hwan Shin, Seung M. You, Jungho Lee, Thermal performance of aluminum vapor chamber for EV battery thermal management, Applied Thermal Engineering, Volume 185, 2021, 116337, ISSN 1359-4311, https://doi.org/10.1016/j.applthermaleng.2020.116337.
Guohui Zhou, Jingzhi Zhou, Xiulan Huai, Feng Zhou, Yawen Jiang, A two-phase liquid immersion cooling strategy utilizing vapor chamber heat spreader for data center servers, Applied Thermal Engineering, Volume 210, 2022, 118289, ISSN 1359-4311, https://doi.org/10.1016/j.applthermaleng.2022.118289.
Yu-Tang Chen, Shung-Wen Kang, Yu-Hsun Hung, Chun-Hsien Huang, Kun-Cheng Chien, Feasibility study of an aluminum vapor chamber with radial grooved and sintered powders wick structures, Applied Thermal Engineering, Volume 51, Issues 1–2, 2013, Pages 864-870, ISSN 1359-4311, https://doi.org/10.1016/j.applthermaleng.2012.10.035.
Yong Li, Wenjie Zhou, Zixi Li, Zhaoshu Chen, Yunhua Gan, Experimental analysis of thin vapor chamber with composite wick structure under different cooling conditions, Applied Thermal Engineering, Volume 156, 2019, Pages 471-484, ISSN 1359-4311, https://doi.org/10.1016/j.applthermaleng.2019.04.094.
Jian Zeng, Shiwei Zhang, Gong Chen, Lang Lin, Yalong Sun, Lin Chuai, Wei Yuan, Experimental investigation on thermal performance of aluminum vapor chamber using micro-grooved wick with reentrant cavity array, Applied Thermal Engineering, Volume 130, 2018, Pages 185-194, ISSN 1359-4311, https://doi.org/10.1016/j.applthermaleng.2017.11.031.
Chao Liu, Dinghua Hu, Qiang li, Xuemei Chen, Zhiwei Zhang, Fan Zhou, Vapor chamber with two-layer liquid supply evaporator wick for high-heat-flux devices, Applied Thermal Engineering, Volume 190, 2021, 116803, ISSN 1359-4311, https://doi.org/10.1016/j.applthermaleng.2021.116803.
Zhou, F., Liu, Y., and Dede, E. M. (June 12, 2019). "Design, Fabrication, and Performance Evaluation of a Hybrid Wick Vapor Chamber." ASME. J. Heat Transfer. August 2019; 141(8): 081802. https://doi.org/10.1115/1.4043797
Justin A. Weibel, Suresh V. Garimella, Visualization of vapor formation regimes during capillary-fed boiling in sintered-powder heat pipe wicks, International Journal of Heat and Mass Transfer, Volume 55, Issues 13–14, 2012, Pages 3498-3510, ISSN 0017-9310, https://doi.org/10.1016/j.ijheatmasstransfer.2012.03.021.
Justin A. Weibel, Suresh V. Garimella, Mark T. North, Characterization of evaporation and boiling from sintered powder wicks fed by capillary action, International Journal of Heat and Mass Transfer, Volume 53, Issues 19–20, 2010, Pages 4204-4215, ISSN 0017-9310, https://doi.org/10.1016/j.ijheatmasstransfer.2010.05.043.
Jiu Yu, Yong Li, Zhaoshu Chen, Qiliang Luo, Hanyin Chen, Xinkai Tang, Effect of the passage area ratio of wick on an ultra-thin vapour chamber with a spiral woven mesh wick, Applied Thermal Engineering, Volume 196, 2021, 117282, ISSN 1359-4311, https://doi.org/10.1016/j.applthermaleng.2021.117282.
Kei Mizuta, Rinkoh Fukunaga, Kenji Fukuda, Susumu Nii, Tanemasa Asano, Development and characterization of a flat laminate vapor chamber, Applied Thermal Engineering, Volume 104, 2016, Pages 461-471, ISSN 1359-4311, https://doi.org/10.1016/j.applthermaleng.2016.05.080.
Yong Tang, Dong Yuan, Longsheng Lu, Zhenyong Wang, A multi-artery vapor chamber and its performance, Applied Thermal Engineering, Volume 60, Issues 1–2, 2013, Pages 15-23, ISSN 1359-4311, https://doi.org/10.1016/j.applthermaleng.2013.06.014.
Wiriyasart Songkran, Naphon Paisarn. Effect of heat source area on the thermal resistance of the wick columns vapor chambers. J Mech Sci Technol 30, 933–942 (2016). https://doi.org/10.1007/s12206-016-0147-0
Naphon Paisarn, Wiriyasart Songkran, Effect of sintering columns on the heat transfer and flow characteristics of the liquid cooling vapor chambers. Heat Mass Transfer 52, 1807–1820 (2016). https://doi.org/10.1007/s00231-015-1699-8
M. Muneeshwaran, Yu-Feng Lin, Leon Lin, Vanness Lin, Chi-Chuan Wang, A parametric study on the performance of vapor chamber in association with pillar distribution, Applied Thermal Engineering, Volume 207, 2022, 118217, ISSN 1359-4311, https://doi.org/10.1016/j.applthermaleng.2022.118217.
Wangyu Liu, Jingren Gou, Yuanqiang Luo, Min Zhang, The experimental investigation of a vapor chamber with compound columns under the influence of gravity, Applied Thermal Engineering, Volume 140, 2018, Pages 131-138, ISSN 1359-4311, https://doi.org/10.1016/j.applthermaleng.2018.05.010.
Xianbing Ji, Jinliang Xu, Aime Marthial Abanda, Copper foam based vapor chamber for high heat flux dissipation, Experimental Thermal and Fluid Science, Volume 40, 2012, Pages 93-102, ISSN 0894-1777, https://doi.org/10.1016/j.expthermflusci.2012.02.004.
Ahmed A.A. Attia, Baiumy T.A. El-Assal, Experimental investigation of vapor chamber with different working fluids at different charge ratios, Ain Shams Engineering Journal, Volume 3, Issue 3, 2012, Pages 289-297, ISSN 2090-4479, https://doi.org/10.1016/j.asej.2012.02.003.
Hamdy Hassan, Souad Harmand, 3D transient model of vapour chamber: Effect of nanofluids on its performance, Applied Thermal Engineering, Volume 51, Issues 1–2, 2013, Pages 1191-1201, ISSN 1359-4311, https://doi.org/10.1016/j.applthermaleng.2012.10.047.
S. Adera, D. S. Antao, R. Raj and E. N. Wang, "Hotspot Thermal Management via Thin-Film Evaporation—Part I: Experimental Characterization, " in IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 8, no. 1, pp. 88-98, Jan. 2018, doi: 10.1109/TCPMT.2017.2757463.
Yuan-Chun Li, Shwin-Chung Wong, Effects of vapor duct thickness on the capillary blocking and thermal performance of ultra-thin vapor chambers under natural convection cooling, Applied Thermal Engineering, Volume 195, 2021, 117148, ISSN 1359-4311, https://doi.org/10.1016/j.applthermaleng.2021.117148.
Mengyan Wang, Wenzhi Cui, Yuepan Hou, Thermal spreading resistance of grooved vapor chamber heat spreader, Applied Thermal Engineering, Volume 153, 2019, Pages 361-368, ISSN 1359-4311, https://doi.org/10.1016/j.applthermaleng.2019.03.025.
Mehdi Famouri, Gerardo Carbajal, Chen Li, Transient analysis of heat transfer and fluid flow in a polymer-based Micro Flat Heat Pipe with hybrid wicks, International Journal of Heat and Mass Transfer, Volume 70, 2014, Pages 545-555, ISSN 0017-9310, https://doi.org/10.1016/j.ijheatmasstransfer.2013.11.019.
Ranjan, R, Murthy, JY, & Garimella, SV. "Numerical Study of Evaporation Heat Transfer From the Liquid-Vapor Interface in Wick Microstructures." Proceedings of the ASME 2009 International Mechanical Engineering Congress and Exposition. Volume 9: Heat Transfer, Fluid Flows, and Thermal Systems, Parts A, B and C. Lake Buena Vista, Florida, USA. November 13–19, 2009. pp. 1323-1333. ASME. https://doi.org/10.1115/IMECE2009-11326
R. Ranjan, J. Y. Murthy, S. V. Garimella, D. H. Altman and M. T. North, "Modeling and Design Optimization of Ultrathin Vapor Chambers for High Heat Flux Applications, " in IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 2, no. 9, pp. 1465-1479, Sept. 2012, doi: 10.1109/TCPMT.2012.2194738.
Cho, S., and Joshi, Y. (March 27, 2019). "Thermal Performance of Microelectronic Substrates With Submillimeter Integrated Vapor Chamber." ASME. J. Heat Transfer. May 2019; 141(5): 051401. https://doi.org/10.1115/1.4042328
Longsheng Lu, Yingxi Xie, Feixiang Zhang, Huosheng Liao, Xiaokang Liu, Yong Tang, Influence of a sintered central column on the thermal hydraulic performance of a vapor chamber: A numerical analysis, Applied Thermal Engineering, Volume 103, 2016, Pages 1176-1185, ISSN 1359-4311, https://doi.org/10.1016/j.applthermaleng.2016.05.018.
P. R. Parida et al., "Thermal Modeling of Vapor Chamber Heat Spreaders and Model Validation, " 2020 19th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Orlando, FL, USA, 2020, pp. 134-142, doi: 10.1109/ITherm45881.2020.9190467.
Yen-Shu Chen, Kuo-Hsiang Chien, Tzu-Chen Hung, Chi-Chuan Wang, Yuh-Ming Ferng, Bau-Shei Pei, Numerical simulation of a heat sink embedded with a vapor chamber and calculation of effective thermal conductivity of a vapor chamber, Applied Thermal Engineering, Volume 29, Issue 13, 2009, Pages 2655-2664, ISSN 1359-4311, https://doi.org/10.1016/j.applthermaleng.2008.12.009.
Qing-Hui Wang, Hao Zhao, Zhi-Jia Xu, Jing-Rong Li, Da-Xiang Deng, Ying-Jun Wang, Influence of groove parameters on the thermal hydraulic performance of a composite porous vapor chamber: A numerical study, Applied Thermal Engineering, Volume 172, 2020, 115149, ISSN 1359-4311, https://doi.org/10.1016/j.applthermaleng.2020.115149.
Qing-Hui Wang, Zhan-Hui Wu, Zhi-Jia Xu, Xiao-Lin Fang, Hao Zhao, Ying-Jun Wang, Da-Xiang Deng, Optimization of the coupling groove parameters of composite porous vapor chamber, Applied Thermal Engineering, Volume 205, 2022, 118007, ISSN 1359-4311, https://doi.org/10.1016/j.applthermaleng.2021.118007.
Myeongjin Kim, Kyun Ho Lee, Dong In Han, Joo Hyun Moon, Numerical case study and modeling for spreading thermal resistance and effective thermal conductivity for flat heat pipe, Case Studies in Thermal Engineering, Volume 31, 2022, 101803, ISSN 2214-157X, https://doi.org/10.1016/j.csite.2022.101803.
Han, Shuang, Lixin Yang, Zihao Tian, Xiaofei Yuan, and Hongyan Lu. 2020. "Research on a Simplified Model of an Aluminum Vapor Chamber in a Heat Dissipation System" Entropy 22, no. 1: 35. https://doi.org/10.3390/e22010035
Wang, Rong-Tsu; Wang, Jung-Chang; and Chang, Tien-Li (2011) "EXPERIMENTAL ANALYSIS FOR THERMAL PERFORMANCE OF A VAPOR CHAMBER APPLIED TO HIGH-PERFORMANCE SERVERS, "Journal of Marine Science and Technology: Vol. 19: Iss. 4, Article 3. DOI: 10.51400/2709-6998.2175.
I. Sauciuc, G. Chrysler, R. Mahajan and R. Prasher, "Spreading in the heat sink base: phase change systems or solid metals??, " in IEEE Transactions on Components and Packaging Technologies, vol. 25, no. 4, pp. 621-628, Dec. 2002, doi: 10.1109/TCAPT.2002.807994.
Soo Bin Kim, Kyu Han Kim, Seok Pil Jang, M.A. Kedzierski, Thermal characteristics of silicon wafer-based TVCs (thin vapor chambers) with disk-shape using DI water, International Journal of Heat and Mass Transfer, Volume 127, Part A, 2018, Pages 526-534, ISSN 0017-9310, https://doi.org/10.1016/j.ijheatmasstransfer.2018.06.100.
Tanya Liu, Marc T. Dunham, Ki Wook Jung, Baoxing Chen, Mehdi Asheghi, Kenneth E. Goodson, Characterization and thermal modeling of a miniature silicon vapor chamber for die-level heat redistribution, International Journal of Heat and Mass Transfer, Volume 152, 2020, 119569, ISSN 0017-9310, https://doi.org/10.1016/j.ijheatmasstransfer.2020.119569.
Chen, Y., Chien, K., Wang, C., Hung, T., Ferng, Y., and Pei, B. (December 19, 2006). "Investigations of the Thermal Spreading Effects of Rectangular Conduction Plates and Vapor Chamber." ASME. J. Electron. Packag. September 2007; 129(3): 348–355. https://doi.org/10.1115/1.2753970
Huang, D., Jia, L., Wu, H. et al. Experimental Investigation on the Vapor Chambers with Sintered Copper Powder Wick. J. Therm. Sci. 30, 1938–1950 (2021). https://doi.org/10.1007/s11630-020-1366-3
Hsu, C. T., Cheng, P., and Wong, K. W. (May 1, 1995). "A Lumped-Parameter Model for Stagnant Thermal Conductivity of Spatially Periodic Porous Media." ASME. J. Heat Transfer. May 1995; 117(2): 264–269. https://doi.org/10.1115/1.2822515
James K. Carson, Simon J. Lovatt, David J. Tanner, Andrew C. Cleland, Thermal conductivity bounds for isotropic, porous materials, International Journal of Heat and Mass Transfer, Volume 48, Issue 11, 2005, Pages 2150-2158, ISSN 0017-9310, https://doi.org/10.1016/j.ijheatmasstransfer.2004.12.032.
Jinzao Xu, Benzheng Gao, Hongda Du, Feiyu Kang, A statistical model for effective thermal conductivity of composite materials, International Journal of Thermal Sciences, Volume 104, 2016, Pages 348-356, ISSN 1290-0729, https://doi.org/10.1016/j.ijthermalsci.2015.12.023.
Y. X. Wang, G. P. Peterson, Analytical Model for Capillary Evaporation Limitation in Thin Porous Layers, 2003, Journal of Thermophysics and Heat Transfer, 145-149, 17, 2, 10.2514/2.6769 , https://arc.aiaa.org/doi/abs/10.2514/2.6769
S. Adera, D. S. Antao, R. Raj and E. N. Wang, "Hotspot Thermal Management via Thin-Film Evaporation—Part II: Modeling, " in IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 8, no. 1, pp. 99-112, Jan. 2018, doi: 10.1109/TCPMT.2017.2757461.
Deqiang Li, Zhe Huang, Jing Zhao, Qifei Jian, Yangyang Chen, Analysis of heat transfer performance and vapor–liquid meniscus shape of ultra-thin vapor chamber with supporting columns, Applied Thermal Engineering, Volume 193, 2021, 117001, ISSN 1359-4311, https://doi.org/10.1016/j.applthermaleng.2021.117001.
Jason Velardo, Randeep Singh, Ashwin Date, Abhijit Date, An Investigation into the Effective Thermal Conductivity of Vapour Chamber Heat Spreaders, Energy Procedia, Volume 110, 2017, Pages 256-261, ISSN 1876-6102, https://doi.org/10.1016/j.egypro.2017.03.136.
Maziar Aghvami, Amir Faghri, Analysis of flat heat pipes with various heating and cooling configurations, Applied Thermal Engineering, Volume 31, Issues 14–15, 2011, Pages 2645-2655, ISSN 1359-4311, https://doi.org/10.1016/j.applthermaleng.2011.04.034.
F. Lefèvre, M. Lallemand, Coupled thermal and hydrodynamic models of flat micro heat pipes for the cooling of multiple electronic components, International Journal of Heat and Mass Transfer, Volume 49, Issues 7–8, 2006, Pages 1375-1383, ISSN 0017-9310, https://doi.org/10.1016/j.ijheatmasstransfer.2005.10.001.
Bimal Subedi, Sung Hyoun Kim, Seok Pil Jang, M.A. Kedzierski, Effect of mesh wick geometry on the maximum heat transfer rate of flat-micro heat pipes with multi-heat sources and sinks, International Journal of Heat and Mass Transfer, Volume 131, 2019, Pages 537-545, ISSN 0017-9310, https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.086.
Rémi Revellin, Romuald Rullière, Frédéric Lefèvre, Jocelyn Bonjour, Experimental validation of an analytical model for predicting the thermal and hydrodynamic capabilities of flat micro heat pipes, Applied Thermal Engineering, Volume 29, Issues 5–6, 2009, Pages 1114-1122, ISSN 1359-4311, https://doi.org/10.1016/j.applthermaleng.2008.06.002.
Shou-Shing Hsieh, Ron-Yu Lee, Jin-Cherng Shyu, Shao-Wen Chen, Analytical solution of thermal resistance of vapor chamber heat sink with and without pillar, Energy Conversion and Management, Volume 48, Issue 10, 2007, Pages 2708-2717, ISSN 0196-8904, https://doi.org/10.1016/j.enconman.2007.04.022.
S.A. Lurie, L.N. Rabinskiy, Y.O. Solyaev,Topology optimization of the wick geometry in a flat plate heat pipe,International Journal of Heat and Mass Transfer,Volume 128,2019,Pages 239-247,ISSN 0017-9310,https://doi.org/10.1016/j.ijheatmasstransfer.2018.08.125.
Souad Harmand, Raymond Sonan, Michel Fakès, Hamdy Hassan, Transient cooling of electronic components by flat heat pipes, Applied Thermal Engineering, Volume 31, Issues 11–12, 2011, Pages 1877-1885, ISSN 1359-4311, https://doi.org/10.1016/j.applthermaleng.2011.02.034.
Stéphane Lips, Frédéric Lefèvre, A general analytical model for the design of conventional heat pipes, International Journal of Heat and Mass Transfer, Volume 72, 2014, Pages 288-298, ISSN 0017-9310, https://doi.org/10.1016/j.ijheatmasstransfer.2013.12.068.
Gaurav Patankar, Justin A. Weibel, Suresh V. Garimella, A validated time-stepping analytical model for 3D transient vapor chamber transport, International Journal of Heat and Mass Transfer, Volume 119, 2018, Pages 867-879, ISSN 0017-9310, https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.135.
Faghri, A. (1995). Heat pipe science and technology. Washington, DC: Taylor & Francis.
Chi, S. W. (1976). Heat pipe theory and practice. New York: McGraw-Hill.
Munonyedi Egbo,A review of the thermal performance of vapor chambers and heat sinks: Critical heat flux, thermal resistances, and surface temperatures,International Journal of Heat and Mass Transfer,Volume 183, Part B,2022,122108,ISSN 0017-9310,https://doi.org/10.1016/j.ijheatmasstransfer.2021.122108.
Zohuri, B. (2016). Heat Pipe Theory and Modeling. In: Heat Pipe Design and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-29841-2
Amir Faghri, Yuwen Zhang, 10 - BOILING, Transport Phenomena in Multiphase Systems, Academic Press, 2006, Pages 765-852, ISBN 9780123706102, https://doi.org/10.1016/B978-0-12-370610-2.50015-5.
Fluent, ANSYS (2009). ANSYS Fluent 12.0 user's guide. Ansys Inc, 15317, 1-2498.
Xiaojin Wei and K. Sikka, "Modeling of vapor chamber as heat spreading devices," Thermal and Thermomechanical Proceedings 10th Intersociety Conference on Phenomena in Electronics Systems, 2006. ITHERM 2006., San Diego, CA, USA, 2006, pp. 578-585, doi: 10.1109/ITHERM.2006.1645397.
http://www.thermalfluidscentral.org/encyclopedia/index.php/Thermophysical_Properties:_Acetone
http://www.thermalfluidscentral.org/encyclopedia/index.php/Thermophysical_Properties:_Ethanol
http://www.thermalfluidscentral.org/encyclopedia/index.php/Thermophysical_Properties:_Methanol
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88134-
dc.description.abstract  本研究針對五層結構、一面受熱、另一面對流冷卻之均溫板建構兩個極端數學模型,以了解並預測均溫板之極限熱傳性能與內部流場特徵。其中金屬壁乃配合非均勻加熱條件求解三維溫度場,液體與蒸氣層之流場皆假設為二維,根據介面熱通量計算得相變化質量通量後,再求得相關壓力場及速度場。本文提出之模型分別稱之為完全均溫模型與完全非均溫模型,其差別在於假設蒸氣是否在蒸氣區域充分混和,並使用商業軟體ANSYS驗證簡化的合理性與數學推導過程的正確性。最後將模型預測與實驗數據比較,發現大多數的預測值與實驗值皆落於25%以內。
  本研究接著利用數學模型探討各項因子對均溫板性能的影響。研究發現,在固定均溫板面積與熱源功率下,當熱源面積越來越大時,熱阻會越來越低,並且在熱源面積和均溫板面積相等時,兩種模型會獲得相同數值;在不同長寬比下,隨著長寬比逐漸加大時,此二種模型呈現相反趨勢,當長寬比較小時且蒸氣區域之蒸氣能達到均溫混和時,均溫板反應出更優良的性能。當環境熱對流係數與毛細組織等效熱傳導係數逐漸上升時,熱阻的降低幅度與總流路壓降的上升幅度逐漸不明顯。本研究還比較四種工作流體(水、甲醇、乙醇、丙酮)的毛細極限,其中水作為工作流體的均溫板具有最高的極限熱通量,而後依序為甲醇、丙酮及乙醇,此結果與文獻中觀察到的現象吻合。
zh_TW
dc.description.abstractIn this study, two mathematical models were constructed to predict the thermal performance and internal flow characteristics of a five-layer structure vapor chamber in two limiting cases, fully uniform and fully nonuniform, where the chamber is heated on one side and convectively cooled on the other side. The three-dimensional temperature fields of copper plates under non-uniform heating conditions were solved first. The flow fields in the liquid and vapor core regions are assumed to be two-dimensional. Mass fluxes due to phase change are computed according to the interface heat flux, and used for solving the pressure and velocity fields. The main difference between the two models lies in the assumption whether heat is fully mixed or completely unmixed in the vapor core region. The commercial software ANSYS is used to examine the rationality of some assumptions and most of all the accuracy of the mathematic derivations. The model predictions were finally compared with experimental measured. It is found that the relative error falls within 25%.
The mathematical models were then employed to investigate the influence of various factors on the thermal performance of the vapor chamber. The results show that under a fixed vapor chamber cross-sectional area and heat source power, the thermal resistance decreases with increasing heating area. Both models reach the same value when the heating area is equal to the vapor chamber cross-sectional area. As the aspect ratio of the vapor chamber increases, the two models yield opposite results. When vapor is uniformly mixed in the vapor core, a smaller aspect ratio leads to a better performance. When the environmental heat transfer coefficient and effective thermal conductivity of the capillary structure increase, the reduction in thermal resistance and the increase of pressure drop become less significant. This work also compares the capillary limits of four working fluids: water, methanol, ethanol, and acetone. The result shows that water has the highest maximum heat flux, followed by methanol, acetone, and ethanol, which is consistent with the research results mentioned in the literature.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-08T16:27:06Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-08T16:27:06Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審訂書 I
致謝 II
中文摘要 III
ABSTRACT IV
目錄 V
表目錄 VIII
圖目錄 IX
符號說明 XIII
第1章 緒論 1
1-1 研究背景 1
1-2 文獻回顧 2
1-2-1 實驗研究 2
1-2-2 模擬研究 5
1-2-3 理論分析 7
1-3 研究動機及目的 10
1-4 論文架構 11
第2章 均溫板的基本原理 12
2-1 均溫板工作原理 12
2-1-1 密閉腔體 12
2-1-2 毛細組織 13
2-1-3 工作流體 13
2-2 均溫板之操作極限 14
2-2-1 毛細極限(Capillary Limit) 14
2-2-2 沸騰極限(Boiling Limit) 16
2-2-3 音速極限(Sonic Limit) 16
2-2-4 飛散極限(Entrainment limit) 16
2-2-5 黏性極限(Viscous Limit) 17
第3章 均溫板模型及假設 18
3-1 均溫板模型概要 18
3-2 完全均溫模型 19
3-2-1 第一層銅板層 19
3-2-2 第五層銅板層 21
3-2-3 第二層毛細組織(飽和液體) 23
3-2-4 第三層蒸氣層(飽和蒸氣) 27
3-2-5 第四層毛細組織(飽和液體) 29
3-3 完全均溫模型之模型驗證 30
3-3-1 第一層銅板層 30
3-3-2 第二層毛細組織(飽和液體) 31
3-3-3 第三層蒸氣區域(飽和蒸氣) 33
3-3-4 第四層毛細組織(飽和液體) 34
3-4 完全非均溫模型 35
3-4-1 第五層銅板層 36
3-4-2 第四層毛細組織(飽和液體) 37
3-5 完全非均溫模型之模型驗證 39
3-5-1 第五層銅板層 39
3-5-2 第四層毛細組織(飽和液體) 39
3-6 均溫板極限比較 40
第4章 單熱源均溫板熱傳性質 43
4-1 無因次化 43
4-1-1 完全均溫模型 45
4-1-2 完全非均溫模型 49
4-2 幾何形狀與邊界條件 52
4-2-1 熱源面積 52
4-2-2 均溫板長寬比 54
4-2-3 熱對流係數 56
4-2-4 毛細組織等效熱傳導係數 57
4-2-5 工作流體 58
第5章 結論與未來展望 60
5-1 結論 60
5-1-1 均溫板的兩種模型 60
5-1-2 單熱源的參數討論 61
5-2 未來展望 61
附錄 63
參考資料 66
圖表 78
-
dc.language.isozh_TW-
dc.subject均溫板zh_TW
dc.subject熱阻zh_TW
dc.subject壓降zh_TW
dc.subject毛細極限zh_TW
dc.subject極限熱通量zh_TW
dc.subjectpressure dropen
dc.subjectthermal resistanceen
dc.subjectcapillary limiten
dc.subjectvapor chamberen
dc.subjectmaximum heat fluxen
dc.title均溫板的理論分析與參數討論zh_TW
dc.titleTheoretical Analysis and Parameter Discussion of Vapor Chamberen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee許華倚;賴君亮;呂明璋zh_TW
dc.contributor.oralexamcommitteeHua-Yi Hsu;Chun-Liang Lai;Ming-Chang Luen
dc.subject.keyword均溫板,壓降,熱阻,毛細極限,極限熱通量,zh_TW
dc.subject.keywordvapor chamber,pressure drop,thermal resistance,capillary limit,maximum heat flux,en
dc.relation.page121-
dc.identifier.doi10.6342/NTU202301041-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-07-13-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf8.48 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved