Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88099
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor白奇峰zh_TW
dc.contributor.advisorChi-Feng Paien
dc.contributor.author鄭東岳zh_TW
dc.contributor.authorTung-Yue Chengen
dc.date.accessioned2023-08-08T16:17:46Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-08-
dc.date.issued2023-
dc.date.submitted2023-07-07-
dc.identifier.citation[1] M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices. Physical Review Letters. 61, 2472 (1988)
[2] R. Ranjbar, K. Suzuki, A. Sugihara, Q. L. Ma, X. M. Zhang, Y. Ando, T. Miyazaki, and S. Mizukami, Structural and magnetic properties of cubic and tetragonal Heusler alloy bilayers. Materials & Design. 96, 15: 490-498 (2016)
[3] M. Julliere, Tunneling Between Ferromagnetic Films. Physics Letters A. 54, 3: 225-226 (1975)
[4] E. Y. Tsymbal, P. Leclair, and O. N. Mryasov, Spin-dependent tunneling in magnetic tunnel junctions. Journal of Physics Condensed Matter. 15, 4: 109-142 (2003)
[5] C. L. Platt, B. Dieny, A. E. Berkowitz, Spin polarized tunneling in reactively sputtered tunnel junctions. Journal of Applied Physics. 81, 5523-5525 (1997)
[6] T. Scheike, Z. Wen, H. Sukegawa, and S. Mitani 631% room temperature tunnel magnetoresistance with large oscillation effect in CoFe/MgO/CoFe(001) junctions. Applied Physics Letters. 122, 11: 112404 (2023)
[7] J. E. Hirsch, Spin Hall Effect, Physics Review Letters. 83, 9: 1834-1837 (1999)
[8] R. Ramaswamy, J. M. Lee, K. Cai, H. Yang, Recent advances in spin-orbit torques: Moving towards device applications. Applied Physics Reviews. 5, 3: 031107 (2018)
[9] A. Brataas, A. D. Kent, and H. Ohno, Current-induced torques in magnetic materials. Nature Materials. 11, 372-381 (2012)
[10] D. D. Djayaprawira, K. Tsunekawa, M. Nagai, H. Maehara, S. Yamagata, N. Watanabe, S. Yuasa, Y. Suzuki, and K. Ando, 230% room-temperature magnetoresistance in CoFeB∕MgO∕CoFeB magnetic tunnel junctions. Applied Physics Letters. 86, 9:092502 (2005)
[11] C. H. Shang, J. Nowak, R. Jansen, and J. S. Moodera, Temperature dependence of magnetoresistance and surface magnetization in ferromagnetic tunnel junctions. Physics Review B. 58, 6: R2917-R2920 (1998)
[12] L. Berger, Emission of spin waves by a magnetic multilayer traversed by a current. Physics Review B. 54, 13: 9353-9358 (1996)
[13] J. C. Slonczewski, Current-driven excitation of magnetic multilayers. Journal of Magnetism and Magnetic Materials. 159 1-2: L1-L7 (1996)
[14] S. Bhatti, R. Sbiaa, A. Hirohata, H. Ohno, S. Fukami, and S.N. Piramanayagam, Spintronics based random access memory: a review. Materials Today. 20, 9: 530-548 (2017)
[15] L. Liu, C. -F. Pai, Y. Li, H. W. Tseng, D. C. Ralph, and R. A. Buhrman, Spin-Torque Switching with the Giant Spin Hall Effect of Tantalum. Science. 336, 6081: 555-558 (2012)
[16] T. Endoh, and H. Honjo, A Recent Progress of Spintronics Devices for Integrated Circuit Applications. Low Power Electron Applied. 8, 44 (2018)
[17] Y. Kim, X. Fong, K. -W. Kwon, M. -C. Chen, and K. Roy, Multilevel Spin-Orbit Torque MRAMs. IEEE Transactions on Electron Devices. 62, 2: 561-568 (2015)
[18] S. Ikeda, J. Hayakawa, Y. M. Lee, F. Matsukura, Y. Ohno, T. Hanyu, and H. Ohno, Magnetic tunnel junctions for spintronic memories and beyond. IEEE Transactions on Electron Devices. 54, 5: 991-1002 (2007)
[19] S. Ikeda, K. Miura, H. Yamamoto, K. Mizunuma, H. D. Gan, M. Endo, S. Kanai, J. Hayakawa, F. Matsukura and H. Ohno, A perpendicular-anisotropy CoFeB–MgO magnetic tunnel junction. Nature Materials. 9: 721–724 (2010)
[20] S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, and K. Ando, Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nature Materials. 3: 868-871 (2004)
[21] Z. M. Zeng; P. K. Amiri, G. Rowlands, H. Zhao, I. N. Krivorotov, J. -P. Wang, J. A. Katine, J. Langer, K. Galatsis, K. L. Wang, and H. W. Jiang, Effect of resistance-area product on spin-transfer switching in MgO-based magnetic tunnel junction memory cells. Applied Physics Letters. 98, 7: 072512 (2011)
[22] R. Macedo, J. Borme1, R. Ferreira1, S. Cardoso, P. P. Freitas, B. Mendis, and M. MacKenzie, Nanofabrication of 30 nm Devices Incorporating Low Resistance Magnetic Tunnel Junctions. Journal of Nanoscience and Nanotechnology. 10, 9: 5951-5957 (2010)
[23] M. Gajek, J. J. Nowak, J. Z. Sun, P. L. Trouilloud, E. J. O’Sullivan, D. W. Abraham, M. C. Gaidis, S. Hu, Y. Brown, Y. Zhu, R. P. Robertazzi, W. J. Gallagher, and D. C. Worledge, Spin torque switching of 20 nm magnetic tunnel junctions with perpendicular anisotropy. Applied Physics Letters. 100, 13: 132408 (2012)
[24] L. Zhao, M. Yang, J. Gao, T. Yang, Y. Cui, J. Xu, J. Li, Q. Xiang, W. Li, F. Luo, L. Ye, and J. Luo, Enhancement of Magnetic and Electric Transport Performance of Perpendicular Spin-Orbit Torque Magnetic Tunnel Junction by Stop-on-MgO Etching Process. IEEE Electron Device Letters. 44, 3: 408-411 (2023)
[25] S. Z. Rahaman, I. -J Wang, T. -Y Chen, C. -F Pai, D. -Y Wang, J. -H Wei, H. -H Lee, Y. -C Hsin, Y. -J Chang, S. -Y Yang, Y. -C Kuo, Y. -H Su, Y. -S Chen, K. -C Huang, C. -I Wu, and D. -L Deng, Pulse-Width and Temperature Effect on the Switching Behavior of an Etch-Stop-on-MgO-Barrier Spin-Orbit Torque MRAM Cell. IEEE Electron Device Letters. 39, 9: 1306-1309 (2018)
[26] P. N. Hishimone, Nagai, H. Nagai, and M. Sato, Methods of Fabricating Thin Films for Energy Materials and Devices. Lithium-ion Batteries. CH2 (2020).
[27] A. R. Barron, Optical issues in photolithography. Chemistry of electronic materials. (2011)
[28] S. Y. Siew, E. J. Cheung, H. Liang, A. Bettiol, N. Toyoda, B. Alshehri, E. Dogheche, and A. J. Danner, Ultra-low loss ridge waveguides on lithium niobate via argon ion milling and gas clustered ion beam smoothening. Optics Express, 26 4: 4421-4430 (2018)
[29] K. Satoh, D. H. Jung, J. Zhang, B. Chen, Y. Huai, R. Y. Ranjan, and Y. Zhou, MTJ stack and bottom electrode patterning process with ion beam etching using a single mask. Patent Application Publication. US9166154B2 (2015)
[30] M. Hughes, Webpage: What is E-Beam Evaporation. (2016)
[31] T. -Y Tsai, T. -Y Chen, C. -T Wu, H. -I Chan, and C. -F Pai, Spin-orbit torque magnetometry by wide-field magneto-optical Kerr effect. Scientific Reports. 8, 5613 (2018)
[32] H. Analytical, An overview of the Hiden Analytical SIMS end point detector system for ion beam etch applications.
[33] Q. Fu, K. Zhou, L. Chen, Y. Xu, T. Zhou, D. Wang, K. Chi, H. Meng, B. Liu, R. Liu, and Y. Du, Field- and Current-Driven Magnetization Reversal and Dynamic Properties of CoFeB-MgO-Based Perpendicular Magnetic Tunnel Junctions. Chinese Physics Letters. 37, 11: 117501 (2020)
[34] S. K. Piotrowski, M. Bapna, H. Almasi, W. -G Wang, L. Tryputen, C. A. Ross, M. Li, C. -L Chien, and S. A. Majetich, Conductive Atomic Force Microscopy of Small Magnetic Tunnel Junctions With Interface Anisotropy. IEEE Transactions on Magnetics. 51, 11: 1-4 (2015)
[35] R. H. Koch, J. A. Katine, and J. Z. Sun, Time-Resolved Reversal of Spin-Transfer Switching in a Nanomagnet. Physical Review Letters. 92, 8: 088302 (2004)
[36] S. S. P. Parkin, C. Kaiser, A. Panchula, P. M. Rice, B. Hughes, M. Samant, and S. -H Yang, Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nature Materials. 3: 862-867 (2004)
[37] M. Yamanouchi, R. Koizumi, S. Ikeda, H. Sato, K. Mizunuma, K. Miura, H. D. Gan, F. Matsukura, and H. Ohno, Dependence of magnetic anisotropy on MgO thickness and buffer layer in Co20Fe60B20-MgO structure. Journal of Applied Physics. 109, 7: 07C712 (2011)
[38] T. Miyajima, T. Ibusuki, S. Umehara, M. Sato, S. Eguchi, M. Tsukada, and Y. Kataoka, Transmission electron microscopy study on the crystallization and boron distribution of CoFeB/MgO/CoFeB magnetic tunnel junctions with various capping layers. Applied Physics Letters. 94, 12: 122501 (2009)
[39] H. Meng, W. H. Lum, R. Sbiaa, S. Y. H. Lua, and H. K. Tan, Annealing effects on CoFeB-MgO magnetic tunnel junctions with perpendicular anisotropy. Journal of Applied Physics. 110, 3: 033904 (2011)
[40] W. X. Wang, Y. Yang, H. Naganuma, Y. Ando, R. C. Yu, and X. F. Han, The perpendicular anisotropy of Co40Fe40B20 sandwiched between Ta and MgO layers and its application in CoFeB/MgO/CoFeB tunnel junction. Applied Physics Letters. 99,1: 012502 (2011).
[41] H. Honjo, T. V. A. Nguyen, M. Yasuhira, M. Niwa, S. Ikeda, H. Sato, and T. Endoh, Effect of capping layer material on thermal tolerance of magnetic tunnel junctions with MgO/CoFeB-based free layer/MgO/capping layers. AIP Advances. 9, 12: 125330 (2019)
[42] G. X. Miao, Y. J. Park, J. S. Moodera, M. Seibt, G. Eilers, and M. Münzenberg, Disturbance of Tunneling Coherence by Oxygen Vacancy in Epitaxial Fe/MgO/Fe Magnetic Tunnel Junctions. Physical Review Letters. 100, 24: 246803 (2008)
[43] J. Zak, E. R. Moog, C. Liu, and S. D. Bader, Universal approach to magneto-optics. Journal of Magnetism and Magnetic Materials. 89, 1-2: 107-123 (1990)
[44] J. Hayakawa, S. Ikeda, F. Matsukura, H. Takahashi and H. Ohno, Dependence of Giant Tunnel Magnetoresistance of Sputtered CoFeB/MgO/CoFeB Magnetic Tunnel Junctions on MgO Barrier Thickness and Annealing Temperature. Japanese Journal of Applied Physics. 44 L587 (2005)
[45] G. Feng, S. V. Dijken, J. F. Feng, J. M. D. Coey, T. Leo, and D. J. Smith, Annealing of CoFeB/MgO based single and double barrier magnetic tunnel junctions: Tunnel magnetoresistance, bias dependence, and output voltage. Journal of Applied Physics. 105, 3: 033916 (2009)
[46] W. -G. Wang, S Hageman, M. Li, S. Huang, X. Kou, X. Fan, J. Q. Xiao, and C. L. Chien, Rapid thermal annealing study of magnetoresistance and perpendicular anisotropy in magnetic tunnel junctions based on MgO and CoFeB. Applied Physics Letters. 99, 10: 102502 (2011)
[47] Y. -J. Tsou, W. -J. Chen, C. -Y. Liu, Y. -J. Chen, K. -S. Li, J. -M. Shieh, P. -C. Liu, W. -Y. Chung, C. W. Liu, S. -Y. Huang, J. -H. Wei, D. D. Tang, and J. Y. -C. Sun, Demonstration of High Endurance and Retention Spin-Transfer-Torque-Assisted Field-Free Perpendicular Spin-Orbit Torque Cells by an Etch- Stop-on-MgO Process. IEEE Electron Device Letters. 43, 10: 1661-1664 (2022)
[48] Y. Fukumoto and A. Kamijo, Effect of Milling Depth of the Junction Pattern on Magnetic Properties and Yields in Magnetic Tunnel Junctions. Japanese Journal of Applied Physics. 41 L183 (2002)
[49] W. F. Egelhoff Jr.,V. E. Höink, J. W. Lau, W. F. Shen, B. D. Schrag, and G. Xiao, Magnetic tunnel junctions with large tunneling magnetoresistance and small saturation fields. Journal of Applied Physics. 107, 9: 09C705 (2010)
[50] S. Takahashi, T. Kai, N. Shimomura, T. Ueda, M. Amano, M. Yoshikawa, E. Kitagawa, Y. Asao, S. Ikegawa, T. Kishi, H. Yoda, K. Nagahara, T. Mukai, and H. Hada, Ion-Beam-Etched Profile Control of MTJ Cells for Improving the Switching Characteristics of High-Density MRAM. IEEE Transactions on Magnetics. 42,10: 2745-2747 (2006)
[51] S. Wang, Z. Zuo, Z. Ji, X. Chen, H. Ye, and G. Han, Etching damage induced performance degradation in spin transfer torque magnetic random-access memory fabrication. Journal of Vacuum Science & Technology B. 39, 5: 052210 (2021)
[52] K. Sugiura, S. Takahashi, M. Amano, T. Kajiyama, M. Iwayama, Y. Asao, N. Shimomura, T. Kishi, S. Ikegawa, and H. Yoda, Ion Beam Etching Technology for High-Density Spin Transfer Torque Magnetic Random Access Memory. Japanese Journal of Applied Physics. 48 08HD02 (2009)
[53] S. -W. Chun, D. Kim, J. Kwon, B. Kim, S. Choi, and S. -B. Lee, Multi-step ion beam etching of sub-30 nm magnetic tunnel junctions for reducing leakage and MgO barrier damage. Journal of Applied Physics. 111, 7: 07C722 (2012)
[54] Q. Shao, P. Li, L. Liu, H. Yang, S. Fukami, A. Razavi, H. Wu, K. Wang, F. Freimuth, Y. Mokrousov, M. D. Stiles, S. Emori, A. Hoffmann, J. Åkerman, K. Roy, J. -P. Wang, S. -H. Yang, K. Garello, and W. Zhang, Roadmap of Spin–Orbit Torques. IEEE Transactions on Magnetics, 57, 7: 1-39 (2021)
[55] M. H. Ji, L. Pan, Y. Hu, M. Pan, L.Yang, J. Peng, W. Qiu, J. Hu, Q. Zhang, P. Li, Study on the effect of re-deposition induced by ion beam etching on MTJ performances. AIP Advances. 9, 8: 085317 (2019)
[56] S. Lepadatu, and A. Dobrynin, Self-Consistent Computation of Spin Torques and Magneto-Resistance in Tunnel Junctions and Magnetic Read-Heads with Metallic Pinhole Defects. Journal of Physics Condensed Matter. 35, 11 (2023)
[57] R. C. Sahoo, D. L. Duong, J. Yoon, P. N. Hai, and Y. H. Lee, Spin-orbit torque: Moving towards two-dimensional van der Waals heterostructures. arXiv:2108.10622 (2021)
[58] D. D. Tang and C. -F Pai, Magnetic Memory Technology: Spin-transfer-Torque MRAM and Beyond. John Wiley & Sons, Inc. (2021)
[59] S. Bhatti , R. Sbiaa, A. Hirohata, H. Ohno, S. Fukami, and S. N. Piramanayagam, Spintronics based random access memory: a review. Materials Today. 20, 9: 530-548 (2017)
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88099-
dc.description.abstract磁阻式隨機存取記憶體在記憶體市場佔有一席之地,其中自旋軌道矩式磁阻式隨機存取記憶體具有很大的優勢,其具有非揮發的特性和較低的能耗,相較於自旋轉移力矩式軌道矩,自旋軌道矩式讀寫電流分離架構使其具有更高的可靠度,為了具有更好的熱穩定性及更高儲存密度,具垂直異向性的自旋軌道矩式記憶體也推動了磁性記憶體的發展邁向嶄新的一頁。在本文中探討自旋軌道矩式記憶體的核心結構,磁穿隧元件,利用不同鈷鐵硼鐵磁層及氧化鎂穿隧層的調整,並配合適當的熱處理製成具垂直異向性的試片,且為了防止離子束蝕刻本身造成的回鍍現象,本論文進行一系列的改善,包括訂定一套準則控制蝕刻時間,並以這個為基礎,進行不同角度、蝕刻深度、不同能量的離子束蝕刻及額外的小角度蝕刻的製程優化,最終防止回鍍現象,並且改善成品的良率至八成及提升穿隧磁阻至20%,良好的垂直異向性及較大矯完力的釘扎層也經由這些製程優化後得到。最後,在本文也實現以電流誘發自旋軌道矩翻轉其自由層的磁化方向,並且得到熱穩定性因子可達97的微米等級磁性穿隧元件。zh_TW
dc.description.abstractMagnetoresistive Random Access Memory occupies a place in the RAM market. Among the variety of RAM, spin-orbit torque magnetoresistive random access memory (SOT-MRAM) has enormous advantages, including non-volatile and lower consumption. Compared with spin-transfer torque magnetoresistive random access memory (STT-MRAM), SOT-MRAM has better endurance due to the circuit architecture separating the read and write paths. To attain better thermal stability and high storage density, perpendicular magnetic anisotropy SOT-MRAM has been proposed, and it boosts developments for SOT-MRAM. In this thesis, I investigate the core part of SOT-MRAM, called magnetic tunnel junction (MTJ). I utilize different CoFeB and MgO tunneling barrier thicknesses and proper heat treatment to fabricate SOT-MTJ with perpendicular magnetic anisotropy. In addition, I conduct a series of adjustments for ion beam etching to prevent the redeposition effect. The method improvements include a standard for etching time, primary etching angle, the intensity of the etching beam, depth of channel layer, and additional small angle etching. After optimized fabrication via mentioned approaches, it can minimize and even prevent redeposition in MTJ. Moreover, the yield rate is up to 80%, and the TMR ratio reaches 20%. After optimization, well-defined PMA and relatively large fixed layer coercivity can also be obtained. Finally, current-induced SOT-driven magnetization switching can be realized, and the thermal stability factor with 97 can be derived from our micro-scale p-MTJs.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-08T16:17:46Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-08T16:17:46Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES vii
Chapter 1 Introduction 1
1.1 Magnetoresistance (MR) 1
1.1.1 Giant Magnetoresistance (GMR) 1
1.1.2 Tunneling Magnetoresistance (TMR) 2
1.2 Spin Hall Effect 7
1.3 Magnetic Tunnel Junctions (MTJ) 8
1.3.1 Spin-transfer torque (STT) 9
1.3.2 Spin-orbit torque (SOT) 11
1.3.3 Perpendicular Magnetic Anisotropy (PMA) 13
1.4 Resistance-area product 15
1.5 Redeposition Effect 16
1.6 Motivation for this work 18
Chapter 2 Sample Fabrication 19
2.1 Thin Film Deposition 19
2.2 Post Process of Device Manufacture 20
2.2.1 Photolithography 20
2.2.2 Ion Beam Etching (IBE) 21
2.2.3 Electron Beam Evaporator 23
2.3 MTJ Fabrication 24
Chapter 3 Measurement 28
3.1 Thin Film Measurement 28
3.1.1 Magneto-Optical Kerr Effect (MOKE) 28
3.2 Secondary Ion Mass Spectrometry (SIMS) 29
3.3 MTJ Measurement 31
3.3.1 Resistance Measurement 31
3.3.2 TMR measurement 32
3.3.3 Current-induced Magnetization Switching Measurement 33
Chapter 4 Result and Discussion 36
4.1 Thin Film Deposition 36
4.1.1 MgO thickness dependence 36
4.1.2 CoFeB thickness dependence 39
4.1.3 Annealing time 41
4.1.4 Short Conclusion 44
4.2 Optimization of Etching Process 44
4.2.1 Different Stop Layers 44
4.2.2 Ove-etching Time 47
4.2.3 Optimization of Cleaning Processes 49
4.2.4 Etching incident angle 59
4.2.5 Etching Beam Current 60
4.2.6 Short Conclusion 62
4.4 Current-induced Magnetization Switching Measurement 64
4.4.1 In-plane Field Dependent Measurement 64
4.4.2 Writing Pulse-Width Dependent Measurement 65
Chapter 5 Summary 67
REFERENCE 68
-
dc.language.isoen-
dc.subject自旋軌道矩式記憶體zh_TW
dc.subject磁性穿隧元件zh_TW
dc.subject穿隧磁阻zh_TW
dc.subject垂直異向性zh_TW
dc.subject回鍍現象zh_TW
dc.subject小角度蝕刻zh_TW
dc.subject電流誘發自旋軌道矩磁化翻轉zh_TW
dc.subjectPMAen
dc.subjectcurrent-induced magnetization switchingen
dc.subjectsmall angle etchingen
dc.subjectredeposition effecten
dc.subjecttunneling resistanceen
dc.subjectmagnetic tunnel junctionen
dc.subjectSOT-MRAMen
dc.title具垂直異向性磁穿隧元件之自旋軌道矩磁化翻轉與製程優化zh_TW
dc.titleFabrication Optimization and Magnetization Switching of Spin-Orbit Torque Magnetic Tunnel Junctions with Perpendicular Anisotropyen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee薛文証;吳仲卿zh_TW
dc.contributor.oralexamcommitteeWen-Jeng Hsueh;Jong-Ching Wuen
dc.subject.keyword自旋軌道矩式記憶體,磁性穿隧元件,穿隧磁阻,垂直異向性,回鍍現象,小角度蝕刻,電流誘發自旋軌道矩磁化翻轉,zh_TW
dc.subject.keywordSOT-MRAM,magnetic tunnel junction,tunneling resistance,PMA,redeposition effect,small angle etching,current-induced magnetization switching,en
dc.relation.page75-
dc.identifier.doi10.6342/NTU202301368-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-07-10-
dc.contributor.author-college工學院-
dc.contributor.author-dept材料科學與工程學系-
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
4.03 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved