Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88041
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李宇修zh_TW
dc.contributor.advisorYu-Hsiu Leeen
dc.contributor.author鄭奕泰zh_TW
dc.contributor.authorYi-Tai Chengen
dc.date.accessioned2023-08-01T16:33:52Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-01-
dc.date.issued2023-
dc.date.submitted2023-07-04-
dc.identifier.citation[1] D.-I. Kim and S. Kim, “An iterative learning control method with appli-cation for CNC machine tools,” IEEE Trans. Ind. Appl., vol. 32, no. 1,pp. 66–72, Jan./Feb. 1996.
[2] A. Steinhauser and J. Swevers, “An efficient iterative learning approach to time-optimal path tracking for industrial robots,” IEEE Trans Ind. Informat., vol. 14, no. 11, pp. 5200–5207, Nov. 2018.
[3] Mishra, Sandipan & Coaplen, Joshua & Tomizuka, Masayoshi. (2007). Precision Positioning of Wafer Scanners Segmented Iterative Learning Control for Nonrepetitive Disturbances [Applications of Control]. Control Systems, IEEE. 27. 20 - 25. 10.1109/MCS.2007.384130.
[4] Y. -H. Lee, S. Rai and T. -C. Tsao, "Data-Driven Iterative Learning Control of Nonlinear Systems by Adaptive Model Matching," in IEEE/ASME Transactions on Mechatronics, vol. 27, no. 6, pp. 5626-5636, Dec. 2022.
[5] Rai, Sandeep, et al. "Mimo repetitive control of an active magnetic bearing spindle." IFAC-PapersOnLine 49.21 (2016): 192-199.
[6] Sencer, B., Y. Altintas, and E. Croft. "Feed optimization for five-axis CNC machine tools with drive constraints." International Journal of Machine Tools and Manufacture 48.7-8 (2008): 733-745.
[7] Oomen, Tom, et al. "Connecting system identification and robust control for next-generation motion control of a wafer stage." IEEE Transactions on Control Systems Technology 22.1 (2013): 102-118.
[8] Lee, Yu-Hsiu, et al. "Industrial robot accurate trajectory generation by nested loop iterative learning control." Mechatronics 74 (2021): 102487.
[9] Eksteen, Jan, and Anton Raath. "Time-domain reconstruction of dynamic multiaxial responses in aeronautical fatigue testing." Journal of aircraft 38.1 (2001): 147-153.
[10] Wang, Xiao, et al. "Modified quasi-newton optimization algorithm-based iterative learning control for multi-axial road durability test rig." IEEE access 7 (2019): 31286-31296.
[11] S. Arimoto, S. Kawamura, and F.Miyazaki, “Bettering operation of robotsby learning,” J. Robot. Syst., vol. 1, no. 2, pp. 123–140, 1984.
[12] Longman, R. W. (2000). “Iterative learning control and repetitive control for engineering practice.” International Journal of Control, 73(10), 930–954.
[13] Norrlöf, M., & Gunnarsson, S. (2002). “Time and frequency domain convergence properties in iterative learning control.” International Journal of Control, 75(14), 1114–1126.
[14] Hatonen, J. J., Harte, T. J., Owens, D. H., Ratcliffe, J. D., Lewin, P. L., & Rogers, E. (n.d.). A new robust iterative learning control algorithm for application on a gantry robot. EFTA 2003. 2003 IEEE Conference on Emerging Technologies and Factory Automation. Proceedings (Cat. No.03TH8696).
[15] Owens, D. H., & Hätönen, J. (2005). Iterative learning control — An optimization paradigm. Annual Reviews in Control, 29(1), 57–70.
[16] J. van Zundert and T. Oomen, “On inversion-based approaches for feedforwardand ILC,” Mechatronics, vol. 50, pp. 282–291, 2018
[17] Tong Duy Son, Goele Pipeleers, Jan Swevers, Experimental Validation of Robust Iterative Learning Control on an Overhead Crane Test Setup,IFAC Proceedings Volumes,Volume 47, Issue 3,2014,Pages 5981-5986,ISSN 1474-6670,ISBN 9783902823625.
[18] JJM Van De Wijdeven, MCF Donkers, and OH Bosgra. “Iterative learning con-trol for uncertain systems: Noncausal finite time interval robust control design.”International Journal of Robust and Nonlinear Control,21(14):1645–1666, 2011.
[19] Spong, Mark W., et al. "Control of Robots and Manipulators." Control System Applications. CRC Press, 2018. 165-193.
[20] T. Lin, D. H. Owens & J. Hätönen (2006) Newton method based iterative learning control for discrete non-linear systems, International Journal of Control, 79:10, 1263-1276.
[21] A. Tayebi and C.-J. Chien, “A unified adaptive iterative learning control framework for uncertain nonlinear systems,” IEEE Trans. Autom. Control, vol. 52, no. 10, pp. 1907–1913, Oct. 2007.
[22] J.-X. Xu, “A survey on iterative learning control for nonlinear systems,”Int. J. Control, vol. 84, no. 7, pp. 1275–1294, 2011.
[23] S. Tien, Q. Zou, and S. Devasia, “Iterative control of dynamics-couplingcaused errors in piezoscanners during high-speed AFM operation,” IEEE Trans. Control Syst. Technol., vol. 13, no. 6, pp. 921–931, Nov. 2005.
[24] Chen, Cheng-Wei, Sandeep Rai, and Tsu-Chin Tsao. "Iterative learning of dynamic inverse filters for feedforward tracking control." IEEE/ASME Transactions on Mechatronics 25.1 (2019): 349-359.
[25] C.-W. Chen and T.-C. Tsao, “Accelerated convergence interleaving iterative learning control and inverse dynamics identification,” IEEE Trans. Control Syst. Technol., vol. 30, no. 1, pp. 45–56, Jan. 2022.
[26] X. Yu, Z. Hou, M. M. Polycarpou and L. Duan, "Data-Driven Iterative Learning Control for Nonlinear Discrete-Time MIMO Systems," in IEEE Transactions on Neural Networks and Learning Systems, vol. 32, no. 3, pp. 1136-1148, March 2021.
[27] C.-J. Chien and L.-C. Fu, “An iterative learning control of nonlinear systems using neural network design,” Asian J. Control, vol. 4, no. 1, pp. 21–29, 2002.
[28] Y. Li, K. Li, and S. Tong, “Adaptive neural network finite-time control for multi-input and multi-output nonlinear systems with positive powers of odd rational numbers,” IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 7, pp. 2532–2543, Jul. 2020.
[29] R. Chi, Z. Hou, S. Jin, and B. Huang, “Computationally efficient datadriven higher order optimal iterative learning control,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 12, pp. 5971–5980, Dec. 2018.
[30] D. A. Bristow, M. Tharayil and A. G. Alleyne, "A survey of iterative learning control," in IEEE Control Systems Magazine, vol. 26, no. 3, pp. 96-114, June 2006.
[31] Gray, Robert M. "Toeplitz and circulant matrices: A review." Foundations and Trends® in Communications and Information Theory 2.3 (2006): 155-239.
[32] Plett, Gregory L. "Efficient linear MIMO adaptive inverse control." IFAC Proceedings Volumes 34.14 (2001): 89-94.
[33] Yang, Bin, and Johann F. Bohme. "Rotation-based RLS algorithms: Unified derivations, numerical properties, and parallel implementations." IEEE Transactions on Signal Processing 40.5 (1992): 1151-1167.
[34] Oliveira, Tomás. "Laguerre filters: An introduction." Eletrónica e Telecomunicações 1.3 (1995): 237-248.
[35] Widrow, Bernard, and Eugene Walach. Adaptive inverse control: a signal processing approach. John Wiley & Sons, 2008.
[36] N. O. PÉrez-Arancibia, J. S. Gibson and T. -C. Tsao, "Frequency-Weighted Minimum-Variance Adaptive Control of Laser Beam Jitter," in IEEE/ASME Transactions on Mechatronics, vol. 14, no. 3, pp. 337-348, June 2009.
[37] Vold, Håvard, John Crowley, and G. Thomas Rocklin. “New Ways of Estimating Frequency Response Functions.” Sound and Vibration. Vol. 18, November 1984, pp. 34–38.
[38] Lennart Blanken, Jeroen Willems, Sjirk Koekebakker, Tom Oomen, “Design Techniques for Multivariable ILC: Application to an Industrial Flatbed Printer”, IFAC-PapersOnLine,Volume 49, Issue 21,2016,Pages 213-221,ISSN 2405-8963.
[39] L. Blanken, G. Isil, S. Koekebakker and T. Oomen, "Data-Driven Feedforward Learning using Non-Causal Rational Basis Functions: Application to an Industrial Flatbed Printer," 2018 Annual American Control Conference (ACC), Milwaukee, WI, USA, 2018, pp. 6672-6677.
[40] Shen Gang, Zhu Zhen-Cai, Zhang Lei, Tang Yu, Yang Chi-fu, Zhao Jin-song, Liu Guang-da, Han Jun-Wei, “Adaptive feed-forward compensation for hybrid control with acceleration time waveform replication on electro-hydraulic shaking table”, Control Engineering Practice, Volume 21, Issue 8,2013,Pages 1128-1142,ISSN 0967-0661.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88041-
dc.description.abstract在高度重複性運作的精密系統場域中例如:工具機[1]、工業機器人[2]、半導體製程[3]等,迭代學習控制因為其優異的追蹤性能已經被廣泛應用在各種工業量產製程中。迭帶學習控制的效能與收斂性主要建基於系統模型的準確性和有效的學習演算法。對於具有非線性動態的系統,其模型取得不易且成本高昂,設計對應的演算法亦是一個技術挑戰。在先輩的方法中[4],適應性濾波被巧妙地使用來追蹤單變數非線性系統沿著動態軌跡變化的線性化模型並產生對應的逆動態系統,因此從迭代學習的觀點能夠將輸入輸出視作一線性的非時變系統進行分析和演算法實理。因其數據驅動的特性,減少了建模成本與不確定性造成的影響,並提供了演算法收斂性分析的依據。然而,該方法在具有動態耦合之多變數系統的延伸未有著墨,由於轉移函數矩陣乘法交換律的不成立會對演算法設計與分析帶來更多挑戰。本論文即對此部分提出推廣至多變數的數據驅動迭代學習演算法,提出數種能夠針對加速誤差收斂速度的演算法進行比較,在線性非時變系統與非線性動態系統上進行模擬,並在龍門式x-y平台上實驗驗證。zh_TW
dc.description.abstractIn highly repetitive operations within precision systems fields, such as machine tools [1], industrial robots [2], and semiconductor manufacturing processes [3], iterative learning control (ILC) has been widely applied in various industrial production processes due to its exceptional tracking performance. The effectiveness and convergence of ILC primarily depend on the accuracy of the system model and the efficiency of the learning algorithms. However, obtaining an accurate model for systems with nonlinear dynamics is a demanding and costly task, presenting a significant technical hurdle. Previous approaches [4] have cleverly employed adaptive filtering to track the linearized model of single-variable nonlinear systems along their dynamic trajectories and generate corresponding inverse dynamic systems. This perspective enables the analysis and algorithm development of the input-output relationship as a linear time-invariant system, providing a data-driven solution that mitigates the impact of modeling costs and uncertainties. Moreover, it offers a foundation for convergence analysis of the algorithms. Nevertheless, extending this method to multivariable systems with dynamic coupling remains unexplored. The non-commutativity of transfer function matrix multiplication introduces additional complexities in algorithm design and analysis. This thesis addresses this gap by proposing an extension of the data-driven iterative learning algorithm to multivariable systems. Several algorithms capable of accelerating error convergence rate are compared, with simulations conducted on both linear time-invariant systems and nonlinear dynamic systems. Experimental verification is performed on a gantry-type x-y platform.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-01T16:33:52Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-01T16:33:52Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES vi
LIST OF TABLES ix
Chapter 1 Introduction 1
1.1 Background and Motivation 1
1.2 Literature Review 2
1.2.1 ILC 2
1.2.2 Model Based ILC 3
1.2.3 Data-driven ILC 3
Chapter 2 ILC Preliminaries 5
Chapter 3 Algorithm 7
3.1 SISO Algorithm 7
3.2 MIMO Algorithm 11
3.2.1 Left Inverse Method 14
3.2.2 Right Inverse Method with Exhaust Transpose 19
3.2.3 Right Inverse Method with Fast Transpose. 26
3.2.4 Summary 32
3.3 Parameter Design 34
Chapter 4 Results 40
4.1 LTI System 40
4.1.1 Test System Introduction 40
4.1.2 Simulation Results 42
4.1.3 Experiment Results 44
4.2 Non-LTI System 50
4.2.1 Test System Introduction 50
4.2.2 Simulation Results 51
Chapter 5 Conclusions and Future works 56
5.1 Conclusions 56
5.2 Future works 57
REFERENCE 59
-
dc.language.isozh_TW-
dc.subject迭代學習控制zh_TW
dc.subject自適應逆濾波zh_TW
dc.subject數據驅動zh_TW
dc.subject多變數系統zh_TW
dc.subject非線性動態zh_TW
dc.subjectData drivenen
dc.subjectAdaptive Inverse filteringen
dc.subjectCoupling systemsen
dc.subjectIterative learning controlen
dc.subjectNonlinear dynamicsen
dc.title數據驅動之迭代學習控制於多變數非線性動態系統之研究zh_TW
dc.titleData-driven Iterative Learning Control for Multivariable Nonlinear Dynamic Systemsen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee王富正;陳政維;葉奕良zh_TW
dc.contributor.oralexamcommitteeFu-Cheng Wang;Cheng-Wei Chen;Yi-Liang Yehen
dc.subject.keyword迭代學習控制,數據驅動,自適應逆濾波,多變數系統,非線性動態,zh_TW
dc.subject.keywordIterative learning control,Data driven,Adaptive Inverse filtering,Coupling systems,Nonlinear dynamics,en
dc.relation.page63-
dc.identifier.doi10.6342/NTU202301229-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-07-05-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf2.76 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved