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ABSTRACT

In highly repetitive operations within precision systems fields, such as machine tools
[1], industrial robots [2], and semiconductor manufacturing processes [3], iterative
learning control (ILC) has been widely applied in various industrial production processes
due to its exceptional tracking performance. The effectiveness and convergence of ILC
primarily depend on the accuracy of the system model and the efficiency of the learning
algorithms. However, obtaining an accurate model for systems with nonlinear dynamics
is a demanding and costly task, presenting a significant technical hurdle. Previous
approaches [4] have cleverly employed adaptive filtering to track the linearized model of
single-variable nonlinear systems along their dynamic trajectories and generate
corresponding inverse dynamic systems. This perspective enables the analysis and
algorithm development of the input-output relationship as a linear time-invariant system,
providing a data-driven solution that mitigates the impact of modeling costs and
uncertainties. Moreover, it offers a foundation for convergence analysis of the algorithms.
Nevertheless, extending this method to multivariable systems with dynamic coupling
remains unexplored. The non-commutativity of transfer function matrix multiplication
introduces additional complexities in algorithm design and analysis. This thesis addresses
this gap by proposing an extension of the data-driven iterative learning algorithm to
multivariable systems. Several algorithms capable of accelerating error convergence rate
are compared, with simulations conducted on both linear time-invariant systems and
nonlinear dynamic systems. Experimental verification is performed on a gantry-type x-y
platform.
Key words: Iterative learning control(ILC), Data driven, Adaptive Inverse filtering,

Coupling systems, Nonlinear dynamics.
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Chapter 1  Introduction

1.1 Background and Motivation

HRE®pd Fu gt 207 s RAT ARDETERAE
FA A I [S][6] ~ S T RE[7] > 1 F % RS A[8]F > min AL H A o B AN
Egf o mgiih (o {fdmndite P i mmgIF 22 355
P BREagE s TEERE G LA A EFET o B R E Y 4 (terative
Learning Control, ILC) £ # {34 chif B ae » T AR L@ * fde @ 1 Z48[1]~ 2
FH®m A [2] X EREEAR[3]E 5 s o A 5 A #H (Model based) s ILC » f 4 2L
% 5 (Linear Time Invariant, LTI) % e b e ® ¢ S B @404 338 > Ra 29 1 5L
AAGEmEE2ABEE > bl Lo BABRIFLI R EEFT 7 ke

FRFE I RBACEESEMS ARG - RPN G L ERL Bae

(i?r‘r

i /?Jﬂémﬁé"’ |:9]|:10]Z R-:’%Fﬁl? l,_%rgr' ’/]Q}Ei(ﬁvggﬂ\ff lg g "‘ ‘9:11]"_}_, ﬁv%,‘f
Moo BipRanfinT o FE&RR Y LTI endls o i 2 jcacd B 40 ¢ 885
Foo AT 2[4]Y o BEfEA bH ﬁs?] ~ ﬂi%] 1 (Single-Input Single-Output,

SISO)zt4 1§ At % Seen ILC RP4E o 2R @ 3% 872 2 & § 4 ¥4 s e ac b B

@

A @ 2] ARG UL 0 30 5 8~ § 6 1 (Multiple-Input Multiple-

Output, MIMO) s ¥oefiag © Jig % » F] 2 H P L A k2o 22 8L 2 S do

RN R Y TR L I B P RE S R Y-FUE) L Y

IR RAFEZ N TR A Y Pk
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1.2 Literature Review

,u‘f:t&d/g%r}ﬂ)éﬁ/} FZBEIMA 0 F - EAAL ILC A A RITEEE S -

i\4
X

> #-w if i 5 Model based ILC A2 82 2L 6o i i 5L b e o d 20 JOT 40
AR FF LI AREFALDEE > 5 = 304 WP By 5% # (Data-
driven)ILC 73 ;% o
1.2.1 ILC

ILC e Ad B A1 %52 7 Sk eni S oL T 5 d 7 U734 40 7 %8 (Fen
TR AL AP AR A 80 &£ d Arimoto & A 3 J[11] o i iE Bign
Br P ¥ AR ERE TR RE AE - EFIEY Lt w gL
Tk 28 Al ~ Bl B IFR R g4 - BiTaeh s i et

LA LR A © ke R R HGRE BL 1 - R S R

=
3

ot 3t pF(Real-Time) s w AR 44 = 27 MR A ™ H 6 £ A H e
APt B A o T4 1% Nk ILC At 49 #AT) 25 F] % [+ (Non-causal) s 4] » & &
FUI E 3 2 BB &R g T 2 % (Iteration-Invariant, IT)e0ik 7 > i # jrd
s A I A AR F AT LA o ARt A1 AF T hig
MPML AL FE > iR o

& PR E B ILC 2 S Bl F B AP R B 0 e £
A %’{Eﬁ‘ﬁ@"ﬁ FWRZEEARFITS] Tk 35%] » o B B 7\'%
TeREHT R i SRR ek PO B Y TR PR A A Bt 0 o o g
Jearen® L ApF R o B AL - ook B racihd £ Rl AT kB
7 fE > WAL AR 7 A AT R o Aol - PR feY g 5 ILC R
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1.2.2 Model Based ILC

L3R s 4 2 pF g (Linear Time Invariant, LTI) % 320 ILC j7 52 3 E 4p %
SR BE 5 A SRR B B R e B R [12][13] ~ A PR T
= A G F R E[14][15] Fo B Poe QAR AR R Y Sl
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e BE T REIR > d R B AR JF,“ FR o in— 57 M BT et R RS ARR

o

oAt A e R FRBEPELA N FEZ ORI LE VBT A
(uncertainty) £ i ¥ & & g iy 4] 0 E RJR[17][18] -
Fr ¥t PR bR R R kS F R BIIRe Z P E XS4l P skt

v $2(feedback linearization)#-4 4 v 2hau .k tufs L2 ¥ s ILC[19] 5 £[20] B

D

L‘J
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Bk Sebype 5 B A2 03 ) S R~ o RS D e B i 2
S I B et R PR AL N Sl RS SR
EI)E e gk ¥ 3 - SRR E P ESNE RN L AL Rdp i i BT R T
B e L e Sl TR E Y E R 2 joa21][22] -
1.2.3 Data-driven ILC
A E R LA B aF]s RN Sl e T S anE L o @
* A ILC B 7 i €3 S T~ joacd RN 0 H 3 BB
Apo F EY I BB BRE RS Y SBA B D &L iSRS 2
A Rem 2 o 0t LT S d bl (e[23] @ @ % 7 iy~ 4 050l i 2 g G e

RS Y Sl B[24]7 RV R A Y e B 1 3 ILC eig B AT S
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EERRES = SRt hig d A5 F PR R i (finite impulse response) 4 & £ Y S i
& [25]Y B Sdeenf Ao AR W [26]0F g ¢ 0 fIr ks fed Bl
i (adjoint operator)4p 3k 5 F 4p = (zero phase)erdF {4+ » 1R L A F it B B3 PE
FipdEHralB L > e afr R @ @b ] it 0 3273 2§ 5 - & ko] X

S AR FR T LR R AT 1A N e AL RGE B e b i 2B
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UL N B L o de e ¥ e P PLALE S B E R B R -

LAk SLendicdy SRde 2 02 ¢ AT 5 e % 03] (neural network model) 5157 3

B 5 A AT[27][28] 0 8 MM E R S BIRE it 4 o B L P B HFEHT

Ja

4B PR AR - RS A RS % R T 4G S

Ao A T R B $e0% T RS o A[29]¢ Bl E K A K
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BHEEH IR ZTREE P ERT AT ER I RET - 57 RALE
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Chapter 2 ILC Preliminaries

Y
=

v
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FREFE2HEREAA T- TR LRM ILC ehA#HILH MU E L {77

3
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-~ -
Error Time

Contro:“ Time

Signal Index Signal/\ Index
e n

s —
T4+
k
F
/ #AV/
=)
k+1 k+1
4 o  wL
G
ﬂ’+
Iteration Iteration
Index Disturbance Reference Index

Fig2.1 ILC Hlf2[30]
ILC» #- fEfei (Nt # % b — g B ¥ PSS £ iR 10T — = ehi
o~ g A]S E 0 Aot Fig 20 0 HASRL i gl NG ST R A
U1 = Q(uy + Fey) (2-1)

B0 g H k] 2 A e 0 QLA B FLE Y i

HlAEE > e H % kKT N2 HZEAMEL > A N3 (2-1) A BXK A HRGE LTI ahfiw

TR LR Hla
U1 = Q(uy + Fey)
= Qug + QF(r — Guy)
= QFr + Q(I — FG)uy (2-2)

RS (21) I~ LB R 2 A2 S e aciE
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y=11QU-FG)[z <1

(2-3)

feacip it ® wogd o FFVIRFIEF = G i~ R i foed B -

WA MBI R AR A A F 2D E D
€x+1 =T~ Vi1
=T — GUg,q
=r— GQ(uy + Fey)

=(I-Qr+ QI —-GF)ey

FAL Q-5 EDL(2-6)0 GF & tAERAEL(Circulant matrix) 4 = = [31] »

B G LTI o 4245(2-6) » 3E4 3UBEI2 15 = f2 5% ehfg ACHE 2
p=11QU-GF)|[; <1

X T EEE M AR Al

e =(1-QI—-GF) (I-Qr

-

>

ILC 2 LTI 33 T 7 ALY 5 #H & ik ]

G

Uke1(z™) = Q2D (Up(z™) + Fi1 (2 DE(z™))
ﬁ%ﬂﬂﬁ»ﬁ&@ﬁw@g#:
QU - FG)I|l. <1
supwﬁ(Q(I — FG)) <1
SUp,o () SBcEB-ArF T A S B mant B oo
foor AR PR AR TR TRIE T AR TR G

[|QII — FG(I + WA)]|]., <1

B2 g s G+ WA) » W B 38 e £ ik 48 » AR £4p =%

2 &AL, <1

(2-4)

(2-5)

(2-6)

o2 B4
"'TJDK,J‘E

2-7)

(2-8)

(2-9)

(2-10)

(2-11)

(2-12)

FE T
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Chapter 3 Algorithm
L g At 31 & 4 et SISO ZLAUE B i sLehii Bk [4] 9kt 8 R
o R F 632 $1345 R SISO B 122 B £4 MIMO s samin i % -
3.1 SISO Algorithm

& — & Chapter2 # % » ILC i #-if fc dcnb 4 245 T 16 % 50 ¥ 341 BF » 42
B (23) B RFLF A5 T g Ao A SHOLAT @ Y B S
R R E I EE AT - R R

A Freenzb M f‘fug(-),ﬁ;f‘] %u_ﬁﬁ%j',yﬁqé‘@‘ﬁ%@t—r Gk BB AT LT

y@® =g(u®) (3-1)

dg(u)
u

= g(uo(®) + su(t) +H.0.T.  (3-2)
@ 8y(t) =y(©) — g(ue(®) » 2 Bk Su)i*-] » B @ * | 30544 (small-signal
modeling) ¥ ffﬁf’a BB X H.0.T.F Mm% 2 2 gl 4 .

6y (8) = G(t,g~Héu(®) (3-3)

- d Y . v 55 A% .
#¥G(tq 1)=%° qiruEBEY @

q % [n] = x[n — d] (3-4)

FYOT MM FG > 2 5 SISO ks ILC i » 2 ¥ % L 472 250 chiptd )

U1 = QFr + Q(I — FG)uy (3-5)
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r[1] u[1]
r=| r[2] |, u, =| u[2] (3-6)
r[N _ 1] u[N — 1]
L, [0] 0 0 0
L[1] lo[0] 0 0
G= : : : : z (3-7)

ly_a[N =2 Iys[N=3] = Iy,[0] 0
LUy [N =11 Iy_gIN—=2] - Iy [1] Ly_y[0])

G # 4 p*F % (Linear Time-Varying, LTV) % 3¢ [, [m] &k se nfypr ek 758 % 0 N
L AMEER -

gl LTV enfim™ 5 50 RBTE k SuenF o @ 3L LTI % Suahw) 2 2

PN

MLY% 3 > 3 % Y LTV 4 $uenp if 4 #(Adaptive Control)is #4431 » » 1% 5 2

rB

MLTV £ e 2 3088 ¥ ) BFehE £ S Ah® (v 84i4eT Fig3.l -

u y = g(u)
/\/ _;@:,5 /\\/
G=0G(tz1
U+ u g(u+w)

A ™ 0 =

Adaptive ID [ rl

Fig 3.1 &1k 3L 42T R B
RGO Bl LB~ AT 04 g ABg() ] B R L b RIS R
FOEE MW o Aol B8 (3-3) 2 Su()E R Aw() o B ﬂz.:_ﬁtgz%l AP T <

B2 Rgm @0 6y(t) 2P w(t)iE* 3 "YU R % #79 wk 4 (Gaussian white noise)»
] F
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Pl g W e TG R SRR e B R R 2 B 208 R n
Bk 0 50 { Pk e e e E_i# * SISO ifi # ] T = (Recursive Least Square,

RLS)7 *#% %8 s (Finite Impulse Response, FIR) p i /538 ikt F 7 1

B fn[L'.—d] fu[—d]
"= farrlL=dl o fo—d] 9

BAF - EAY E - BRELABRERY film]m g (AT 2P L+13 FIR

i B E R o RMIFE 2N I T

—9() =

Uk +1
- Q B
i Fek

Fig3.2 SISO i & ;2 > 5. K

B og()3 AL L%

SRR EC e T STl P

v A4 I -
Vi » kT E R KR

A TR R R R L e s RN EHGEL 0 G5

P 2z 2% 5 %, 2 Y AA 2 sl
IV iz kA wy s Bk

R Rk R AL FRE Y 4%

9
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F, % %% % (causal)FIR Jhit B » Q ~ M5 Ml jht B o

F(t,q™%) = F.(t,q%)q" (3-9)

brFig32 @B v i d = BB

(1) #3485 » upds » & g BB H B A1y, B2 1 e 3 5L o
l l |

(1)

Uy 3’k><£_r €k
— g() -

Fig3.3 SISO Algo.# Z#(1)#l

(2) #2haiti s g (Vie FHAI ~ w UL 1 SR 5 206 W EHE i

= BV A BFRSEA e p gk e

(2) y
k %

u - Gw

o e

Fig3.4 SISO Algo. 2 (2) ]

(3) & % ¥ £ Bikik % ¥ ATEFey > LATT - 2 S gy o

10
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(3)

Ug Uk+1

Fek

Fig3.5 SISO Algo.# 2(3)Fl
P 0E G ¥ MIMO 2 Sverf) 20 e dt H - =0 B oap 4% - f[a;gigl » ¥ i[a;gig?lﬂ',
HEE BB E A P AR AL T B s Xm0 B REE
rFEEE O ER LG L A2 LA E T 5 SISO hp i BiFpA B &2

fedZ MIMO & & Food H R dag o ILC i T“ﬁ‘ﬂ/zfq%%)‘%j VR A AT

dot

I &2 Tage
3.2 MIMO Algorithm

19 - & 3.1 & it SISO ¥ % 4] > & MIMO & 5t > $u 3 & & 57
AR ILC Gl b i > 1 S FBhE RN FE 0 gL MR R P
£ B RE > £ RE MIMO f i B ihik & B E ik do 2 FoAaE iR (Left
Inverse Method)#-*+ 3.2.1 /| &4 % » ¢ WG L Jracif 2 &2 A 7 0F)3 0 3 AL
%322 ] a3k 14 F AL § =035 # (Right Inverse Method with Exhaust Transpose) »
B 323 &%+ F L i i # (Right Inverse Method with Fast Transpose) »
HABHERERE A F I L RER 2 S RP R e o

# 7] ILC e B4 > 3k MIMO [k seg() 5 LTI £ 48 £ sclhen i st 5 »
AT BN EFAL DA AN A5

Ukgy1 = QFl" + Q(I - FG)uk (3-10)
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exr1 = (I —Qr + QI — GF)ey

_j:‘_[ ¢
llk’l [ uk,xi—l[o]
Uy o Upxi—1[1]
Ui = u1fr3 yUgxi-1 = uk,xi—l[z]
luk,xi—IJ [up xi—1 [N — 1]
[ ek1 'l [ ek,xo—l[o]
| ex2 | exxo-1[1
=| €k3 |, exxo-1 = ek xo—1[2
[ekxo L| -ek,xo—l[N - 1]_
G1 1 Gl,x1
G= :
Gxo 1 Gxo Xi
lxo,xi [0] 0
lxo,xi[l] lfo'm [0]
Gxo,xi =
SN - 2] ZOXN — 3] 0
o1 -2 - el
l:‘1 1 Fl,xo
F = :
Fx1 1 in,xo
in,xo

ani'xo [L - d]

_ frrxo[—d]
et L —d] o [—d]
Q. - O
Q=|: =~
0 Qxi
Ql = QZ = - Qx1
Ho xiéﬂie?]%ﬁﬁt’xo;éﬂiﬂ:',
12

(3-11)

(3-12)

(3-13)

(3-14)

(3-15)

(3-16)

(3-17)

(3-18)

(3-19)
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% Bk kS LT B MIMO % 5% 5 B3 % $Gyoy & 5 7§54E (Circulant-
matrix) 7 :

lxo,xi[ — lxo,xi[

m]=-- m] = - = 1" [m] (3-20)
% Qui» LTI M1 jgik B ¥ & 73 4E"L(circulant matrix)

Q = Quilyixxi (3-21)
2GR

QG =GQ (3-22)

A F (2-4)~(2-6) 2 A 2 e
B~ P aciE
Yy=11QU-FG)||; <1 (3-23)

AL sl R

p=11QI-GF|z <1 (3-24)

FRHE Y 4 BFAG-10)(3-11)3 38 ¢ a0 Geni= B > % p i B b S
EF: A3z rmiddrs kAL FBdpr s B et £ 8 TS APRAR o
Macdpth s FAME FlS R * AL TS Y Sfice F SISO B2 7 2 4
Freh s RHcp ik ks EHE Figddo » ﬁ%n\f FAprE o #en 85k

sz Bl B IR LS B TR T SRR L a0 FISFA

IR
E-D)
e
|rml.
P
F*
fot.
|rml.
A4

#£ 7] & 14 (non-causal)F¥ 5% FIR Jjg & B O R L JTRehE N
Bt 2 F o0 i RGHE R AL B GEAe 15 S EB SRS AR o &E A
# i MIMO b i Bt & el 2+ B ¥ 41 EFL 3 9L i dehe ;B

2o8E 0 U A AT A L e acid B o

13
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b2 MIMO ILC #5547 > F - Bo Bk ks LTI £ h %
BT el e A S T B AU B 0 2 kMG LTV PR S e g
377 N G187 &2 T2 8320087 £ & 2 o2t Fo b de i s

LA pER LA SR z,z%aa@ﬁﬁQéﬂcﬁgéﬁ%’mﬁ»

EES S aE T

Ugy1 = Fr+ (I - FG)uy (3-25)
ex+1 = (I — GF)ey (3-26)
B~ 223 A el i 1
Y =|[I-FG)|lz <1 (3-27)
p'=l0-GF)]|2 <1 (3-28)

AR il PR SR LR 0 A BEQITRE IR T - & gRA B
LG gk S e R E ek FHEG ¥ ¥ e~ SR B AT R
Fet T3 F 0 AR PR LTI R Seend o

3.2.1 Left Inverse Method

L F AR A - W 30 el 2 E R MIMO § i Rk B HHEE R

-

R AP R R E DE Y A EF R R R BT KB
LR B f M A 5 B LTI 5 B2 LTI f Sens 380 « p 3 ¢ ¢
¢ FIREEH I Al AT S F ] o

3.2.1.1 LTI system
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(1) .
— {90 P2 »é %

Uk »é_yk Gwy, X
- ~ 90) g BRI
w
k o Mq_d »%)-4
€x FLek E

3)

Ug Uk +1

> Q >
NT Frey

Fig3.6 = F &'z LTIFE 2 = 5H

FH ARz A

(D#- 18~ ey » 5 sug ()02~ 18 6 1y, 2235 £ 30 5ey

Q)#SIE s Beg ()ie FAFI » w ST S P PERE L G B HF LB F
Y4l BF R A e b ik o

B)it * F ¥ EH Bk 2 F SRUBF e TATT - N ey ¢

Sl
=
ém
e
&

g Y FIBFARE f RGL F R RS f i Rk B Al

min||(M — FLG)wi] |, (3-29)
L

AR MIMO ik $eg () & LTI i 3 4 38(2) Fl 5 &ph & S se I F]pt i 24
A2 LB e T RS B T e B 2L e

B BRI A 4T F 2 0 v RGERL Table 3-4 0 45 B G0 Uk R A foacht
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AAT e BT AT o AHEHE M B T TR A TR B 2 i~ a0 o B

PP TR B B D ARE SR TRIE IS o gy~ SUBLATT AR B S
y=1QU-FG)|lz <1 (3-30)

?Q/’v\*‘fﬁﬂ rMleaciE ity FRIEEAGZTD LS AT EGF B S ARQ)p @

it ik s Sl ~ w2 B 18 FA[37] -

w
Wk b

Fig3.7 A~ 5.1
Dy, Popw, = A(z™1) =M - F,G (3-31)
B Dgy, # ELEE LW, 0T 5 3% % & (Cross power spectral density) » @, , #
W ELw e 5 3 B A& (Power spectral density) ¢
Pew,, = FLEY Fiwi} (3-32)
DPyw, = Fiwie} F{wy} (3-33)
F{Yar s = Fidk > A L AN E iR -
£FG~M> 4 ifc—i&é PO Rk e M LR T o B A(zT) A LTI
Al acif Fy v AR 3 =
IQU - F.G)Il2 = [1QU — F,®)|lo = sup,d(QU — F,6))  (3-34)[13]

sup,a(QU — F,G)) = sup,a(QU — M + 4)) (3-35)

16
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3.2.1.2 Non-LTI system

Fg()F ELTI s e plig * T g i3 -

Uy Vi - e
—90) =
2) Wi Wy,
—_— H L
e e o o

~O—= () O~

— F/.q"°

Ug Uk+1

!
Fley

Fig3.8 % F 4E';% Non-LTI ¥ & i = 5L
HEE A Z B
(D)# P ~ i~ 5eg ()0 519 3185 Dy, 230 L S ey -
(2)#-2ratd k kig()irn %ﬁ#ljﬁ% MU R SR PER ARG B H R A A
BV H A BF AL 5e o ik
B)ig * B Y e Bomd % G ELFe, 0 { FTT - p;@?] M Uy ©
BALE )+ 3 Fig3.6 #1m 2 B i b 03 o A4 BQ) Gl Rt BOH K’/f ,
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FprF MW - BIEF LA FHY  H G M gk BM o * P AT AT
A FQ T & Frapld o~ foaris 2 n g T E > A RETAET S 4T
Pl FIFFT RS 5 - FHRDPIEE A T RASRE Ik F ORI
& (corner frequency)i® H Jc &t :

H Weighting Filter

O T T T T T T

) //
=
) /
g 5 1
= /
2 /
= /

'10 C 1 I./ 1 | | 1 1 1 1 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized Frequency (xm rad/sample)
Fig3.9 f#€hi BH7 LR
Wi f Wi 5’
— A E— e A’ EE——

Fig3.10 4247 &
it et LA EH
Beyy Dty = Az = 1 — F,G (3-36)
Bery Byl = A'(z71) = (I = F{G)H (3-37)
Dy, » FHEL IMELWy 3 7 5 ¥ 3 & (Cross power spectral density) » @, ,, = 35
wy 07 5 3 % & (Power spectral density) °

i iR B A s BiE

II;ILHII(I — FLG)wi]|2 (3-38)
rr}%nH(I — FLG)Hw]|, (3-39)

i eng () RAEE 5 S G @A 4T 0 o LTLE i — §% 740 A 785 ~ fe it if

ﬁ’ﬁ»a%ﬁﬁ%ﬁﬁﬁ:
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Y =[[I-FG)|<1 (3-40)
R AT foaiE Y F & BHA(z7h) FFG=1> 7&5’\;1 3/ SR G
Seehld gt LR T o Bk A (27 L LTI Jeacif 2y vak sl 2
A =FG)||z = |U — F/G)|| = sup,o(I — F,G) (3-41)
sup,a(l — F/G) = sup,d(A'H™1) (3-42)

Bh L K AR Y B A 45 0E )

3k aEr ik
LTI & ;2 2t LTI & ;%
LTI % 5% O O
LTI $i5 » e achf i 4 47 O O
LTI éﬁ'—é!;vl’f» gg(,«; A X X
ELTI & % O O
,,LTI@qﬁﬂzﬁI@I A O O
ZE LTI 354 JT &0iE 2 A 47 X X
#

Table 3-1 A f& 2 F B2 i * B g * A 4505t 4
Wipt 2@ rEdl2aniy s LA AR LTI & B 828 LTI X

S AL NCACE R Y BT ME kT B EHEL R L R A AT

o

NETEE A RATHRA B/ T A B L F ELPEE o
3.2.2 Right Inverse Method with Exhaust Transpose

TR B G SRR AR SR e~ o R etk st g o kid
FIAFD FRERAGHRES D72 o BT AWML FEL S U@R2 DR
Mg A G A LTL ) A 2L LT s 30a > R 3P g & ZIR 82 H o e

ROHEA 15 2 )
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3.2.2.1 LTI system

1) r
Uy Yk €r

—9() =

3)

Uy Uk +1
_>

Q
Frey

Fig 3.11 Right MIMO with Exhaust Transpose ;& & i * 5. ]

() gl By~ weliy » kg ()P~ 285 3y 2138 2 305y, o
(2-1) % = & e L g () ve F R HI » we AL T 2 SULPE R 4 56 > B
RS S R R s GTwy
20
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(2-2)#-% Q-1 iy NG wi ko gt ks IR E 1k ez F AR
WEI A hiEE X R Gt F B F 5 B Y 4| B #3842 8ey
I ik o
(B) BH*EY pd|Bigk = GG re, 0 L AT - THI?TJ *Upgq ©
i Rk A e BB 4o T
min||(M — Fg GT)wi]|, (3-43)
Bk MIMO i stg ()R LTI = o) > % Z(Q2-1)% L § & & 55 > feip£5
Tl aEA kg ()R R B indhc o B LTI A ALY £ E
R A REEREN c AAS32BEY B L0 @R AL FELF o g
o A R A factia 0 Fla A vzaniE it ool

p=11QUI =GP <1 (3-44)

(M —FEG™)T = M — GFy (3-45)
B o~ P Rl B0k G L s i GTRE > 4o Fig3.ll % 31(2-2) > T 4 Tl
BBk BGTo s FaEEFT B e- Ky il @R p ARG F e
Fpo Fla %ok oo 4o Fig3.01 4 FpQ-1) 14 B » BG40 ) 503 6] > & % S5L4T 2
£l end (B~ Hoxdi B0 R % £ R A U R AGT B & SR

W AGTE A £ R T N P Rk B
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G — lGn 0121 lm] _ lG11w1+ G12w2]
Gop G w2 Gopwy + Gpw?
Gl GQI] l’wll +5é'2'1'1b'1
GTU] — — g w
[012 Goa| |ws IGIZL“IH@’W_

G Gi2| |w Gu Gio| |wa2| _ LGIIWQ

I’LU
(Go1 G| [ 0] |Gowy] |Gy Gao) [0

(G G| [0] _ fGuuwy [Gr Gl [0] _ [Giyw)
Go1 G| |wy| ~ |G Ic

Fig3.12 BEdij ~ O 41 6 # R LT &
B 9 N eng Y A BFTE /R S Fp % (7 ILCo A R 5 Rk FIR it

4o Fig3.13 #77

F; 1[0] Fy2[0] |Fy 1[1] Fy[1] | Transpose | Fi,1 [0] F12[0] | Fy,1[1] Fi2[1]
F,1[0] F;,[0]|F,1[1] F,5[1] => F;1[0] F22[0] | o1 [1] F>2[1]

Fig3.13 BE6 » FE# 41 2 taps FIR Jid B4 & o

H 4 Fig3.11 # 2 (1D)3) #2321 ¢ # 4k -

BT RO A AT P 0 BT A Ag i BB el dp iR SR A Bl AT ReiE 2 G
p=11QU—-GFp)[[2 <1 (3-46)

FERAITELjCaIE R FREBEE AT S AT ESHFE 2 HFEQ) B
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SRSy PR EELC INCE KIS O

Wi {'—
—_— A ———

Fig3.14 A= 5.
By Pty = A1) = M = FIGT = (M — GFy)” (3-47)
B Dgy,, # ELEE I FLW, 0T 5 3% % & (Cross power spectral density) » @, , #
M ELwy x5 3% % & (Power spectral density) « #FIGT ~ M » + fj*uif‘ i B o) B8
o denlh i M R R T 0 B A (27D S LTI Bl aciE 2 p ™ ki &

11QU — GFR)||2 = 11QU — GFR)|| o = sup,d(QU — GFg)) (3-48)

sup,5(QU — GFy)) = sup,& (Q (1 — M+ AT)> (3-49)

3.2.2.2 Non-LTI system
Fg()F LTI & oo 2Q2)? B A gw L - BiRLpA FH H "f [

Wik BM o 54 H RG)LC Ml ik FQ -
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Fig3.15 4 r» € gkt FHT L B

B E o e

H Weighting Filter

0 T T T T T T
g
@
S st
-
&
=
-10 & 1 1 I L 1 1 1 | -
0 0.1 0.2 0.3 0.4 0.5 0.6 . 0.8 0.9 1
Normalized Frequency (x rad/sample)
Fig3.16 #€jpi BH7T & W
Wy & Wy, &'
— A —— —_— AN

Fig3.17 A%14'5 & B
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it g mAe P LR EH
Cwak‘pv;;wzc =4(z™Y) = (I - FgG") L3

Gery Py, = 4'(z™Y) = (I - F4 GT)H (3-51)
Dryy,, » AHLEL U ELW, HT 74 5 % & (Cross power spectral density) » @y, » 3

Bwy ¥ 53 B & (Power spectral density) ©

éﬁ@ﬁ%ﬁﬂi

rr}inll(l — FRGT)wy, (3-52)

R

n;i,n||(1 — FIQTGT)HWk”z (3-53)
R

Eﬁ%ﬁgﬁﬂ’ﬂWEi'ﬁaﬁﬂ’ééJ%mkﬂﬁwpt
p' = [|I—GFp)|[z <1 (3-54)

B Ao zaciEEp 0 TR IBEHA (27 —;:F'TGT ~[> 4 ,T*{p FREIRA L S
A LR T o B A (27D 5 LTI Pz aciE 2 p' v ridgid i &
[|(I—= GFp)|l2 = [|(I — GFR)||o = sup,d(I — GFg) (3-55)
sup, (I — FjG) = sup,a(H~14'") (3-56)

B AL F B G SR B R i B A 4 i 1]

+ F B R ERE

LTI & ;= 22 LTI 3 i
LTI % %t O O
LTI %l)\ (R g REAR & X X
LTI 34 JTacik i &2 47 O O
ZE LTI & %% X O
28 LTI 5 ~ e acif 2 4 47 X X
2L LTI 352 e acif 2 4 47 X O

Table 3-2 & fi & & 4B' § B2 i % FB g v A 4riE i 4

PR R R S AR DRRANE BAEHFLANTRL R R P

Gk R0 BT UL R A LR R K () Bl ) 0 R

WEEPE TR L SRR BRI L KR e 2Rl R

i4 B¥=4 (Coulomb friction) » LTI & ;% 4-4f2L = & MIMO & sepFs @2 @ % > 7]
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PR R AL AN R EQG=GQ -
3.2.3 Right Inverse Method with Fast Transpose.
d3t bt 2N AR RE O BB AT RIF I HRA E‘Eiéif]’é_ﬁ Wkl A

#ig- B r L@ @3 332 A & 1% A =0 p i Bipd EARRE X

v N

£
o

FABLen™ F o 5T R/ 5 € 4 444 LTI & "L % Sedn -2 LTI ki

-

A PFP L TIHE BT a4 FE U e

3.23.1 LTI system

1) §

el g ()2

3)

Q
FRek

Fig 3.18 Right MIMO with Fast Transpose /# & i > H. [§]

Uy Ug+1
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AEEA G Z KB

(1) Rl »~ ey ~ 5 Seg ()11 P~ 7 A i 1y 2235 L S5l

(2-D)#-se i g ()ie FE 105 » w SUL 1 & SRR PR % LG o M- st K sy )
GWi 548 i faimit 355 % sufde k3G o

(2-2) 3 ZR(2-1)1F Tl e e % SLGIE B (5%~ p i e ik st @ B i 12
GBGT 2 F e R L phig s B AR s FnGht F el (F5 8% &£
FIBFp T R34 M Ee b ik o

() #* FY A Figik % > AU ELFrey 0 LATT - I B~ Upeyq
Bk MIMO i seg(DA_ LTI = whelfa) > o FQ2-1)% L § & %5 > feipd;

TR A ZER kg()R T R E i B LTI A AR R A E

R A EEEBER ek B & 3220 MFEE- L0 @D ARt R

FEEFp > I Y A @ B - BRI R L REEER R

)\/;i—é? m)ﬂ‘%{,G Wk ’ 3‘5.%»37 I% * EI __E :Ls//%l/ﬁ S ‘f/u‘:g V—J]m" N %Eb.ﬁﬂ_jﬁlg m/; ﬁfu

GT > 4- Fig 3.18 — B EE#7om o iz4@— 6 * RLS FIR 4] p i ot B 17 5 il

G11[0] Gy 2[01]|Gy1[1] Gy ,[1]| Transpose [G11[1] G24[1]|G14[1] G2,1[1]
62,1[0] 62,2 [0] 62,1[1] 62,2[1] => Gy ,[1] G, (111G 2[1] G, 5[1]

Fig3.19 # % FIR #f- % 5L %ﬁ%l » %ﬁ%l 41 2 taps 1
TRt A 4T ¢ 0 A BT RIS
p=11QU - GF)|l> < 1 (3-57)
BOAEHET - R Y S B A iR R SR S A0 2 o g A, (z7)

A,z
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1QU — GF)|lz = [|QUI =M + M — (G — G + G)Fg]|l. (3-58)

=1QU = M)+ Q(M — GFg) — Q(G — G)Fgllo (3-59)

< 1QU = M|l + 11Q(M = GFg)lloo + 11Q(G = G)Frlle (3-60)

1QU = M)l +11Q47 1o + 11Q41Frllee < 1 (3-61)

supod(QU — M)) + supy,3(QAL) + sup, 3(Q4;) - % <1 G

(3-60)cr% — I8 B * ¥ HA P o 8 Z A A YA hT peEL 0 8 = 7R

A sgtul e g4 % - H,, norm ¥R ¥ 1 gé HAQ)A T ILE D B e

w w
—k> Al e» —k> AZ 5»

Fig3.20 4,2 4,7 2 H
Dow, Poviw;, = M1 (z71) = (G - G) (3-63)
Dy, Povpw, =02,z =M — FiG” (3-64)
Doy, = N FOLE M ELwy 3T 5 5 3 % & (Cross power spectral density) > @, # 35
wy e 38 % B (Power spectral density) © &3 B3% G ~ G ~ FYGT ~ M » A,(z™1)
A,(z7Y) 5 LTI -
3.2.3.2 Non-LTI system

#9()F LTI s % Fig3.18 4 ()¢ #pcs AL G- BREQAEH B4

Mgk BM o £ 0% Fig3.18 4 B ()ILC Ml igik EQ -
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Fig3.21 4~ € kit BH7 2 B

B E o e

H Weighting Filter

0 T T T T T T

@
=
@D

2 5f ,
=
&
=

‘10 = 1 Il | | Il Il Il Il 1

0 0.1 02 03 04 05 06 07 08 09 1

Normalized Frequency (xm radfsample}

Fig322 f#€ipit FHT L B
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Wk 0 Wi ¢
— Al > — Az >
Wk p e’ Wk p E’
— Al > — AZ [

Fig3.23 4,224, & @

$i g et TR EH

Dow, Poviw;, = M1 (z71) = (G - G) (3-65)

Pyroyt Py, = 2121 = (6 — G')H (3-66)
-1 -1 Ap\T

Dy, Do, = 42(z71) = (I — GFy) (3-67)
- ! - Al T

Deryy, P, = A5(z7) = (1 - G'Fp) H (3-68)

Doy, » L HOL M ELwy 3 7 F ¥ % & (Cross power spectral density) » @, ,, = 3
w17 5 3 % & (Power spectral density) °

pif ik E AT

min||(G - G)l2 (3-69)
min||(G — G')H|l, (3-70)
min|| (1 = GFx) I (3-71)
minll (1 = G'F;) Hll, (3-72)

AT RO AT Y 0 A BT ATIE 2
p' =l GFp)|lz <1 (3-73)

PR CRCE R B REA (DR f i 56 ~ G FTG ~ T
¢ RRRR G BRI SR IR T o R RO ' R S
1A =GRl = |0 = GFIl.. = I = G'Fr = (G =G )F)ll..  (3-74)
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< 1= G'Fgllos +11(G = Gl - 11Fzl2 (3-75)

. o Fre
supwa(l—-av%)-fsupwﬁ((a—-GO)-L%§2ﬁ93<:1 (3-76)

Fje
supa,E(H‘lA’zT) + sup,a(41H™Y) - —Hllgkicllzlz <1 (3-77)

BB F AL i Y SR 8 A 1 L)

+F R Y
LTI & ;2 2 LTI &

LTI & %t
LTI $i5 » fx agif & & 4%
LTI 352 Jeacik 2 4 47
L LTI % st
2L LTI 5 » e acif & & 47
2L LTI £ Jeagif 2 2 47
Table3-3 7@ &+ F B L P B 2 * B B2 * 24705 4

xxxOxQ
OX(DOX<D

H—

WA LRI R R FIT P R E L LR 2 R A iR
ARt B T F R R A R AT R SR - R

LTI B % 3 a2h= o 5 T 38 (t) 7] 5 f5 i j a2 /255 2 41 7% QG = GQo
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3.24 Summary

=46 MIMO 5 B i2 i % chdsh g i

A AT

E e

2R Bk + F A G R + R
LTI & ;+ LTI & 2 LTI & ;+ 2L LTI & 2 LTI & /% 2L LTI & /%
LTI ¢ O @) O O O O
LTI # » Je &k
] O O X X X X

LTI %2 fcéc
[FRENAR &

£ LTI % %

O
X

O
X

LTI # » i
FOIEE A5

X

x 0] O

X

x O] O

ERTV R
i i A 41

X

X

X

O

X

O

Table 3-4 MIMO jF & 2 i * H38 223§ % o {72 4 &

Z A MIMO & & % 3% 2 p i Bipd =< B

SFEAEEE | LR S RRE%RE | LR REE 2
ERE RS =% (xi X x0)=% 1 =
R/ YR S =N 1 =x 2 =%
Table 3-5 MIMO & & i i85 22 p if Bijp i =< #c
32
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AR F AR R E R M AT

RS R LR g

B BB BB R T KL - S p | BT - SR K ok pra

B
FRIRAEL o FL SR RKR? GEEL o

L E ) il ~ B N | R ORE A P i Rk RA
FE AR pREOREFT LAE LS

p SRR o

Table 3-6 = + F 4E" = 2 R ¥ B % %
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3.3  Parameter Design
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# k¥ ¥ 0¥ g ¥~ LRLS(Lattice Recursive Least Square) [33] » #* fa = % 3 [#
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k=1 Adaptation
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Chapter 4 Results
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Normalized Adaptation Error Spectra
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Chapter 5 Conclusions and Future works

5.1 Conclusions
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