請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8793
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林建甫 | |
dc.contributor.author | Hsi-Shan Liu | en |
dc.contributor.author | 劉錫山 | zh_TW |
dc.date.accessioned | 2021-05-20T20:01:25Z | - |
dc.date.available | 2009-12-07 | |
dc.date.available | 2021-05-20T20:01:25Z | - |
dc.date.copyright | 2009-12-07 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-12-03 | |
dc.identifier.citation | [中文部分]
李存修與陳若鈺(2000),「台灣股匯市風險值(VaR)模型之估計、比較與測試」,《金融財務》,第5期,頁51-75。 林建甫(1996),「ARCH族模型估計與檢定的問題」,《經濟論文叢刊》,第24卷第3期,頁339-355。 林建甫(2000),「因應金融風暴之風險控管」,瞭望公元2000年焦點研究,國家發展文教基金會。 林曉菁等(2006),「市場風險值模型之驗證與比較分析」,《貨幣觀測與信用評等》,2006年3月。 林楚雄等(2006),「三種修正歷史模擬法估計風險值模型之比較」,《風險管理學報》,第七卷第二期,頁183-201。 易丹輝(2008),《數據分析與EViews應用》,北京:中國人民大學出版社,頁363-376。 周雨田等(2004),「動態波動模型預測能力之比較與實證」,《財金論文叢刊》,2004年6月第一期,頁1-23。 周業熙(2002),「GARCH-type 模型在VaR之應用」,東吳大學經濟研究所碩士論文。 陳旭昇(2007),《時間序列分析》,台北:東華書局,頁273-281。 張簡彰程等(2008),「風險矩陣波動修正之風險值估計」,《輔仁管理評論》,第15卷第2期,頁61-82。 楊奕農(2006),《時間序列分析》,台北:雙葉書廊,頁165-172。 劉美纓(2003),「銀行風險值模型之回顧測試與壓力測試—保守性、準確度及效率性」,2003「商情資料庫分析與建置之研究」成果發表會。 [英文部分] Alexander, C. O. & C. T. Leigh (1997), On the Covariance Matrices Used in Value at Risk Models. Journal of Derivatives 4(3) : 50-62. Bollerslev, T. (1986), “Generalized Autoregressive Conditional Heteroskedasticity,” Journal of Econometrics, 31, 307-327. Christoffersen, P. (1998), “Evaluation Interval Forecasts.” International Economic Review, 39 : 841-62. Danielsson, J. and De Vries, C. G. (1997a), “Value at Risk and extreme returns,” Working Paper. Danielsson, J and De Vries, C. G. (1997b), “Tail Index and Quantile Estimation with Very High Frequency Data,” Journal of Empirical Finance, 4, 241-257. Duffie, D and Pan, J. (1997), “An Overview of Value at Risk,” Journal of Derivatives, 4(3), 7-49. Engle, R. F. (1982), “Autoregressive Conditional Heteroskedasticity with Estimates of the Variance of the United Kingdom Inflation,” Econometrical, 50, 987-1007 Engel, J. & M. Gizycki, 1999. Conservatism, Accuracy & Efficiency: Comparing Value-at-Risk Models. Working Paper 2, Australian Prudential Regulation Authority. Engle, R. F. and S. Manganelli (2000), “CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles.” Working Paper, NBER. Hendricks, D. (1996), “Evaluation of Value at Risk Model Using Historical data,” Economic Policy Review, Federal Reserved Bank of New York Economic Policy Review, 2, 39-69. Hopper, G. P. (1996), “Value at risk: A New Methodology for Mwasuring Portfolio Risk”, Business Review, Federal Reserve Bank of Philadelphia, July-August, pp.19-31. Hull, J. and White, A. (1998), “Value at Risk When Daily Changes in Market Variables Are Not Normally Distributed,” Journal of Derivatives, 5, 9-19. J.P. Morgan (1996), “RiskMetrics Technical Document” Fourth Edition, http://www.jpmorgan.com. Jackson, P., Maude, D. and Perraudin, W. (1997), “Bank Capital Value at Risk,” Journal of Derivatives, 4, 73-89. Jorion, P. (2000), Value at Risk: The New Benchmark for Controlling Market Risk. Chicago: Irwin. Kupiec, P. H. (1995), “Techniques for Verifying the Accuracy of Risk Measurement Models,” Journal of Derivatives, 2, 73-84. Pritsker, M. (1997), Evaluation Value at Risk Methodologies: Accuracy versus Computational Time, Journal of Financial Services Research, 12, 3, 201-243. Venkataraman, S. (1997), “Value at Risk for a Mixture of Normal Distributions: The use of Quasi-Bayesian Estimation Techniques,” Federal Reserved Bank of Chicago Economics Perspectives, 21(2), 2-13. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8793 | - |
dc.description.abstract | 近期的財務金融文獻,普遍同意波動性變化具有因時而異且有叢聚的特性,包括Morgan (1976)、Engle (1982)、Bollerslev (1986)、Engle and Manganelli (2000)…等,因此本研究採用最能描繪自我相關條件異質變異的GARCH族模型進行匯率報酬率之風險值估計。至於樣本大小之選擇,因本研究是利用滾動程序(rolling)方法來估計風險值,故使用三種不同的視窗長度1年、3年和5年來預測同一組樣本外觀察值,藉以觀察不同的視窗長度對於風險值模型的績效結果影響。
Pritsker (1997)認為在風險管理實務上,風險值應兼具準確性及即時性,但往往兩者會呈一抵換關係。本研究於績效評估上,是依據Engel and Gizycki (1999)所提出三個評估準則—準確性、保守性及效率性,以藉由不同的角度衡量各風險值模型之優缺。以往大部分文獻皆直接比較評估模型何者較具準確性、保守性或效率性,而本文較為不同的是鎖定同一視窗長度,比較各模型的績效,或鎖定同一模型,比較視窗長度對風險值模型的績效影響,以期望使用交叉方式能發現較明確的結果。 本研究利用滾動程序(rolling)方法來預測風險值,結果發現以1年的視窗長度,並無法讓其移動視窗所估計出之係數皆符合參數約束條件,而使計算出的風險值失去有效性,且在相同的風險值模型之保守性或效率性方面,易受到視窗長度的影響。另外,本研究亦發現使用GARCH模型估計風險值時,在均數方程式引入「風險貼水」項,或變異數方程式採用自然對數形式,皆無法改進風險值模型之績效。 | zh_TW |
dc.description.abstract | Recent financial/risk management papers indicates that the finance market liquidity is time variant and tends to be cluster (Morgan (1976)、Engle (1982)、Bollerslev (1986)、Engle and Manganelli (2000)). Thus this research use GARCH model as VaR model since GARCH model is best to describe autoregressive conditional heteroscedasticity. We used rolling process to evaluate the value of risk and we selected the window size of 1 year, 3 years, and 5 years for the same samples to estimate the observation value out side the window. Through the estimate, we can evaluate the effect on the VaR model from different window size.
When risk management applied in practice, value at risk (VaR) should reflect the risk precisely and promptly. However, often real time results can hardly precise (Pritsker 1997). Based on the guide line from Engel and Gizycki (1999), accuracy, stability, and performance, we present this paper a different view of evaluating the pro and con of varies VaR model. In the past, most of the reports compare Value at Risk model directly in term of accuracy, stability, and performance. This paper presents a different approach by fixing the window size to compare the performance or by fixing the model to compare the valuation of different window size. From the above approach, we expect to obtain a much detail comparison. In this paper, we use rolling process to estimate Value at Risk. Our results show that using one year window, we can't let all the estimates from the rolling window converge to their restrictions, therefore the estimates become invalid. At the same time, our results also show that under the same model, stability and the performance are both very sensitive to window size as well. We also found neither by adding risk premium to the mean equation, nor by using LOG-GARCH can improve the valuation of the VaR model. | en |
dc.description.provenance | Made available in DSpace on 2021-05-20T20:01:25Z (GMT). No. of bitstreams: 1 ntu-98-P96323002-1.pdf: 646226 bytes, checksum: fc314eeb3ad07c289d0105c7595ead1c (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | 口試委員會審定書…………………………………………………i
誌謝…………………………………………………………………ii 中文摘要……………………………………………………………iii 英文摘要……………………………………………………………iv 第一章 緒論 ………………………………………………………1 1.1 研究背景與動機………………………………………………1 1.2 研究問題與目的………………………………………………3 1.3 研究流程與架構………………………………………………4 第二章 風險值之文獻探討 ………………………………………6 2.1 風險值之定義…………………………………………………6 2.2 風險值之估計方法……………………………………………7 2.3 風險值之驗證方法……………………………………………10 第三章 理論模型與研究方法 ……………………………………14 3.1 GARCH模型 …………………………………………………14 3.1.1 AR(1)-GARCH(1,1)模型……………………………………15 3.1.2 AR(1)-GARCH(1,1)-M模型…………………………………15 3.1.3 AR(1)-EGARCH(1,1)模型 …………………………………16 3.2 評估風險值之績效方法………………………………………17 3.2.1 準確性………………………………………………………18 3.2.2 保守性………………………………………………………19 3.2.3 效率性………………………………………………………19 第四章 實證結果與分析 …………………………………………21 4.1 樣本的取決與考量……………………………………………21 4.2 敘述統計………………………………………………………23 4.3 實證步驟………………………………………………………28 4.4 實證資料之使用限制…………………………………………32 4.5 估計結果………………………………………………………33 4.6 實證分析………………………………………………………39 4.6.1 風險值之回溯測試結果……………………………………40 4.6.2 準確性、保守性及效率性之評估…………………………43 4.7 綜合結果分析…………………………………………………48 第五章 結論與建議 ………………………………………………49 5.1 結論……………………………………………………………49 5.2 建議……………………………………………………………51 參考文獻……………………………………………………………52 附錄1 條件風險值(Conditional VaR, CVaR)……………………55 附錄2 壓力測試法(stress testing) ………………………………56 | |
dc.language.iso | zh-TW | |
dc.title | GARCH模型對匯率風險值之估計 | zh_TW |
dc.title | Using GARCH Models to Estimate Value at Risk of Exchange Rates | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 吳中書,林金龍,郭平欣,姚睿 | |
dc.subject.keyword | 自我相關條件異質變異,GARCH,滾動程序,風險值,視窗長度, | zh_TW |
dc.subject.keyword | Autoregressive Conditional Heteroscedasticity,GARCH,Rolling Process,Value at Risk,Rolling Window Size, | en |
dc.relation.page | 56 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2009-12-03 | |
dc.contributor.author-college | 社會科學院 | zh_TW |
dc.contributor.author-dept | 經濟學研究所 | zh_TW |
顯示於系所單位: | 經濟學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf | 631.08 kB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。