請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87833
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 薛承輝 | zh_TW |
dc.contributor.advisor | Chun Hway Hsueh | en |
dc.contributor.author | 張洛齊 | zh_TW |
dc.contributor.author | Lo Chi Chang | en |
dc.date.accessioned | 2023-07-19T16:45:20Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-07-19 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-03-15 | - |
dc.identifier.citation | [1] J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.-Y. Gan, T.-S. Chin, T.-T. Shun, C.-H. Tsau, S.-Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements:Novel AlloyDesign Concepts and Outcomes, Adv. Eng. Mater. 6 (2004) 299-303.
[2] M.-H. Tsai, J.-W. Yeh, High-Entropy Alloys: A Critical Review, Mater. Res. Lett. 2(3) (2014) 107-123. [3] J.-W. Yeh, Recent progress in high-entropy alloys, Ann. Chim. (Cachan, Fr.) 31(6) (2006) 633-648. [4] Y.S. Kim, H.J. Park, S.C. Mun, E. Jumaev, S.H. Hong, G. Song, J.T. Kim, Y.K. Park, K.S. Kim, S.I. Jeong, Y.H. Kwon, K.B. Kim, Investigation of structure and mechanical properties of TiZrHfNiCuCo high entropy alloy thin films synthesized by magnetron sputtering, J. Alloys Compd. 797 (2019) 834-841. [5] H. Kim, S. Nam, A. Roh, M. Son, M.-H. Ham, J.-H. Kim, H. Choi, Mechanical and electrical properties of NbMoTaW refractory high-entropy alloy thin films, Int. J. Refract. Met. Hard Mater. 80 (2019) 286-291. [6] X. Feng, J. Zhang, Z. Xia, W. Fu, K. Wu, G. Liu, J. Sun, Stable nanocrystalline NbMoTaW high entropy alloy thin films with excellent mechanical and electrical properties, Mater. Lett 210 (2018) 84-87. [7] B. Ren, S.Q. Yan, R.F. Zhao, Z.X. Liu, Structure and properties of (AlCrMoNiTi)Nx and (AlCrMoZrTi)Nx films by reactive RF sputtering, Surf. Coat. Technol. 235 (2013) 764-772. [8] X. Feng, G. Tang, M. Sun, X. Ma, L. Wang, K. Yukimura, Structure and properties of multi-targets magnetron sputtered ZrNbTaTiW multi-elements alloy thin films, Surf. Coat. Technol. 228 (2013) 424-427. [9] P. Hruška, F. Lukáč, S. Cichoň, M. Vondráček, J. Čížek, L. Fekete, J. Lančok, J. Veselý, P. Minárik, M. Cieslar, O. Melikhova, T. Kmječ, M.O. Liedke, M. Butterling, A. Wagner, Oxidation of amorphous HfNbTaTiZr high entropy alloy thin films prepared by DC magnetron sputtering, J. Alloys Compd. 869 (2021) 157978. [10] C.-Y. Cheng, J.-W. Yeh, High-entropy BNbTaTiZr thin film with excellent thermal stability of amorphous structure and its electrical properties, Mater. Lett 185 (2016) 456-459. [11] W.-J. Sheng, X. Yang, J. Zhu, C. Wang, Y. Zhang, Amorphous phase stability of NbTiAlSiNx high-entropy films, Rare Met. 37(8) (2017) 682-689. [12] Z. Wang, C. Wang, Y.-L. Zhao, T.-H. Huang, C.-L. Li, J.-J. Kai, C.-T. Liu, C.-H. Hsueh, Growth, microstructure and mechanical properties of CoCrFeMnNi high entropy alloy films, Vacuum 179 (2020) 109553. [13] Y. Xu, G. Li, Y. Xia, Synthesis and characterization of super-hard AlCrTiVZr high-entropy alloy nitride films deposited by HiPIMS, Appl. Surf. Sci. 523 (2020) 146529. [14] J.-W.Y. Ping-Kang Huang, Effects of nitrogen content on structure and mechanical properties of multi-element (AlCrNbSiTiV)N coating, Surface & Coatings Technology 203 (2009) 1891–1896. [15] D.-C. Tsai, Z.-C. Chang, B.-H. Kuo, M.-H. Shiao, S.-Y. Chang, F.-S. Shieu, Structural morphology and characterization of (AlCrMoTaTi)N coating deposited via magnetron sputtering, Appl. Surf. Sci. 282 (2013) 789-797. [16] H.-T. Hsueh, W.-J. Shen, M.-H. Tsai, J.-W. Yeh, Effect of nitrogen content and substrate bias on mechanical and corrosion properties of high-entropy films (AlCrSiTiZr)100−xNx, Surf. Coat. Technol. 206(19-20) (2012) 4106-4112. [17] S.-Y. Chang, S.-Y. Lin, Y.-C. Huang, C.-L. Wu, Mechanical properties, deformation behaviors and interface adhesion of (AlCrTaTiZr)Nx multi-component coatings, Surf. Coat. Technol. 204(20) (2010) 3307-3314. [18] P. Cui, W. Li, P. Liu, K. Zhang, F. Ma, X. Chen, R. Feng, P.K. Liaw, Effects of nitrogen content on microstructures and mechanical properties of (AlCrTiZrHf)N high-entropy alloy nitride films, J. Alloys Compd. 834 (2020) 155063. [19] L. Chen, W. Li, P. Liu, K. Zhang, F. Ma, X. Chen, H. Zhou, X. Liu, Microstructure and mechanical properties of (AlCrTiZrV)Nx high-entropy alloy nitride films by reactive magnetron sputtering, Vacuum 181 (2020) 109706. [20] Z.-C. Chang, D.-C. Tsai, E.-C. Chen, Structure and characteristics of reactive magnetron sputtered (CrTaTiVZr)N coatings, Mater. Sci. Semicond. Process. 39 (2015) 30-39. [21] X.H. Yan, J.S. Li, W.R. Zhang, Y. Zhang, A brief review of high-entropy films, Mater. Chem. Phys. 210 (2018) 12-19. [22] M.-H. Tsai, C.-H. Lai, J.-W. Yeh, J.-Y. Gan, Effects of nitrogen flow ratio on the structure and properties of reactively sputtered (AlMoNbSiTaTiVZr)Nxcoatings, J. Phys. D: Appl. Phys. 41(23) (2008) 235402. [23] S.-C. Liang, D.-C. Tsai, Z.-C. Chang, H.-S. Sung, Y.-C. Lin, Y.-J. Yeh, M.-J. Deng, F.-S. Shieu, Structural and mechanical properties of multi-element (TiVCrZrHf)N coatings by reactive magnetron sputtering, Appl. Surf. Sci. 258(1) (2011) 399-403. [24] Z.-C. Chang, S.-C. Liang, S. Han, Y.-K. Chen, F.-S. Shieu, Characteristics of TiVCrAlZr multi-element nitride films prepared by reactive sputtering, Nucl. Instrum. Methods Phys. Res., Sect. B 268(16) (2010) 2504-2509. [25] X. Lu, C. Zhang, C. Wang, X. Cao, R. Ma, X. Sui, J. Hao, W. Liu, Investigation of (CrAlTiNbV)Nx high-entropy nitride coatings via tailoring nitrogen flow rate for anti-wear applications in aviation lubricant, Appl. Surf. Sci. 557 (2021) 149813. [26] Y. Lin, C.-L. Li, C.-H. Hsueh, Effects of cerium addition on microstructures and mechanical properties of CoCrNi medium entropy alloy films, Surf. Coat. Technol. 424 (2021) 127645. [27] Y.-H. Liang, C.-L. Li, C.-H. Hsueh, Effects of Nb Addition on Microstructures and Mechanical Properties of Nbx-CoCrFeMnNi High Entropy Alloy Films, Coatings 11(12) (2021) 1539. [28] T.-H. Huang, C.-H. Hsueh, Microstructures and mechanical properties of (CoCrFeMnNi)100-xMox high entropy alloy films, Intermetallics 135 (2021) 107236. [29] Y.-C. Hsu, C.-L. Li, C.-H. Hsueh, Modifications of microstructures and mechanical properties of CoCrFeMnNi high entropy alloy films by adding Ti element, Surf. Coat. Technol. 399 (2020) 126149. [30] S. Fang, C. Wang, C.-L. Li, J.-H. Luan, Z.-B. Jiao, C.-T. Liu, C.-H. Hsueh, Microstructures and mechanical properties of CoCrFeMnNiVx high entropy alloy films, J. Alloys Compd. 820 (2020) 153388. [31] J. Xu, T. Wang, Y. Lu, S. Zhang, W. Wei, C. Wang, Research on high specific strength as-cast AlxNbTiVZr high entropy alloys, Mater. Sci. Technol. 36(16) (2020) 1762-1770. [32] N.D. Stepanov, N.Y. Yurchenko, D.G. Shaysultanov, G.A. Salishchev, M.A. Tikhonovsky, Effect of Al on structure and mechanical properties of AlxNbTiVZr (x = 0, 0.5, 1, 1.5) high entropy alloys, Mater. Sci. Technol. 31(10) (2015) 1184-1193. [33] A.I. Akira Takeuchi, Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element, Mater. Trans. 46 (2005) 2817-2829. [34] Y.C. Hsu, C.L. Li, C.H. Hsueh, Effects of Al Addition on Microstructures and Mechanical Properties of CoCrFeMnNiAlx High Entropy Alloy Films, Entropy 22(1) (2019) 2. [35] X.B. Feng, W. Fu, J.Y. Zhang, J.T. Zhao, J. Li, K. Wu, G. Liu, J. Sun, Effects of nanotwins on the mechanical properties of Alx CoCrFeNi high entropy alloy thin films, Scr. Mater. 139 (2017) 71-76. [36] B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A 375-377 (2004) 213-218. [37] D.B. Miracle, O.N. Senkov, A critical review of high entropy alloys and related concepts, Acta Mater. 122 (2017) 448-511. [38] Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off, Nature 534(7606) (2016) 227-230. [39] F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, E.P. George, The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy, Acta Mater. 61(15) (2013) 5743-5755. [40] Y.J. Zhou, Y. Zhang, T.N. Kim, G.L. Chen, Microstructure characterizations and strengthening mechanism of multi-principal component AlCoCrFeNiTi0.5 solid solution alloy with excellent mechanical properties, Mater. Lett 62(17-18) (2008) 2673-2676. [41] Y.J. Zhou, Y. Zhang, Y.L. Wang, G.L. Chen, Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties, Appl. Phys. Lett. 90(18) (2007) 181904. [42] Y.Y. Zhao, Y.X. Ye, C.Z. Liu, R. Feng, K.F. Yao, T.G. Nieh, Tribological behavior of an amorphous Zr20Ti20Cu20Ni20Be20 high-entropy alloy studied using a nanoscratch technique, Intermetallics 113 (2019). [43] M.-H. Chuang, M.-H. Tsai, W.-R. Wang, S.-J. Lin, J.-W. Yeh, Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys, Acta Mater. 59(16) (2011) 6308-6317. [44] J.-M. Wu, S.-J. Lin, J.-W. Yeh, S.-K. Chen, Y.-S. Huang, H.-C. Chen, Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content, Wear 261(5-6) (2006) 513-519. [45] G. B, H. A, C.E.H. D, Chang, G. E.P, R. R.O, A fracture-resistant high-entropy alloy for cryogenic applications, Sci. 345 (2014) 1153-1158. [46] D.H. Xiao, P.F. Zhou, W.Q. Wu, H.Y. Diao, M.C. Gao, M. Song, P.K. Liaw, Microstructure, mechanical and corrosion behaviors of AlCoCuFeNi-(Cr,Ti) high entropy alloys, Mater. Des. 116 (2017) 438-447. [47] C.P. Lee, Y.Y. Chen, C.Y. Hsu, J.W. Yeh, H.C. Shih, The Effect of Boron on the Corrosion Resistance of the High Entropy Alloys Al0.5CoCrCuFeNiBx, J. Electrochem. Soc. 154(8) (2007). [48] Y.-J. Hsu, W.-C. Chiang, J.-K. Wu, Corrosion behavior of FeCoNiCrCux high-entropy alloys in 3.5% sodium chloride solution, Mater. Chem. Phys. 92(1) (2005) 112-117. [49] M. Vaidya, K. Guruvidyathri, B.S. Murty, Phase formation and thermal stability of CoCrFeNi and CoCrFeMnNi equiatomic high entropy alloys, J. Alloys Compd. 774 (2019) 856-864. [50] B. Schuh, F. Mendez-Martin, B. Völker, E.P. George, H. Clemens, R. Pippan, A. Hohenwarter, Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation, Acta Mater. 96 (2015) 258-268. [51] H. Zhang, Y.-Z. He, Y. Pan, S. Guo, Thermally stable laser cladded CoCrCuFeNi high-entropy alloy coating with low stacking fault energy, J. Alloys Compd. 600 (2014) 210-214. [52] J.-W. Yeh, Alloy Design Strategies and Future Trends in High-Entropy Alloys, Jom 65(12) (2013) 1759-1771. [53] J.-W. Yeh, Physical Metallurgy of High-Entropy Alloys, Jom 67(10) (2015) 2254-2261. [54] Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, P.K. Liaw, Solid-Solution Phase Formation Rules for Multi-component Alloys, Adv. Eng. Mater. 10(6) (2008) 534-538. [55] S. Guo, Q. Hu, C. Ng, C.T. Liu, More than entropy in high-entropy alloys: Forming solid solutions or amorphous phase, Intermetallics 41 (2013) 96-103. [56] X. Yang, Y. Zhang, Prediction of high-entropy stabilized solid-solution in multi-component alloys, Mater. Chem. Phys. 132(2-3) (2012) 233-238. [57] B.E. MacDonald, Z. Fu, B. Zheng, W. Chen, Y. Lin, F. Chen, L. Zhang, J. Ivanisenko, Y. Zhou, H. Hahn, E.J. Lavernia, Recent Progress in High Entropy Alloy Research, Jom 69(10) (2017) 2024-2031. [58] K.Y. Tsai, M.H. Tsai, J.W. Yeh, Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys, Acta Mater. 61(13) (2013) 4887-4897. [59] P.K. Huang, J.W. Yeh, T.T. Shun, S.K. Chen, Multi-Principal-Element Alloys with Improved Oxidation and Wear Resistance for Thermal Spray Coating, Adv. Eng. Mater. 6(12) (2004) 74-78. [60] R. S, Alloyed pleasures: Multimetallic cocktails, Curr Sci India 10(85) (2003) 1404-1406. [61] Q. Wei, Q. Shen, J. Zhang, B. Chen, G. Luo, L. Zhang, Microstructure and mechanical property of a novel ReMoTaW high-entropy alloy with high density, Int. J. Refract. Met. Hard Mater. 77 (2018) 8-11. [62] X.W. Nie, M.D. Cai, S. Cai, Microstructure and mechanical properties of a novel refractory high entropy alloy HfMoScTaZr, Int. J. Refract. Met. Hard Mater. 98 (2021) 105568. [63] W. Li, P. Liu, P.K. Liaw, Microstructures and properties of high-entropy alloy films and coatings: a review, Mater. Res. Lett. 6(4) (2018) 199-229. [64] S.K. Padamata, A. Yasinskiy, V. Yanov, G. Saevarsdottir, Magnetron Sputtering High-Entropy Alloy Coatings: A Mini-Review, Metals 12(2) (2022) 319. [65] H. Ju, P. Jia, J. Xu, L. Yu, Y. Geng, Y. chen, M. Liu, T. Wei, The effects of adding aluminum on crystal structure, mechanical, oxidation resistance, friction and wear properties of nanocomposite vanadium nitride hard films by reactive magnetron sputtering, Mater. Chem. Phys. 215 (2018) 368-375. [66] H. Ju, N. Ding, J. Xu, L. Yu, I. Asempah, J. Xu, G. Yi, B. Ma, Crystal structure and the improvement of the mechanical and tribological properties of tungsten nitride films by addition of titanium, Surf. Coat. Technol. 345 (2018) 132-139. [67] N. Arshi, J. Lu, Y.K. Joo, C.G. Lee, J.H. Yoon, F. Ahmed, Study on structural, morphological and electrical properties of sputtered titanium nitride films under different argon gas flow, Mater. Chem. Phys. 134(2-3) (2012) 839-844. [68] P.-K. Huang, J.-W. Yeh, Effects of substrate temperature and post-annealing on microstructure and properties of (AlCrNbSiTiV)N coatings, Thin Solid Films 518(1) (2009) 180-184. [69] T.-G. Wang, Y. Liu, T. Zhang, D.-I. Kim, K.H. Kim, Influence of Nitrogen Flow Ratio on the Microstructure, Composition, and Mechanical Properties of DC Magnetron Sputtered Zr–B–O–N Films, J. Mater. Sci. Technol. 28(11) (2012) 981-991. [70] S. Zhang, X. Zhang, Toughness evaluation of hard coatings and thin films, Thin Solid Films 520(7) (2012) 2375-2389. [71] J. Chen, S.J. Bull, Assessment of the toughness of thin coatings using nanoindentation under displacement control, Thin Solid Films 494(1-2) (2006) 1-7. [72] C.-W. Tsai, S.-W. Lai, K.-H. Cheng, M.-H. Tsai, A. Davison, C.-H. Tsau, J.-W. Yeh, Strong amorphization of high-entropy AlBCrSiTi nitride film, Thin Solid Films 520(7) (2012) 2613-2618. [73] A. Inoue, High strength Bulk Amorphous Alloys with Low Critical Cooling Rates, Mater. Trans. 36(7) (1995) 866-875. [74] M. Ghidelli, S. Gravier, J.-J. Blandin, J.-P. Raskin, F. Lani, T. Pardoen, Size-dependent failure mechanisms in ZrNi thin metallic glass films, Scr. Mater. 89 (2014) 9-12. [75] C. Lin Li, Notch toughness evaluations of thin film metallic glasses using FIB-based microcantilever method: A comparison study with crystalline thin films, (2017). [76] F.T. Muniz, M.A. Miranda, C. Morilla Dos Santos, J.M. Sasaki, The Scherrer equation and the dynamical theory of X-ray diffraction, Acta Crystallogr., Sect. A: Found. Adv. 72(Pt 3) (2016) 385-390. [77] N. Saowadee, K. Agersted, J.R. Bowen, Lattice constant measurement from electron backscatter diffraction patterns, J. Microsc. 266(2) (2017) 200-210. [78] D.-C. Tsai, Z.-C. Chang, B.-H. Kuo, S.-Y. Chang, F.-S. Shieu, Effects of silicon content on the structure and properties of (AlCrMoTaTi)N coatings by reactive magnetron sputtering, J. Alloys Compd. 616 (2014) 646-651. [79] V.V. Kosukhin, V.F. Funke, V.I. Minashkin, V.S. Smirnov, Y.P. Efremov, Zirconium nitride and carbonitride coatings obtained by the chemical vapor deposition (CVD) method, Inorg. Mater. 23:1 (1987) 52-56. [80] W. Lengauer., P. Ettmayer., Preparation and Properties of Compact Cubic 6-NbN(l-x), Monatsh. Chem. 117 (1986) 275-286. [81] Muneshwar, Triratna, Cadien, Ken, Comparing XPS on bare and capped ZrN films grown by plasma enhanced ALD: Effect of ambient oxidation, Appl. Surf. Sci. 435 (2018) 367-376. [82] S. Oktay, Z. Kahraman, M. Urgen, K. Kazmanli, XPS investigations of tribolayers formed on TiN and (Ti,Re)N coatings, Appl. Surf. Sci. 328 (2015) 255-261. [83] P. Motamedi, K. Cadien, XPS analysis of AlN thin films deposited by plasma enhanced atomic layer deposition, Appl. Surf. Sci. 315 (2014) 104-109. [84] F. Cheng, C. He, D. Shu, H. Chen, J. Zhang, S. Tang, D.E. Finlow, Preparation of nanocrystalline VN by the melamine reduction of V2O5 xerogel and its supercapacitive behavior, Mater. Chem. Phys. 131(1-2) (2011) 268-273. [85] I. Bertoti, Characterization of nitride coatings by XPS, Surf. Coat. Technol. (2002) 151–152, 194–203. [86] A. Darlinski., J. Halbritter., Angle-resolved XPS Studies of Oxides at NbN, NbC, andl Nb Surfaces, Surf. Interface Anal. 10 (1987) 223-237 [87] N. Huber, T. Beirau, Modelling the effect of intrinsic radiation damage on mechanical properties: The crystalline-to-amorphous transition in zircon, Scr. Mater. 197 (2021) 113789. [88] M. Zhao, J.C. Li, Q. Jiang, Hall–Petch relationship in nanometer size range, J. Alloys Compd. 361(1-2) (2003) 160-164. [89] N. Wang, Q.P. Cao, X.D. Wang, D.X. Zhang, J.Z. Jiang, Tuning microstructure and enhancing mechanical properties of Co-Ni-V-Al medium entropy alloy thin films via deposition power, J. Alloys Compd. 875 (2021) 160003. [90] S.N. Naik, S.M. Walley, The Hall–Petch and inverse Hall–Petch relations and the hardness of nanocrystalline metals, J. Mater. Sci. 55(7) (2019) 2661-2681. [91] G. Wu, K.C. Chan, L. Zhu, L. Sun, J. Lu, Dual-phase nanostructuring as a route to high-strength magnesium alloys, Nature 545(7652) (2017) 80-83. [92] G. Abadias, S. Dub, R. Shmegera, Nanoindentation hardness and structure of ion beam sputtered TiN, W and TiN/W multilayer hard coatings, Surf. Coat. Technol. 200(22-23) (2006) 6538-6543. [93] Z. Han, X. Hu, J. Tian, G. Li, G. Mingyuan, Magnetron sputtered NbN thin films and mechanical properties, Surf. Coat. Technol. 179(2-3) (2004) 188-192. [94] A.P. Knights., A.S. Saleh., P.C. Rice-Evans., F.E. S J Bull, R.a.H. Kupfer., Investigation of magnetron-sputtered titanium nitride films using positron annihilation spectroscopy, J. Phys.: Condens. Matter 8 (1996) 2479–2486. [95] F. Liu, Y. Meng, R. Zhaoxing, X. Shu, Microstructure, Hardness and Corrosion Resistance of ZrN Films Prepared by Inductively Coupled Plasma Enhanced RF Magnetron Sputtering, Plasma Sci. Technol. 10 (2008) 2. [96] W. Zhang, W. Li, H. Zhai, Y. Wu, S. Wang, G. Liang, R.J.K. Wood, Microstructure and tribological properties of laser in-situ synthesized Ti3Al composite coating on Ti-6Al-4V, Surf. Coat. Technol. 395 (2020) 125944. [97] X.C. Zhang, Z.D. Liu, J.S. Xu, F.Z. Xuan, Z.D. Wang, S.T. Tu, Synthesis of TiN/Ti3Al composite coatings on Ti6Al4V alloy by plasma spraying and laser nitriding, Surf. Coat. Technol. 228 (2013) 107-110. [98] S. Zhang, D. Sun, Y. Fu, H. Du, Toughening of hard nanostructural thin films: a critical review, Surf. Coat. Technol. 198(1-3) (2005) 2-8. [99] H. Zhao, L. Yu, C. Mu, F. Ye, Structure and properties of Si-implanted VN coatings prepared by RF magnetron sputtering, Mater. Charact. 117 (2016) 65-75. [100] H. Ju, L. Yu, S. He, I. Asempah, J. Xu, Y. Hou, The enhancement of fracture toughness and tribological properties of the titanium nitride films by doping yttrium, Surf. Coat. Technol. 321 (2017) 57-63. [101] T.-P. Hsiao, Y.-C. Yang, J.-W. Lee, C.-L. Li, J.P. Chu, The microstructure and mechanical properties of nitrogen and boron contained ZrCuAlNi thin film metallic glass composites, Surf. Coat. Technol. 237 (2013) 276-283. [102] S. Kataria, S.K. Srivastava, P. Kumar, G. Srinivas, Siju, J. Khan, D.V.S. Rao, H.C. Barshilia, Nanocrystalline TiN coatings with improved toughness deposited by pulsing the nitrogen flow rate, Surf. Coat. Technol. 206(19-20) (2012) 4279-4286. [103] J.-W. Lee, J.-G. Duh, Nanomechanical properties evaluation of chromium nitride films by nanoindentation and nanowear techniques, Surf. Coat. Technol. 188-189 (2004) 655-661. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87833 | - |
dc.description.abstract | 本實驗透過磁控濺鍍系統,製備一系列(NbTiVZr)100-xAlx (x=0, 3.5, 7.3, 12.4, 12.9)高熵合金薄膜與(NbTiVZrN)100-xAlx (x=0, 0.7, 2.3, 3.6, 4.0)高熵合金氮化薄膜,並且以雙靶材共鍍的方式,鍍在單晶矽(100)上,透過調控施加在鋁靶材上不同的功率,並且固定其他參數,去探討Al的添加量對NbTiVZr高熵合金薄膜與氮化薄膜之微結構差異與機械性質的探討。在高熵合金薄膜結果方面,從X光繞射儀與穿透式電子顯微鏡的結果中可看出,所有薄膜皆為非晶結構,從選區繞射圖型可以看到明顯的非晶環,在掃描式電子顯微鏡下則可以發現所有試片皆為葉脈狀結構,而這結構也是在非晶相中最常出現的結構之一。
高熵合金氮化薄膜的討論中,在X光繞射儀與穿透式電子顯微鏡的結果中發現在未添加鋁的薄膜中,主要是由氮化鈦 (TiN) 主導,並且在電子顯微鏡的橫截面圖形出現雙層結構,上層為柱狀晶結構而下層則是非晶的結構,而非晶結構也在後續高解析電子顯微鏡被驗證為奈米晶散落在非晶母相中。隨著鋁的添加後,由於鋁與鈦的混和焓 (mixing enthalpy) 很負因而形成三鈦化鋁 (Ti3Al),導致氮轉而與鈮與鋯結合,分別形成氮化鈮 (NbN) 與氮化鋯 (ZrN),這兩種氮化物主導了添加鋁氮化薄膜的結構與其優異的機械性質。這也在後續的X射線光電子能譜儀 (XPS)結果中被驗證。機械性質方面,本實驗量測硬度、破裂韌性與摩擦係數。結果顯示,隨著鋁含量添加至x=3.6 時,硬度與破裂韌性分別達到最大值,其原因可歸因於固溶強化與主導之氮化物的轉變。在奈米刮痕方面,隨著鋁的添加,所得摩擦係數從0.082降到0.065,因此可知鋁的添加強化高熵合金氮化薄膜的磨耗性質。 | zh_TW |
dc.description.abstract | In this study, the effects of Al addition on the phase evolution, morphology and mechanical properties of (NbTiVZr)100-xAlx (x = 0, 3.5, 7.3, 12.4, 12.9) high entropy alloy films (HEAFs) and (NbTiVZrN)100-xAlx (x=0, 0.7, 2.3, 3.6, 4.0) high entropy alloy nitride films (HEANFs) were systematically investigated. For the (NbTiVZr)100-xAlx HEAFs, all the films exhibited amorphous structure and the hardness increased slightly. For the nitride films, the XRD patterns revealed FCC structure and the preferred orientation transferred from TiN(200) to (Nb, Zr)N(111) as the Al content increased. The results of the corresponding selected-area electron diffraction patterns of TEM images agreed well with the XRD results. Cross-sectional SEM and TEM observations exhibited ultra-fine columnar structure with a few inclusions and voids. XPS was conducted in order to further investigate the bonding between the constituent elements, and the replacement of the dominant compounds was confirmed. The nanoindentation test were performed to acquire the mechanical properties of the films. The hardness, reduced modulus and fracture toughness of nitride film increased with the increasing Al concentration and reached the maximum values of 28.1 GPa, 253 GPa and 2.08 MPa×m0.5, respectively, for x = 3.6. The significant improvement could be ascribed to solid solution strengthening, inverse Hall-Petch effect and the replacement of dominant nitride compounds. As the Al content increased to x = 4.0, the coefficient of friction decreased from 0.082 to 0.065. The relationship between the microstructure and mechanical properties was studied for the (NbTiVZrN)100-xAlx HEANFs in this work. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-07-19T16:45:20Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-07-19T16:45:20Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 誌謝 ii
中文摘要 iv ABSTRACT v CONTENTS vi LIST OF FIGURES viii LIST OF TABLES xi Chapter 1 Introduction 1 Chapter 2 Literature Review 3 2.1 High entropy alloys 3 2.1.1 Definitions 4 2.1.2 Four Core Effects 6 2.2 High Entropy Alloy Films (HEAFs) 9 2.2.1 Magnetron Sputter Deposition of HEAFs 9 2.2.1 Microstructure and Mechanical properties of HEAFs 11 2.3 Introduction of High Entropy Alloy Nitride Films (HEANFs) 15 2.3.1 Microstructure and Mechanical properties of HEANFs 15 2.4 Effect of Alloy Addition 20 2.4.1 Mo Addition in HEAFs 20 2.4.2 Ce Addition in medium entropy alloy films (MEAFs) 22 2.5 Effects of Al Addition 24 2.5.1 Al Addition in Bulk NbTiVZr system 24 2.5.2 Al Addition in HEAFs 25 Chapter 3 Experimental Procedures 28 3.1 Experimental Flow 28 3.2 Sample preparations and Deposition Process 28 3.2.1 (NbTiVZr)100-xAlx HEAFs 28 3.2.2 (NbTiVZrN)100-xAlx HEANFs 29 3.3 Analytical Techniques 30 3.3.1 Electron Probe X-ray Microanalyzer (EPMA) 30 3.3.2 X-ray Diffraction (XRD) 30 3.3.3 SEM Observation 31 3.3.4 TEM Observation 31 3.3.5 XPS analysis 31 3.3.6 Nanoindentation tests 31 3.3.7 Fracture toughness tests 32 3.3.8 Nanoscratch tests 33 Chapter 4 Results and Discussion 33 4.1 (NbTiVZr)100-xAlx HEAFs 33 4.1.1 Chemical Compositions 33 4.1.2 XRD Results 34 4.1.3 SEM Observations 36 4.1.4 TEM Observations 38 4.1.5 Hardness and Reduced Modulus 38 4.2 (NbTiVZrN)100-xAlx HEANFs 39 4.2.1 Chemical Compositions 39 4.2.2 XRD Results 40 4.2.3 SEM Observations 43 4.2.4 TEM Observations 44 4.2.5 XPS results 49 4.2.6 Hardness and Reduced Modulus 50 4.2.7 Fracture toughness 53 4.2.8 Nanoscratch results 55 Chapter 5 Conclusions 57 5.1 (NbTiVZr)100-xAlx HEAFs 57 5.2 (NbTiVZrN)100-xAlx HEANFs 58 References 59 | - |
dc.language.iso | en | - |
dc.title | Al的添加與氮化作用對於NbTiVZr高熵合金薄膜之顯微結構差異與機械性質探討 | zh_TW |
dc.title | Effects of Al Addition and Nitridation on Microstructures and Mechanical Properties of NbTiVZr High entropy alloy Films | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 楊哲人;郭俞麟 | zh_TW |
dc.contributor.oralexamcommittee | Zhe Ren Yang;Yu Lin Guo | en |
dc.subject.keyword | 高熵合金薄膜,氮化膜,磁控濺鍍,機械性質,鋁添加, | zh_TW |
dc.subject.keyword | high entropy alloy films,Al addition,nitride film,microstructure,mechanical properties, | en |
dc.relation.page | 67 | - |
dc.identifier.doi | 10.6342/NTU202300667 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2023-03-16 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 材料科學與工程學系 | - |
顯示於系所單位: | 材料科學與工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf | 16.35 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。