請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87786完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 徐善慧 | zh_TW |
| dc.contributor.advisor | Shan-hui Hsu | en |
| dc.contributor.author | 殷愛宜 | zh_TW |
| dc.contributor.author | Ai-Yi Yin | en |
| dc.date.accessioned | 2023-07-19T16:29:17Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-07-19 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-04-11 | - |
| dc.identifier.citation | [1] K.K. Jain, Drug delivery systems-an overview, Drug delivery systems (2008) 1-50.
[2] E. Touitou, B.W. Barry, Enhancement in drug delivery, CRC Press2006. [3] S. Bhatia, Nanoparticles types, classification, characterization, fabrication methods and drug delivery applications, Natural polymer drug delivery systems, Springer2016, pp. 33-93. [4] W.H. De Jong, P.J. Borm, Drug delivery and nanoparticles: applications and hazards, International journal of nanomedicine 3(2) (2008) 133. [5] S. Dumitriu, Polysaccharides: structural diversity and functional versatility, CRC press2004. [6] Z. Liu, Y. Jiao, Y. Wang, C. Zhou, Z. Zhang, Polysaccharides-based nanoparticles as drug delivery systems, Advanced drug delivery reviews 60(15) (2008) 1650-1662. [7] J. Pushpamalar, A.K. Veeramachineni, C. Owh, X.J. Loh, Biodegradable polysaccharides for controlled drug delivery, ChemPlusChem 81(6) (2016) 504-514. [8] G. Jiao, G. Yu, J. Zhang, H.S. Ewart, Chemical structures and bioactivities of sulfated polysaccharides from marine algae, Marine drugs 9(2) (2011) 196-223. [9] J. Turnbull, A. Powell, S. Guimond, Heparan sulfate: decoding a dynamic multifunctional cell regulator, Trends in cell biology 11(2) (2001) 75-82. [10] M. Bernfield, M. Götte, P.W. Park, O. Reizes, M.L. Fitzgerald, J. Lincecum, M. Zako, Functions of cell surface heparan sulfate proteoglycans, Annual review of biochemistry 68(1) (1999) 729-777. [11] R. Sasisekharan, R. Raman, V. Prabhakar, Glycomics approach to structure-function relationships of glycosaminoglycans, Annu. Rev. Biomed. Eng. 8 (2006) 181-231. [12] L. Huang, M. Shen, G.A. Morris, J. Xie, Sulfated polysaccharides: Immunomodulation and signaling mechanisms, Trends in Food Science & Technology 92 (2019) 1-11. [13] P.A. Mourão, Perspective on the use of sulfated polysaccharides from marine organisms as a source of new antithrombotic drugs, Marine Drugs 13(5) (2015) 2770-2784. [14] M. Halperin-Sternfeld, G. Netanel Liberman, R. Kannan, F. Netti, P.X. Ma, S.M. Arad, L. Adler-Abramovich, Thixotropic red microalgae sulfated polysaccharide-peptide composite hydrogels as scaffolds for tissue engineering, Biomedicines 10(6) (2022) 1388. [15] W. Huang, Y. Chen, J. Hu, W. Yao, L. You, P.C.-K. Cheung, Algal sulfated polysaccharide-based hydrogels enhance gelling properties and in vitro wound healing compared to conventional hydrogels, Algal Research 65 (2022) 102740. [16] G.N. Liberman, G. Ochbaum, R. Bitton, S.M. Arad, Antimicrobial hydrogels composed of chitosan and sulfated polysaccharides of red microalgae, Polymer 215 (2021) 123353. [17] J.H. Yim, E. Son, S. Pyo, H.K. Lee, Novel sulfated polysaccharide derived from red-tide microalga Gyrodinium impudicum strain KG03 with immunostimulating activity in vivo, Marine Biotechnology 7(4) (2005) 331-338. [18] J. Xu, S.-h. Hsu, Enhancement of Cell Behavior by the Polysaccharide Extract of Arthrospira and Potential Biomedical Applications, Molecules 28(2) (2023) 732. [19] A. Bernkop-Schnürch, S. Dünnhaupt, Chitosan-based drug delivery systems, European journal of pharmaceutics and biopharmaceutics 81(3) (2012) 463-469. [20] A. Domard, M. Domard, Chitosan: structure-properties relationship and biomedical applications, Polymeric biomaterials 9 (2002) 187-212. [21] Y. Fazli, Z. Shariatinia, Controlled release of cefazolin sodium antibiotic drug from electrospun chitosan-polyethylene oxide nanofibrous Mats, Materials science and engineering: C 71 (2017) 641-652. [22] H.S. Kas, Chitosan: properties, preparations and application to microparticulate systems, Journal of microencapsulation 14(6) (1997) 689-711. [23] J.J. Wang, Z.W. Zeng, R.Z. Xiao, T. Xie, G.L. Zhou, X.R. Zhan, S.L. Wang, Recent advances of chitosan nanoparticles as drug carriers, International journal of nanomedicine 6 (2011) 765. [24] I. Pilipenko, V. Korzhikov-Vlakh, V. Sharoyko, N. Zhang, M. Schäfer-Korting, E. Rühl, C. Zoschke, T. Tennikova, pH-sensitive chitosan–heparin nanoparticles for effective delivery of genetic drugs into epithelial cells, Pharmaceutics 11(7) (2019) 317. [25] J. Hirsh, Heparin, New England Journal of Medicine 324(22) (1991) 1565-1574. [26] C.-W. Wong, L.-N. Ko, H.-J. Huang, C.-S. Yang, S.-h. Hsu, Engineered bacteriorhodopsin may induce lung cancer cell cycle arrest and suppress their proliferation and migration, Molecules 26(23) (2021) 7344. [27] M.-F. Hsu, T.-F. Yu, C.-C. Chou, H.-Y. Fu, C.-S. Yang, A.H. Wang, Using Haloarcula marismortui bacteriorhodopsin as a fusion tag for enhancing and visible expression of integral membrane proteins in Escherichia coli, PloS one 8(2) (2013) e56363. [28] H.-W. Han, L.-N. Ko, C.-S. Yang, S.-h. Hsu, Potential of engineered bacteriorhodopsins as photoactivated biomaterials in modulating neural stem cell behavior, ACS Biomaterials Science & Engineering 5(6) (2019) 3068-3078. [29] Y.C. Hsu, D.C. Lee, S.L. Chen, W.C. Liao, J.W. Lin, W.T. Chiu, I.M. Chiu, Brain‐specific 1B promoter of FGF1 gene facilitates the isolation of neural stem/progenitor cells with self‐renewal and multipotent capacities, Developmental Dynamics 238(2) (2009) 302-314. [30] S.-R. Shih, T.-Y. Chu, G.R. Reddy, S.-N. Tseng, H.-L. Chen, W.-F. Tang, M.-s. Wu, J.-Y. Yeh, Y.-S. Chao, J.T. Hsu, Pyrazole compound BPR1P0034 with potent and selective anti-influenza virus activity, Journal of biomedical science 17(1) (2010) 1-9. [31] F.-Y. Hsieh, H.-W. Han, X.-R. Chen, C.-S. Yang, Y. Wei, S.-h. Hsu, Non-viral delivery of an optogenetic tool into cells with self-healing hydrogel, Biomaterials 174 (2018) 31-40. [32] S.Y. Kim, S.M. Cho, Y.M. Lee, S.J. Kim, Thermo‐and pH‐responsive behaviors of graft copolymer and blend based on chitosan and N‐isopropylacrylamide, Journal of Applied Polymer Science 78(7) (2000) 1381-1391. [33] N. Gorochovceva, R. Makuška, Synthesis and study of water-soluble chitosan-O-poly (ethylene glycol) graft copolymers, European Polymer Journal 40(4) (2004) 685-691. [34] Y.-H. Lin, C.-H. Chang, Y.-S. Wu, Y.-M. Hsu, S.-F. Chiou, Y.-J. Chen, Development of pH-responsive chitosan/heparin nanoparticles for stomach-specific anti-Helicobacter pylori therapy, Biomaterials 30(19) (2009) 3332-3342. [35] Y. Hu, X. Jiang, Y. Ding, H. Ge, Y. Yuan, C. Yang, Synthesis and characterization of chitosan–poly (acrylic acid) nanoparticles, Biomaterials 23(15) (2002) 3193-3201. [36] J.-S. Ahn, H.-K. Choi, C.-S. Cho, A novel mucoadhesive polymer prepared by template polymerization of acrylic acid in the presence of chitosan, Biomaterials 22(9) (2001) 923-928. [37] S.J. Kim, S.R. Shin, K.B. Lee, Y.D. Park, S.I. Kim, Synthesis and characteristics of polyelectrolyte complexes composed of chitosan and hyaluronic acid, Journal of applied polymer science 91(5) (2004) 2908-2913. [38] S. Kalliola, E. Repo, V. Srivastava, J.P. Heiskanen, J.A. Sirviö, H. Liimatainen, M. Sillanpää, The pH sensitive properties of carboxymethyl chitosan nanoparticles cross-linked with calcium ions, Colloids and Surfaces B: Biointerfaces 153 (2017) 229-236. [39] X. Geng, O.-H. Kwon, J. Jang, Electrospinning of chitosan dissolved in concentrated acetic acid solution, Biomaterials 26(27) (2005) 5427-5432. [40] H. Nikaido, Outer membrane barrier as a mechanism of antimicrobial resistance, Antimicrobial agents and chemotherapy 33(11) (1989) 1831-1836. [41] I. Helander, E.-L. Nurmiaho-Lassila, R. Ahvenainen, J. Rhoades, S. Roller, Chitosan disrupts the barrier properties of the outer membrane of Gram-negative bacteria, International journal of food microbiology 71(2-3) (2001) 235-244. [42] J. Muthukumar, R. Chidambaram, S. Sukumaran, Sulfated polysaccharides and its commercial applications in food industries—A review, Journal of Food Science and Technology 58(7) (2021) 2453-2466. [43] J.-Y. Jun, M.-J. Jung, I.-H. Jeong, K. Yamazaki, Y. Kawai, B.-M. Kim, Antimicrobial and antibiofilm activities of sulfated polysaccharides from marine algae against dental plaque bacteria, Marine drugs 16(9) (2018) 301. [44] F. Kara, E.A. Aksoy, Z. Yuksekdag, S. Aksoy, N. Hasirci, Enhancement of antibacterial properties of polyurethanes by chitosan and heparin immobilization, Applied Surface Science 357 (2015) 1692-1702. [45] R.S. Aquino, P.W. Park, Glycosaminoglycans and infection, Frontiers in bioscience (Landmark edition) 21 (2016) 1260. [46] L. Chen, G. Huang, The antiviral activity of polysaccharides and their derivatives, International journal of biological macromolecules 115 (2018) 77-82. [47] A. Muralidharan, M.S. Russell, L. Larocque, C. Gravel, S. Sauvé, Z. Chen, C. Li, W. Chen, T. Cyr, M. Rosu-Myles, Chitosan alters inactivated respiratory syncytial virus vaccine elicited immune responses without affecting lung histopathology in mice, Vaccine 37(30) (2019) 4031-4039. [48] X. Chen, W. Han, G. Wang, X. Zhao, Application prospect of polysaccharides in the development of anti-novel coronavirus drugs and vaccines, International journal of biological macromolecules 164 (2020) 331-343. [49] W. Lu, Z. Yang, J. Chen, D. Wang, Y. Zhang, Recent advances in antiviral activities and potential mechanisms of sulfated polysaccharides, Carbohydrate Polymers 272 (2021) 118526. [50] M. Malmsten, Antimicrobial and antiviral hydrogels, Soft Matter 7(19) (2011) 8725-8736. [51] V. Lysenko, V. Lozovski, M. Lokshyn, Y.V. Gomeniuk, A. Dorovskih, N. Rusinchuk, Y. Pankivska, O. Povnitsa, S. Zagorodnya, V. Tertykh, Nanoparticles as antiviral agents against adenoviruses, Advances in Natural Sciences: Nanoscience and Nanotechnology 9(2) (2018) 025021. [52] S. Saha, M.H. Navid, S.S. Bandyopadhyay, P. Schnitzler, B. Ray, Sulfated polysaccharides from Laminaria angustata: structural features and in vitro antiviral activities, Carbohydrate polymers 87(1) (2012) 123-130. [53] V.P. Torchilin, Multifunctional nanocarriers, Advanced drug delivery reviews 58(14) (2006) 1532-1555. [54] D.-E. Lee, H. Koo, I.-C. Sun, J.H. Ryu, K. Kim, I.C. Kwon, Multifunctional nanoparticles for multimodal imaging and theragnosis, Chemical Society Reviews 41(7) (2012) 2656-2672. [55] D. Stolz, A. Stulz, B. Müller, A. Gratwohl, M. Tamm, BAL neutrophils, serum procalcitonin, and C-reactive protein to predict bacterial infection in the immunocompromised host, Chest 132(2) (2007) 504-514. [56] M.G. Ison, F.G. Hayden, Viral infections in immunocompromised patients: what's new with respiratory viruses?, Current opinion in infectious diseases 15(4) (2002) 355-367. [57] A.J. De Craen, P.J. Roos, A.L. De Vries, J. Kleijnen, Effect of colour of drugs: systematic review of perceived effect of drugs and of their effectiveness, Bmj 313(7072) (1996) 1624-1626. [58] W. Lu, J. Yao, X. Zhu, Y. Qi, Nanomedicines: redefining traditional medicine, Biomedicine & Pharmacotherapy 134 (2021) 111103. [59] C.S. Cleeland, Symptom burden: multiple symptoms and their impact as patient-reported outcomes, Journal of the National Cancer Institute Monographs 2007(37) (2007) 16-21. [60] B. Powis, J. Strang, P. Griffiths, C. Taylor, S. Williamson, J. Fountain, M. Gossop, Self‐reported overdose among injecting drug users in London: extent and nature of the problem, Addiction 94(4) (1999) 471-478. [61] A.E. Zimmermann, T. Pizzoferrato, J. Bedford, A. Morris, R. Hoffman, G. Braden, Tenofovir-associated acute and chronic kidney disease: a case of multiple drug interactions, Clinical Infectious Diseases 42(2) (2006) 283-290. [62] L.S. Jabr-Milane, L.E. van Vlerken, S. Yadav, M.M. Amiji, Multi-functional nanocarriers to overcome tumor drug resistance, Cancer treatment reviews 34(7) (2008) 592-602. [63] X. Shu, K. Zhu, The influence of multivalent phosphate structure on the properties of ionically cross-linked chitosan films for controlled drug release, European Journal of Pharmaceutics and Biopharmaceutics 54(2) (2002) 235-243. [64] J. Berger, M. Reist, J.M. Mayer, O. Felt, N. Peppas, R. Gurny, Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications, European journal of pharmaceutics and biopharmaceutics 57(1) (2004) 19-34. [65] D. Bourne, G. Banker, C. Rhodes, Modern Pharmaceutics, New York: Informa Healthcare (2002) 67-92. [66] T. Higuchi, Mechanism of sustained‐action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices, Journal of pharmaceutical sciences 52(12) (1963) 1145-1149. [67] A. Hixson, J. Crowell, Dependence of reaction velocity upon surface and agitation, Industrial & Engineering Chemistry 23(8) (1931) 923-931. [68] R.W. Korsmeyer, R. Gurny, E. Doelker, P. Buri, N.A. Peppas, Mechanisms of solute release from porous hydrophilic polymers, International journal of pharmaceutics 15(1) (1983) 25-35. [69] U.K. Sharma, A. Verma, S.K. Prajapati, H. Pandey, A.C. Pandey, In vitro, in vivo and pharmacokinetic assessment of amikacin sulphate laden polymeric nanoparticles meant for controlled ocular drug delivery, Applied Nanoscience 5 (2015) 143-155. [70] Y. Boonsongrit, A. Mitrevej, B.W. Mueller, Chitosan drug binding by ionic interaction, European journal of pharmaceutics and biopharmaceutics 62(3) (2006) 267-274. [71] S. Papadimitriou, D. Bikiaris, K. Avgoustakis, E. Karavas, M. Georgarakis, Chitosan nanoparticles loaded with dorzolamide and pramipexole, Carbohydrate polymers 73(1) (2008) 44-54. [72] C.-H. Tu, H.-P. Yi, S.-Y. Hsieh, H.-S. Lin, C.-S. Yang, Overexpression of different types of microbial rhodopsins with a highly expressible bacteriorhodopsin from Haloarcula marismortui as a single protein in E. coli, Scientific reports 8(1) (2018) 1-8. [73] K. Senni, J. Pereira, F. Gueniche, C. Delbarre-Ladrat, C. Sinquin, J. Ratiskol, G. Godeau, A.-M. Fischer, D. Helley, S. Colliec-Jouault, Marine polysaccharides: a source of bioactive molecules for cell therapy and tissue engineering, Marine drugs 9(9) (2011) 1664-1681. [74] H. Murad, M. Hawat, A. Ekhtiar, A. AlJapawe, A. Abbas, H. Darwish, O. Sbenati, A. Ghannam, Induction of G1-phase cell cycle arrest and apoptosis pathway in MDA-MB-231 human breast cancer cells by sulfated polysaccharide extracted from Laurencia papillosa, Cancer cell international 16(1) (2016) 1-11. [75] B. Kloareg, R. Quatrano, Structure of the cell walls of marine algae and ecophysiological functions of the matrix polysaccharides, OCEANOGRAPHY AND MARINE BIOLOGY: AN ANNUAL REVIEW. 26 (1988) 259-315. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87786 | - |
| dc.description.abstract | 藥物輸送系統 (DDS) 是將藥物輸送到目標部位且風險最小的方法。而其中有一種具有潛力的策略是利用聚合物奈米粒子作為藥物載體,使用的聚合物需具備生物相容性和可降解的特性,以降低對於人體的傷害。在本篇研究,開發了由節旋萃取硫酸化多醣和殼聚醣組成的奈米粒子,並期望透過兩種材料的合成,結合兩者的優勢。得到具有抗病毒、抗菌和pH敏感的多功能複合奈米粒子,縮寫為APC。在接近人體的生理環境中 (pH = 7.4),透過不同的比例針對APC奈米粒子的形態和尺寸 (~160 nm)進行穩定性的觀察並進行優化。優化過的APC奈米粒子在體外驗證了有效的抗菌(有效濃度2μg/mL)和抗病毒(有效濃度6.596 μg/mL)特性。 並且在不同pH值下的環境,針對各種類別的藥物(包括親水性藥物、疏水性藥物和蛋白質藥物)檢驗了APC的載藥可行性, 針對pH敏感的藥物釋放行為和藥物動力學。也在肺癌細胞和神經幹細胞中評估了應用。使用APC作為載藥奈米粒子,能夠保持藥物的生物活性,以抑制肺癌細胞的增殖(減少約 40%),同時能夠減輕藥物對神經幹細胞的抑制作用。這些發現表明,硫酸化多醣-殼聚醣的生物相容性複合奈米粒子很好地保持了抗病毒和抗菌特性並具有pH敏感的藥物釋放作用,可作為一種有前途的多功能藥物載體用於進一步的生物醫學應用。 | zh_TW |
| dc.description.abstract | Drug delivery systems (DDS) are methods of delivering drugs to targeted sites with minimal risk. One popular strategy of DDS is using nanoparticles as a drug carrier, which are made from biocompatible and degradable polymers. Herein, nanoparticles composed of Arthrospira-derived sulfated polysaccharide (AP) and chitosan were developed and expected to possess the capabilities of antiviral, antibacterial, and pH-sensitive properties. The composite nanoparticles, abbreviated as APC, were optimized for stability of morphology and size (~160 nm) in the physiological environment (pH=7.4). Potent antibacterial (over 2 μg/mL) and antiviral (over 6.596 μg/mL) properties were verified in vitro. The pH-sensitive release behavior and release kinetics of drug-loaded APC nanoparticles were examined for various categories of drugs, including hydrophilic, hydrophobic, and protein drugs, under different pH values of the surroundings. Effects of APC nanoparticles were also evaluated in lung cancer cells and neural stem cells. The use of APC nanoparticles as a drug delivery system maintained the bioactivity of drug to inhibit the proliferation of lung cancer cells (with ~40% reduction) and to relieve the growth inhibitory effect on neural stem cells. These findings indicate that the pH-sensitive and biocompatible composite nanoparticles of sulfated polysaccharide and chitosan well keep the antiviral and antibacterial properties and may serve as a promising multifunctional drug carrier for further biomedical applications. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-07-19T16:29:17Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-07-19T16:29:17Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 I
摘要 III Abstract III 目錄 V 圖目錄 VIII 表目錄 IX 第一章 文獻回顧 1 1.1. 藥物遞送系統 1 1.2. 載藥奈米粒子 1 1.3. 硫酸化多醣 1 1.4. 殼聚醣 2 1.5. 研究目的 3 第二章 研究方法 4 2.1. 研究架構 4 2.2. 硫酸化多醣-殼聚醣奈米粒子合成 6 2.3. APC奈米粒子優化 7 2.4. APC奈米粒子形態和熱性質 7 2.4.1. 穿透式電子顯微鏡(Transmission electron microscope, TEM) 7 2.4.2. 熱重分析儀(Thermogravimetric analysis, TGA) 7 2.4.3. 差示掃描量熱儀 (Differential scanning calorimetry, DSC) 7 2.5. 抗菌實驗(哉羽學長操作) 8 2.6. 抗病毒評估(遠東生技公司操作) 8 2.7. 載藥機制 9 2.7.1. 親水藥物 10 2.7.2. 疏水藥物 10 2.7.3. 大分子蛋白質藥物 10 2.8.載藥效率和包封效率 10 2.9.藥物釋放效率 11 2.10. 藥物釋放動力學 12 2.10.1. 一級動力學模型 12 2.10.2. Hixson-Crowell模型 12 2.10.3. Higuchi模型 13 2.10.4. Korsmeyer-Peppas模型 13 2.11. 細胞實驗(俊鵬學長操作) 13 2.11.1 人上皮肺癌細胞 14 2.11.2 神經幹細胞 14 2.12. 統計學分析 15 第三章 實驗結果 16 3.1. 複合奈米粒子優化及奈米粒子分析儀分析 19 3.2. APC奈米粒子表徵 19 3.2.1. 穿透式電子顯微鏡 (TEM) 分析 19 3.2.2. 熱重分析儀(TGA)和差示掃描量熱儀 (DSC) 分析 20 3.3. 抗菌特性分析 21 3.4. 抗病毒特性分析 22 3.5. 載藥奈米粒子分析 23 3.5.1. 藥物型態觀察 23 3.5.2. 藥物釋放分析 25 3.5.3. 藥物釋放動力學分析 27 3.6. 載有 HEBR 的奈米粒子對細胞行為的作用 28 3.6.1肺癌細胞 29 3.6.2神經幹細胞 29 第四章 討論 30 第五章 結論 36 第六章 未來展望 37 參考文獻 39 圖目錄 圖2.1. 研究架構圖.......................................................................................................5 圖3.1. APC奈米粒子的形成機制和在不同pH值環境中潛在的結構變化 16 圖3.2. AP:CS比例為1:1.5時的APC沉澱 16 圖3.3. APC奈米粒子的穩定性和pH敏感性 16 圖3.4. APC2在鹼性溶液中的沉澱 16 圖3.5. APC2奈米粒子的TEM圖像 20 圖3.6. TGA和DSC分析的材料熱性質 21 圖3.7. 各材料對大腸桿菌和表皮葡萄球菌的抗菌譜 22 圖3.8. 不同材料濃度對於病毒的抗病毒活性 23 圖3.9. 固綠、薑黃素和 HEBR 的檢量線 24 圖3.10. 初始載藥APC奈米粒子的TEM圖像 25 圖3.11. 不同pH值下APC-F, APC-C的釋放曲線 26 圖3.12. 包載HEBR的APC奈米粒子可能機制 26 圖3.13. 不同pH值下APC-H的釋放曲線 27 表目錄 表2.1. 各種重量濃度比的AP和CS製備的各種APC複合奈米粒子 6 表3.1. 用不同質量比的AP和CS製備的APC奈米粒子的zeta電位和PDI 18 表3.2. 所有載藥APC奈米粒子在不同 pH 值下的藥物釋放動力學 28 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 藥物輸送 | zh_TW |
| dc.subject | 節旋藻 | zh_TW |
| dc.subject | 硫酸化多醣 | zh_TW |
| dc.subject | 奈米粒子 | zh_TW |
| dc.subject | 抗菌 | zh_TW |
| dc.subject | 抗病毒 | zh_TW |
| dc.subject | Sulfated polysaccharide | en |
| dc.subject | Arthrospira | en |
| dc.subject | Drug Delivery | en |
| dc.subject | Antiviral | en |
| dc.subject | Antibacterial | en |
| dc.subject | Nanoparticles | en |
| dc.title | 具有抗病毒以及抗菌特性的硫酸化多醣-殼聚醣奈米複合粒子作為藥物載體的研究 | zh_TW |
| dc.title | Antiviral and antibacterial sulfated polysaccharide-chitosan nanocomposite particles as drug carrier | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 楊啟伸;張書瑋;侯詠德;周佳靚 | zh_TW |
| dc.contributor.oralexamcommittee | Chii-Shen Yang;Shu-Wei Chang;Yung-Te Hou;Chia-Ching Chou | en |
| dc.subject.keyword | 節旋藻,硫酸化多醣,奈米粒子,抗菌,抗病毒,藥物輸送, | zh_TW |
| dc.subject.keyword | Arthrospira,Sulfated polysaccharide,Nanoparticles,Antibacterial,Antiviral,Drug Delivery, | en |
| dc.relation.page | 44 | - |
| dc.identifier.doi | 10.6342/NTU202300717 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-04-12 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | - |
| 顯示於系所單位: | 高分子科學與工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf | 2.16 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
