Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87718
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李峻霣zh_TW
dc.contributor.advisorJiun-Yun Lien
dc.contributor.author吳睿濬zh_TW
dc.contributor.authorRui-Jun Wuen
dc.date.accessioned2023-07-19T16:05:28Z-
dc.date.available2023-11-09-
dc.date.copyright2023-07-19-
dc.date.issued2023-
dc.date.submitted2023-05-21-
dc.identifier.citation[1] Y. Liu, X. Duan, H.-J. Shin, S. Park, Y. Huang, and X. Duan, "Promises and prospects of two-dimensional transistors," Nature, vol. 591, no. 7848, pp. 43-53, 2021.
[2] Y. Liu, X. Duan, Y. Huang, and X. Duan, "Two-dimensional transistors beyond graphene and TMDCs," Chemical Society Reviews, vol. 47, no. 16, pp. 6388-6409, 2018.
[3] K. S. Novoselov et al., "Electric field effect in atomically thin carbon films," science, vol. 306, no. 5696, pp. 666-669, 2004.
[4] P. Ajayan, P. Kim, and K. Banerjee, "van der Waals materials," Phys. Today, vol. 69, no. 9, p. 38, 2016.
[5] A. K. Geim and I. V. Grigorieva, "Van der Waals heterostructures," Nature, vol. 499, no. 7459, pp. 419-425, 2013.
[6] A. Sebastian, R. Pendurthi, T. H. Choudhury, J. M. Redwing, and S. Das, "Benchmarking monolayer MoS2 and WS2 field-effect transistors," Nature communications, vol. 12, no. 1, pp. 1-12, 2021.
[7] X. Cui et al., "Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform," Nature nanotechnology, vol. 10, no. 6, pp. 534-540, 2015.
[8] N. Papadopoulos, K. Watanabe, T. Taniguchi, H. S. Van Der Zant, and G. A. Steele, "Weak localization in boron nitride encapsulated bilayer MoS 2," Physical Review B, vol. 99, no. 11, p. 115414, 2019.
[9] J. Lu et al., "Evidence for two-dimensional Ising superconductivity in gated MoS2," Science, vol. 350, no. 6266, pp. 1353-1357, 2015.
[10] X. Zhou, Q. Zhang, L. Gan, H. Li, and T. Zhai, "Large‐size growth of ultrathin SnS2 nanosheets and high performance for phototransistors," Advanced Functional Materials, vol. 26, no. 24, pp. 4405-4413, 2016.
[11] J. Wang et al., "Vertical WS2/SnS2 van der Waals heterostructure for tunneling transistors," Scientific reports, vol. 8, no. 1, pp. 1-9, 2018.
[12] J. M. Gonzalez and I. I. Oleynik, "Layer-dependent properties of SnS 2 and SnSe 2 two-dimensional materials," Physical Review B, vol. 94, no. 12, p. 125443, 2016.
[13] X. Zhou, Q. Zhang, L. Gan, H. Li, J. Xiong, and T. Zhai, "Booming development of group IV–VI semiconductors: fresh blood of 2D family," Advanced science, vol. 3, no. 12, p. 1600177, 2016.
[14] C. Gong, H. Zhang, W. Wang, L. Colombo, R. M. Wallace, and K. Cho, "Band alignment of two-dimensional transition metal dichalcogenides: Application in tunnel field effect transistors," Applied Physics Letters, vol. 103, no. 5, p. 053513, 2013.
[15] H. T. Yuan, M. Toh, K. Morimoto, W. Tan, F. Wei, H. Shimotani, Ch. Kloc, and Y. Iwasa, "Liquid-gated electric-double-layer transistor on layered metal dichalcogenide, SnS 2," Applied Physics Letters, vol. 98, no. 1, p. 012102, 2012.
[16] D. De, J. Manongdo, S. See, V. Zhang, A. Guloy, and H. Peng, "High on/off ratio field effect transistors based on exfoliated crystalline SnS2 nano-membranes," Nanotechnology, vol. 24, no. 2, p. 025202, 2012.
[17] J.-H. Ahn et al., "Deterministic two-dimensional polymorphism growth of hexagonal n-type SnS2 and orthorhombic p-type SnS crystals," Nano letters, vol. 15, no. 6, pp. 3703-3708, 2015.
[18] Y. Huang et al., "Highly sensitive and fast phototransistor based on large size CVD-grown SnS 2 nanosheets," Nanoscale, vol. 7, no. 33, pp. 14093-14099, 2015.
[19] U. Zschieschang, T. Holzmann, A. Kuhn, M. Aghamohammadi, B. V. Lotsch, and H. Klauk, "Threshold-voltage control and enhancement-mode characteristics in multilayer tin disulfide field-effect transistors by gate-oxide passivation with an alkylphosphonic acid self-assembled monolayer," Journal of Applied Physics, vol. 117, no. 10, p. 104509, 2015.
[20] Y. Wang, L. Huang, and Z. Wei, "Photoresponsive field-effect transistors based on multilayer SnS2 nanosheets," Journal of Semiconductors, vol. 38, no. 3, p. 034001, 2017.
[21] D. Chu, S. W. Pak, and E. K. Kim, "Locally gated SnS2/hBN thin film transistors with a broadband photoresponse," Scientific reports, vol. 8, no. 1, pp. 1-8, 2018.
[22] X. Jia, C. Tang, R. Pan, Y. Long, C. Gu, and J. Li, "Thickness-dependently enhanced photodetection performance of vertically grown SnS2 nanoflakes with large size and high production," ACS applied materials & interfaces, vol. 10, no. 21, pp. 18073-18081, 2018.
[23] H. Zhang et al., "Formation mechanism of 2D SnS 2 and SnS by chemical vapor deposition using SnCl 4 and H 2 S," Journal of Materials Chemistry C, vol. 6, no. 23, pp. 6172-6178, 2018.
[24] S. Wei et al., "Performance improvement of multilayered SnS2 field effect transistors through synergistic effect of vacancy repairing and electron doping introduced by EDTA," ACS Applied Electronic Materials, vol. 1, no. 11, pp. 2380-2388, 2019.
[25] L. Xu et al., "Large‐scale growth and field‐effect transistors electrical engineering of atomic‐layer SnS2," Small, vol. 15, no. 46, p. 1904116, 2019.
[26] H. Song et al., "High-performance top-gated monolayer SnS 2 field-effect transistors and their integrated logic circuits," Nanoscale, vol. 5, no. 20, pp. 9666-9670, 2013.
[27] Y. Huang et al., "in Disulfide - An Emerging Layered Metal Dichalcogenide Semiconductor: Materials Properties and Device Characteristics," ACS nano, vol. 8, no. 10, pp. 10743-10755, 2014.
[28] R. S. Mitchell, Y. Fujiki, and Y. Ishizawa, "Structural polytypism of SnS2," Nature, vol. 247, no. 5442, pp. 537-538, 1974.
[29] J. Li, J. Shen, Z. Ma, and K. Wu, "Thickness-controlled electronic structure and thermoelectric performance of ultrathin SnS2 nanosheets," Scientific reports, vol. 7, no. 1, pp. 1-9, 2017.
[30] J. Henrie, S. Kellis, S. M. Schultz, and A. Hawkins, "Electronic color charts for dielectric films on silicon," Optics express, vol. 12, no. 7, pp. 1464-1469, 2004.
[31] P. Blake et al., "Making graphene visible," Applied physics letters, vol. 91, no. 6, p. 063124, 2007.
[32] T. Sriv, K. Kim, and H. Cheong, "Low-frequency Raman spectroscopy of few-layer 2H-SnS2," Scientific reports, vol. 8, no. 1, pp. 1-7, 2018.
[33] M.-J. Lee et al., "Thermoelectric materials by using two-dimensional materials with negative correlation between electrical and thermal conductivity," Nature Communications, vol. 7, no. 1, pp. 1-7, 2016.
[34] X. Zhang et al., "Vertical heterostructures of layered metal chalcogenides by van der Waals epitaxy," Nano letters, vol. 14, no. 6, pp. 3047-3054, 2014.
[35] A. Castellanos-Gomez et al., "Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping," 2D Materials, vol. 1, no. 1, p. 011002, 2014.
[36] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, "Single-layer MoS2 transistors," Nature nanotechnology, vol. 6, no. 3, pp. 147-150, 2011.
[37] A. Allain, J. Kang, K. Banerjee, and A. Kis, "Electrical contacts to two-dimensional semiconductors," Nature materials, vol. 14, no. 12, pp. 1195-1205, 2015.
[38] Y. Sata et al., "Modulation of Schottky barrier height in graphene/MoS2/metal vertical heterostructure with large current on–off ratio," Japanese Journal of Applied Physics, vol. 54, no. 4S, p. 04DJ04, 2015.
[39] Y. Y. Illarionov et al., "Insulators for 2D nanoelectronics: the gap to bridge," Nature communications, vol. 11, no. 1, pp. 1-15, 2020.
[40] D. C. Mayer, "Modes of operation and radiation sensitivity of ultrathin SOI transistors," IEEE Transactions on Electron Devices, vol. 37, no. 5, pp. 1280-1288, 1990.
[41] Y. Taur and T. H. Ning, Fundamentals of modern VLSI devices, Cambridge university press, 2021.
[42] R. K. Ghosh and S. Mahapatra, "Monolayer transition metal dichalcogenide channel-based tunnel transistor," IEEE Journal of the electron devices society, vol. 1, no. 10, pp. 175-180, 2013.
[43] Y. Kumagai, L. A. Burton, A. Walsh, and F. Oba, "Electronic structure and defect physics of tin sulfides: SnS, Sn 2 S 3, and Sn S 2," Physical Review Applied, vol. 6, no. 1, p. 014009, 2016.
[44] H. Wang, Y. Gao, and G. Liu, "Anisotropic phonon transport and lattice thermal conductivities in tin dichalcogenides SnS 2 and SnSe 2," RSC advances, vol. 7, no. 14, pp. 8098-8105, 2017.
[45] S. M. Sze, Y. Li, and K. K. Ng, Physics of semiconductor devices, John wiley & sons, 2021.
[46] D. K. Schroder, Semiconductor material and device characterization, John Wiley & Sons, 2015.
[47] G. He et al., "Thermally assisted nonvolatile memory in monolayer MoS2 transistors," Nano letters, vol. 16, no. 10, pp. 6445-6451, 2016.
[48] D. J. Late, B. Liu, H. R. Matte, V. P. Dravid, and C. Rao, "Hysteresis in single-layer MoS2 field effect transistors," ACS nano, vol. 6, no. 6, pp. 5635-5641, 2012.
[49] T. Li, G. Du, B. Zhang, and Z. Zeng, "Scaling behavior of hysteresis in multilayer MoS2 field effect transistors," Applied Physics Letters, vol. 105, no. 9, p. 093107, 2014.
[50] I. M. Datye et al., "Reduction of hysteresis in MoS2 transistors using pulsed voltage measurements," 2D Materials, vol. 6, no. 1, p. 011004, 2018.
[51] Naveen Kaushik, David M. A. Mackenzie, Kartikey Thakar, Natasha Goyal, Bablu Mukherjee, Peter Boggild, Dirch Hjorth Petersen ,and Saurabh Lodha, "Reversible hysteresis inversion in MoS2 field effect transistors," npj 2D Materials and Applications, vol. 1, no. 1, pp. 1-9, 2017.
[52] Y. Guo et al., "Charge trapping at the MoS2-SiO2 interface and its effects on the characteristics of MoS2 metal-oxide-semiconductor field effect transistors," Applied Physics Letters, vol. 106, no. 10, p. 103109, 2015.
[53] Y. Y. Illarionov et al., "Energetic mapping of oxide traps in MoS2 field-effect transistors," 2D Materials, vol. 4, no. 2, p. 025108, 2017.
[54] A. Di Bartolomeo, A. Pelella, A. Grillo, F. Urban, and F. Giubileo, "Air pressure, gas exposure and electron beam irradiation of 2D transition metal dichalcogenides," Applied Sciences, vol. 10, no. 17, p. 5840, 2020.
[55] Y. Shimazu, M. Tashiro, S. Sonobe, and M. Takahashi, "Environmental effects on hysteresis of transfer characteristics in molybdenum disulfide field-effect transistors," Scientific reports, vol. 6, no. 1, pp. 1-6, 2016.
[56] H. Yang, S. Cai, D. Wu, and X. Fang, "Humidity‐Dependent Characteristics of Few‐Layer MoS2 Field Effect Transistors," Advanced Electronic Materials, vol. 6, no. 11, p. 200065, 2020.
[57] Q. Yue, Z. Shao, S. Chang, and J. Li, "Adsorption of gas molecules on monolayer MoS2 and effect of applied electric field," Nanoscale research letters, vol. 8, no. 1, pp. 1-7, 2013.
[58] X. Jiao et al., "Partially oxidized SnS2 atomic layers achieving efficient visible-light-driven CO2 reduction," Journal of the American Chemical Society, vol. 139, no. 49, pp. 18044-18051, 2017.
[59] H. Chen, Y. Chen, H. Zhang, D. W. Zhang, P. Zhou, and J. Huang, "Suspended SnS2 layers by light assistance for ultrasensitive ammonia detection at room temperature," Advanced Functional Materials, vol. 28, no. 20, p. 1801035, 2018.
[60] K. Hayashi, M. Kataoka, H. Jippo, M. Ohfuchi, T. Iwai, and S. Sato, "Two-dimensional SnS 2 for detecting gases causing “Sick Building Syndrome“," in 2017: IEEE, in 2017 IEEE International Electron Devices Meeting (IEDM).
[61] Y. Liu et al., "Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions," Nature, vol. 557, no. 7707, pp. 696-700, 2018.
[62] J. Liang et al., "Impact of Post‐Lithography Polymer Residue on the Electrical Characteristics of MoS2 and WSe2 Field Effect Transistors," Advanced Materials Interfaces, vol. 6, no. 3, p. 1801321, 2019.
[63] W. Zhu et al., "Electronic transport and device prospects of monolayer molybdenum disulphide grown by chemical vapour deposition," Nature communications, vol. 5, no. 1, pp. 1-8, 2014.
[64] Pengkun Xia, Xuewei Feng, Rui Jie Ng, Shijie Wang, Dongzhi Chi, Cequn Li, Zhubing He, Xinke Liu, and Kah-Wee Ang, "Impact and Origin of Interface States in MOS Capacitor with Monolayer MoS2 and HfO2 High-k Dielectric," Scientific reports, vol. 7, no. 1, pp. 1-9, 2017.
[65] E. H. Nicollian and J. R. Brews, MOS (metal oxide semiconductor) physics and technology, John Wiley & Sons, 2002.
[66] P. Zhao et al., "Probing interface defects in top-gated MoS2 transistors with impedance spectroscopy," ACS applied materials & interfaces, vol. 9, no. 28, pp. 24348-24356, 2017.
[67] Peng Zhao, Ava Khosravi, Angelica Azcatl, Pavel Bolshakov, Gioele Mirabelli, Enrico Caruso, Christopher L Hinkle, Paul K Hurley, Robert M Wallace ,and Chadwin D Young, "Evaluation of border traps and interface traps in HfO2/MoS2 gate stacks by capacitance–voltage analysis," 2D Materials, vol. 5, no. 3, p. 031002, 2018.
[68] J. Singh, Electronic and optoelectronic properties of semiconductor structures, Cambridge University Press, 2007.
[69] Z. Yu et al., "Analyzing the carrier mobility in transition‐metal dichalcogenide MoS2 field‐effect transistors," Advanced Functional Materials, vol. 27, no. 19, p. 1604093, 2017.
[70] D. Jariwala et al., "Band-like transport in high mobility unencapsulated single-layer MoS2 transistors," Applied Physics Letters, vol. 102, no. 17, p. 173107, 2013.
[71] D. Ovchinnikov, A. Allain, Y.-S. Huang, D. Dumcenco, and A. Kis, "Electrical transport properties of single-layer WS2," ACS nano, vol. 8, no. 8, pp. 8174-8181, 2014.
[72] B. Radisavljevic and A. Kis, "Mobility engineering and a metal–insulator transition in monolayer MoS2," Nature materials, vol. 12, no. 9, pp. 815-820, 2013.
[73] N. Huo, Y. Yang, Y.-N. Wu, X.-G. Zhang, S. T. Pantelides, and G. Konstantatos, "High carrier mobility in monolayer CVD-grown MoS 2 through phonon suppression," Nanoscale, vol. 10, no. 31, pp. 15071-15077, 2018.
[74] J. H. Davies, The physics of low-dimensional semiconductors: an introduction, Cambridge university press, 1998.
[75] N. Ma and D. Jena, "Charge scattering and mobility in atomically thin semiconductors," Physical Review X, vol. 4, no. 1, p. 011043, 2014.
[76] L. Cheng and Y. Liu, "What limits the intrinsic mobility of electrons and holes in two dimensional metal dichalcogenides?," Journal of the American Chemical Society, vol. 140, no. 51, pp. 17895-17900, 2018.
[77] G. D. Mahan, Many-particle physics, Springer Science & Business Media, 2000.
[78] S. D. Sarma, S. Adam, E. Hwang, and E. Rossi, "Electronic transport in two-dimensional graphene," Reviews of modern physics, vol. 83, no. 2, p. 407, 2011.
[79] H. Oka, T. Inaba, S. Iizuka, H. Asai, K. Kato, and T. Mori, "Effect of Conduction Band Edge States on Coulomb-Limiting Electron Mobility in Cryogenic MOSFET Operation," in 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), Honolulu, HI, USA, 2022.
[80] S. Ghatak, A. N. Pal, and A. Ghosh, "Nature of electronic states in atomically thin MoS2 field-effect transistors," ACS nano, vol. 5, no. 10, pp. 7707-7712, 2011.
[81] J. Xue, S. Huang, J.-Y. Wang, and H. Xu, "Mott variable-range hopping transport in a MoS 2 nanoflake," RSC advances, vol. 9, no. 31, pp. 17885-17890, 2019.
[82] V. F. Gantmakher, Electrons and disorder in solids, OUP Oxford, 2005.
[83] A. L. Éfros and B. I. Shklovskii, "Coulomb gap and low temperature conductivity of disordered systems," Journal of Physics C: Solid State Physics, vol. 8, no. 4, p. L49, 1975.
[84] S.-T. Lo, O. Klochan, C. Liu, W. Wang, A. Hamilton, and C. Liang, "Transport in disordered monolayer MoS2 nanoflakes—evidence for inhomogeneous charge transport," Nanotechnology, vol. 25, no. 37, p. 375201, 2014.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87718-
dc.description.abstract二維金屬硫化物(Metal dichalcogenides, MX2)由於其良好的材料性質和豐富的物理現象(例如:高遷移率、超導性以及強自旋耦合效應)因此受到大量的關注,其中,二硫化錫具有約2.15 ~ 2.76 eV的能隙,被應用在可見光範圍的光電元件上;此外,較高的電子親和力(~ 5.48 eV)亦能應用於高效能穿隧元件。然而,對於二硫化錫的基本性質的研究十分有限,例如:大氣環境如何影響薄膜品質或是低溫載子電性。本論文將研究二硫化錫特性以進一步填補其知識空白。
為了取得高品質的薄膜,我們將二維薄膜轉移系統架設於充滿氮氣的手套箱中,盡量避免製備過程中的氧化效應或環境影響。並分別利用後電極以及預電極製程步驟完成二硫化錫電晶體元件,利用預電極製程步驟製作之電晶體,於溫度100 K下的四點量測電晶體遷移率可達100 cm2/V-s (世界最高)。此外,二硫化錫放置於大氣環境下,閾值電壓變大,可能是因為大氣中的氧氣吸附於二硫化錫表面,並造成P型摻雜,使得遷移率下降、次臨界斜率上升(Subthreshold Slope, SS)以及遲滯加劇(Hysteresis)。
透過變溫量測,利用後電極製程製作之二硫化錫電晶體的電導率隨溫度下降而大幅下降,可利用變程跳躍模型(Variable Range Hopping)解釋,暗示系統受大量的缺陷影響較為無序(disordered),其載子傳輸方式由缺陷間的穿隧所主導。在預電極製程之樣品中,遷移率與溫度的關係則主要受到帶電缺陷以及聲子散射所限,顯示預電極製程有效地提升二硫化錫的遷移率,未來可提供在低溫下量測二硫化錫基本特性的途徑。
zh_TW
dc.description.abstractMetal dichalcogenides (MX2) are a large family of two-dimensional(2D) materials, which have captured great attention for their excellent material properties and rich physics, such as high mobility, superconductivity, and strong spin-orbit coupling. Among those materials, SnS2 shows great promise for optoelectronics applications in a visible-light range owing to its larger band gap energy of 2.15 ~ 2.76 eV. In additional, its high electron affinity (~ 5.48 eV) allows it to form broken-gap heterostructures for high-performance tunneling devices. However, there has been limited research on carrier transport, ambience effects on the thin film quality, and low-temperature characteristics of SnS2. Therefore, this work aims for bridging the knowledge gap of SnS2.
For high-quality 2D material, the preparation steps to avoid oxidation are crucial. In this work, a nitrogen-filled glove box equipped with a thin-film transfer system is designed and installed for the 2D thin-film preparation. A post-pattern process and a pre-pattern process are used for the fabrication of SnS2 transistors and the effects on the device performance are compared. The highest field-effect mobility of ~ 100 cm2/V-s is demonstrated at 100 K using the pre-pattern process to suppress ambient effects on SnS2 surfaces. Furthermore, a positive shift of the threshold voltage for transistors is observed, attributed to p-type doping effects by oxygen in the atmosphere attached to the SnS2 surface, leading to a worse mobility, a larger subthreshold slope, and serious hysteresis.
Temperature-dependent measurements were performed to characterize the carrier transport in the post-patterned SnS2 transistors. As the temperature decreases, the conductivity is reduced, which follows the Variable-Range-Hopping model. This suggests the disorder in the material dominates and the carrier transport is assisted by electron tunneling between defects. For the pre-patterned device, the temperature dependence of the mobility suggests the charged impurity and phonon scattering dominates. This indicates the pre-pattern process could improve the mobility effectively, paving a way to further explore the fundamental properties of SnS2 at low temperatures.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-07-19T16:05:28Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-07-19T16:05:28Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
摘要 ii
Abstract iii
目錄 v
圖目錄 vii
第 1 章 引言 1
1.1 研究動機 1
1.2 文獻回顧 3
1.3 論文架構 5
第 2 章 二硫化錫與二維材料元件製備 6
2.1 二硫化錫材料分析 6
2.2 二維材料乾式轉移系統 8
2.3 元件製作及電性量測 10
2.3.1 元件製作 10
2.3.2 電性量測 12
第 3 章 製程及環境的影響 15
3.1 二維材料電晶體中的缺陷及對電性影響 15
3.1.1 次臨界擺幅 16
3.1.2 閾值電壓變化及遲滯現象 19
3.1.3 載子遷移率 22
3.2 室溫電晶體特性 23
3.2.1 後電極二硫化鉬 23
3.2.2 後電極二硫化錫 25
3.2.3 預電極二硫化錫 26
3.2.4 二硫化錫兩種製程結果比較 30
3.3 電導法之界面缺陷分析 32
3.3.1 電導法模型介紹 33
3.3.2 實驗製程及結果 35
3.4 結論 41
第 4 章 二硫化錫變溫傳輸性質 42
4.1 文獻回顧 42
4.1.1 二硫化錫及其他二維材料 42
4.1.2 變溫遷移率 44
4.1.3 跳躍傳輸 50
4.2 變溫量測及結果分析 52
4.2.1 後電極製程二硫化鉬之電性結果 52
4.2.2 後電極製程二硫化錫之電性結果 54
4.2.3 預電極製程二硫化錫之電性結果 57
4.2.4 其他環境條件預電極二硫化錫樣品之電性結果 60
4.3 結論 61
第 5 章 結論及未來工作 62
5.1 結論 62
5.2 未來工作 62
參考文獻 64
-
dc.language.isozh_TW-
dc.subject遷移率zh_TW
dc.subject變程跳躍zh_TW
dc.subject二硫化錫zh_TW
dc.subject電晶體zh_TW
dc.subjectTransistoren
dc.subjectTin-Sulfide(SnS2)en
dc.subjectVariable-Range-Hoppingen
dc.subjectMobilityen
dc.title製程與量測環境對二硫化錫電子傳輸的效應zh_TW
dc.titleEffects of Fabrication Processes and Measurement Ambience on Electron Transport of Tin Disulfideen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee梁啟德;陳敏璋;吳肇欣zh_TW
dc.contributor.oralexamcommitteeChi-Te Liang;Miin-Jang Chen;Chao-Hsin Wuen
dc.subject.keyword二硫化錫,電晶體,變程跳躍,遷移率,zh_TW
dc.subject.keywordTin-Sulfide(SnS2),Transistor,Variable-Range-Hopping,Mobility,en
dc.relation.page72-
dc.identifier.doi10.6342/NTU202300835-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-05-22-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電子工程學研究所-
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf7.7 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved