Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 食品科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87707
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔣丙煌陳時欣zh_TW
dc.contributor.advisorBeen-Huang ChiangShih Hsin Chenen
dc.contributor.author范竹君zh_TW
dc.contributor.authorZhu-Jun Fanen
dc.date.accessioned2023-07-11T16:26:23Z-
dc.date.available2025-09-30-
dc.date.copyright2023-07-11-
dc.date.issued2022-
dc.date.submitted2002-01-01-
dc.identifier.citation衛生福利部食品藥物管理。2020。發布訂定「食品中微生物衛生標準」。取自:https://www.fda.gov.tw/TC/newsContent.aspx?cid=3&id=26445 (Jul. 8, 2022)
經濟部統計處工業產銷動態調查。2022。產品別產銷值。取自:https://dmz26.moea.gov.tw/GMWeb/investigate/InvestigateDA.aspx (Jul. 8, 2022)
魏玉萍、李哲維。2011。應用消費價值理探討消費者選擇即可煮食餐之行爲。管理實務與理論研究,5 (1),35−53。
陳琮霖。2020。探討不同品種白米使用微波-電磁雙熱源加熱之烹煮條件。東海大學食品科學系碩士論文,台中市。 取自https://hdl.handle.net/11296/tb4qq2
財團法人台灣優良農產品發展協會。CAS冷藏調理食品。取自:http://www.cas.org.tw/cas%E5%86%B7%E8%97%8F%E8%AA%BF%E7%90%86%E9%A3%9F%E5%93%81-1 (Sep. 6, 2022)
財團法人台灣優良農產品發展協會。CAS即時餐食。取自:http://www.cas.org.tw/cas%E5%8D%B3%E9%A3%9F%E9%A4%90%E9%A3%9F-1 (Sep. 6, 2022)
楊懿珊。2018。肉類調理食品於復熱烹調過程中之品質評估指標探討。食品工業發展研究所,新竹市。取自:https://www.firdi.org.tw/Firdi_Publishs.aspx (Sep. 6, 2022)
鄭佩真。2015。全球調理食品發展現況與趨勢。食品工業發展研究所,新竹市。取自:https://www2.itis.org.tw/NetReport/NetReport_Detail.aspx?rpno=850772953&industry=3&ctgy=&free= (Sep. 6, 2022)
MesaLabs. (2017, Dec. 12). Micropack III wireless data logger spec sheet. Retrieved September 7, 2022, from https://mesalabs.com/products/continuous-process-monitoring/micropack-iii-temperature-data-logger
AGRIMOON (n.d.). CANNING AND OTHER METHODS OF THERMAL PROCESSING. Retrieved September 10, 2022, from https://courseware.cutm.ac.in/wp-content/uploads/2020/06/Study-Material-Lecture-03-Canning.pdf
Aamir, M.; Ovissipour, M.; Sablani, S. S.; Rasco, B. Predicting the quality of pasteurized vegetables using kinetic models: a review. International journal of food science, 2013, 2013, 271271.
Abdel-Naeem, H. H.; Sallam, K. I.; Zaki, H. M. Effect of different cooking methods of rabbit meat on topographical changes, physicochemical characteristics, fatty acids profile, microbial quality and sensory attributes. Meat science, 2021, 181, 108612.
Akoglu, H. User's guide to correlation coefficients. Turkish journal of emergency medicine, 2018, 18 (3), 91−93.
AlOudat, M.; Magyar, N.; Simon-Sarkadi, L.; Lugasi, A. Nutritional content of ready-to-eat meals sold in groceries in Hungary. International Journal of Gastronomy and Food Science, 2021, 24, 100318.
Barac, M.; Cabrilo, S.; Pesic, M.; Stanojevic, S.; Zilic, S.; Macej, O.; Ristic, N. Profile and functional properties of seed proteins from six pea (Pisum sativum) genotypes. International Journal of Molecular Sciences, 2010, 11 (12), 4973-4990.
Barbosa-Cánovas, G. V.; Medina-Meza, I.; Candoğan, K.; Bermúdez-Aguirre, D. Advanced retorting, microwave assisted thermal sterilization (MATS), and pressure assisted thermal sterilization (PATS) to process meat products. Meat science, 2014, 98 (3), 420−434.
Basak, T.; Bhattacharya, M.; Panda, S. A generalized approach on microwave processing for the lateral and radial irradiations of various Groups of food materials. Innovative Food Science & Emerging Technologies 2016, 33, 333−347.
Başaran, A.; Yılmaz, T.; Çivi, C. Application of inductive forced heating as a new approach to food industry heat exchangers. Journal of Thermal Analysis and Calorimetry, 2018, 134 (3), 2265−2274.
Bejerholm, C.; Tørngren, M.; Aaslyng, M. Cooking of meat. In Encyclopedia of meat sciences, 2nd; Michael, D.; Carrick, D.; Elsevier: Amsterdam, 2014, pp. 370−376.
Beltran, E.; Pla, R.; Yuste, J.; Mor-Mur, M. Lipid oxidation of pressurized and cooked chicken: role of sodium chloride and mechanical processing on TBARS and hexanal values. Meat science, 2003, 64 (1), 19−25.
Bergman, T. L.; Bergman, T. L.; Incropera, F. P.; Dewitt, D. P.; Lavine, A. S. Introduction. In Fundamentals of heat and mass transfer, 7th; John Wiley & Sons: New York, USA, 2011, pp. 1−48.
Bhattacharya, M.; Basak, T. A comprehensive analysis on the effect of shape on the microwave heating dynamics of food materials. Innovative Food Science & Emerging Technologies, 2017, 39, 247−266.
Bhattacharya, M.; Basak, T.; Sriram, S. Generalized characterization of microwave power absorption for processing of circular shaped materials. Chemical engineering science, 2014, 118, 257−279.
Bilecka, I.; Niederberger, M. Microwave chemistry for inorganic nanomaterials synthesis. Nanoscale, 2010, 2 (8), 1358−1374.
Bornhorst, E. R.; Liu, F.; Tang, J.; Sablani, S. S.; Barbosa-Cánovas, G. V. Food quality evaluation using model foods: a comparison study between microwave-assisted and conventional thermal pasteurization processes. Food and Bioprocess Technology, 2017, 10 (7), 1248−1256.
Cadun, A.; Kışla, D.; Çaklı, Ş. Marination of deep-water pink shrimp with rosemary extract and the determination of its shelf-life. Food Chemistry, 2008, 109 (1), 81−87.
Campanone, L.; Zaritzky, N. Mathematical analysis of microwave heating process. Journal of Food Engineering, 2005, 69 (3), 359−368.
Canjura, F. L.; Schwartz, S. J.; Nunes, R. V. Degradation kinetics of chlorophylls and chlorophyllides. Journal of food science, 1991, 56 (6), 1639−1643.
Cao, J.-X.; Zhou, C.-Y.; Wang, Y.; Sun, Y.-Y.; Pan, D.-D. The effect of oxidation on the structure of G-actin and its binding ability with aroma compounds in carp grass skeletal muscle. Food Chemistry, 2018, 240, 346−353.
Cavani, C.; Petracci, M.; Trocino, A.; Xiccato, G. Advances in research on poultry and rabbit meat quality. Italian Journal of Animal Science, 2009, 8 (2), 741−750.
Celnik, D.; Gillespie, L.; Lean, M. Time-scarcity, ready-meals, ill-health and the obesity epidemic. Trends in food science & technology, 2012, 27 (1), 4−11.
Chandrasekaran, S.; Ramanathan, S.; Basak, T. Microwave food processing—A review. Food research international, 2013, 52 (1), 243−261.
Chang, H.; Chin, K.; Yu, Y.; Hsieh, J.; Lin, C. Cavity detachable modular composite microwave heating system. Taiwan Patent I, 2018, 614457, 2.
Chang, H.; Wang, Q.; Xu, X.; Li, C.; Huang, M.; Zhou, G.; Dai, Y. Effect of heat-induced changes of connective tissue and collagen on meat texture properties of beef semitendinosus muscle. International Journal of Food Properties, 2011, 14 (2), 381−396.
Chen, C.; Ramaswamy, H. Visual Basics computer simulation package for thermal process calculations. Chemical Engineering and Processing: Process Intensification, 2007, 46 (7), 603−613.
Chen, H.; Tang, J.; Liu, F. Simulation model for moving food packages in microwave heating processes using conformal FDTD method. Journal of Food Engineering, 2008, 88 (3), 294−305.
Chistyakov, A. The permittivity of water and water vapor in saturation states. Russian Journal of Physical Chemistry, 2007, 81 (1), 5−8.
Choi, S.-H.; Cheigh, C.-I.; Chung, M.-S. Optimization of processing conditions for the sterilization of retorted short-rib patties using the response surface methodology. Meat science, 2013, 94 (1), 95−104.
Choi, Y.-S.; Hwang, K.-E.; Jeong, T.-J.; Kim, Y.-B.; Jeon, K.-H.; Kim, E.-M.; Sung, J.-M.; Kim, H.-W.; Kim, C.-J. Comparative study on the effects of boiling, steaming, grilling, microwaving and superheated steaming on quality characteristics of marinated chicken steak. Korean Journal for Food Science of Animal Resources, 2016, 36 (1), 1.
Choi, Y. Effects of temperature and composition on the thermal properties of foods. Transport phenomena, 1986.
Chumngoen, W.; Chen, C.; Chen, H.; Tan, F. Influences of end-point heating temperature on the quality attributes of chicken meat. British Poultry Science, 2016, 57 (6), 740−750.
Chung, M.-S.; Cha, H.-S.; Koo, B.-Y.; Ahn, P.-U.; Choi, C.-U. Determination of optimum sterilization condition for the production of retort pouched curry sauce. Korean Journal of Food Science and Technology, 1991, 23 (6), 723−731.
Costa, A. I. d. A.; Dekker, M.; Beumer, R. R.; Rombouts, F. M.; Jongen, W. M. A consumer-oriented classification system for home meal replacements. Food Quality and Preference 2001, 12 (4), 229−242.
Curet, S.; Rouaud, O.; Boillereaux, L. Estimation of dielectric properties of food materials during microwave tempering and heating. Food and Bioprocess Technology, 2014, 7 (2), 371−384.
Daelman, J.; Jacxsens, L.; Devlieghere, F.; Uyttendaele, M. Microbial safety and quality of various types of cooked chilled foods. Food Control, 2013, 30 (2), 510−517.
Datta, A. K.; Sumnu, G.; Raghavan, G. Dielectric properties of foods. In Engineering properties of foods; M.A. Rao, M. A.; Rizvi, S. H. S.; Datta, A. K.; Ahmed, J.; CRC press: Washington, New York, 2014, pp. 523−588.
Domínguez, R.; Gómez, M.; Fonseca, S.; Lorenzo, J. M. Effect of different cooking methods on lipid oxidation and formation of volatile compounds in foal meat. Meat science, 2014, 97 (2), 223−230.
El-Mashad, H. M.; Pan, Z. Application of induction heating in food processing and cooking. Food Engineering Reviews, 2017, 9 (2), 82−90.
Fasina, O.; Colley, Z. Viscosity and specific heat of vegetable oils as a function of temperature: 35oC to 180oC. International Journal of Food Properties, 2008, 11 (4), 738−746.
Feng, H.; Tang, J.; Cavalieri, R. P. Dielectric properties of dehydrated apples as affected by moisture and temperature. Transactions of the ASAE, 2002, 45 (1), 129.
Fletcher, D. Poultry meat quality. World's Poultry Science Journal, 2002, 58 (2), 131−145.
Fricke, B. A.; Becker, B. R. Evaluation of thermophysical property models for foods. HVAC&R Research, 2001, 7 (4), 311−330.
German, R. M. Sintering theory and practice. 1996, New Jersey: Wiley-VCH.
Gezahegn, Y. A.; Tang, J.; Sablani, S. S.; Pedrow, P. D.; Hong, Y.-K.; Lin, H.; Tang, Z. Dielectric properties of water relevant to microwave assisted thermal pasteurization and sterilization of packaged foods. Innovative Food Science & Emerging Technologies, 2021, 74, 102837.
Gilbert, R.; De Louvois, J.; Donovan, T.; Little, C.; Nye, K.; Ribeiro, C.; Richards, J.; Roberts, D.; Bolton, F. Guidelines for the microbiological quality of some ready-to-eat foods sampled at the point of sale. PHLS Advisory Committee for Food and Dairy Products. Communicable disease and public health, 2000, 3 (3), 163−167.
Guan, D.; Gray, P.; Kang, D. H.; Tang, J.; Shafer, B.; Ito, K.; Younce, F.; Yang, T. Microbiological validation of microwave‐circulated water combination heating technology by inoculated pack studies. Journal of food science, 2003, 68 (4), 1428−1432.
Guidi, A.; Castigliego, L. Poultry meat color. In Handbook of poultry science and technology, Isabel, G, -L.; Hui, Y, H., Eds; John Wiley & Sons: New York, USA, 2010, 2, pp. 359−388.
Gunasekaran, S.; Yang, H.-W. Effect of experimental parameters on temperature distribution during continuous and pulsed microwave heating. Journal of Food Engineering, 2007a, 78 (4), 1452−1456.
Gunasekaran, S.; Yang, H.-W. Optimization of pulsed microwave heating. Journal of Food Engineering, 2007b, 78 (4), 1457−1462.
Hernandez‐Gomez, E. S.; Olvera‐Cervantes, J. L.; Sosa‐Morales, M. E.; Corona‐Vazquez, B.; Corona‐Chavez, A.; Lujan‐Hidalgo, M. C.; Kataria, T. K. Dielectric properties of Mexican sauces for microwave‐assisted pasteurization process. Journal of food science, 2021, 86 (1), 112−119.
Holdsworth, S. D.; Simpson, R. Sterilization, pasteurization, and cooking criteria. In Thermal Processing of Packaged Foods, 2nd; Springer: Berlin, Germany, 2016, pp. 125−148.
Holmes, E. B. Muscle. In Variation in the muscles and nerves of the leg in two genera of grouse (Tympanuchus and Pedioecetes), Emereo Publishing: Queensland, Australia, 1963, 12 (9), 396−446.
Hu, L.; Ren, S.; Shen, Q.; Chen, J.; Ye, X.; Ling, J. Proteomic study of the effect of different cooking methods on protein oxidation in fish fillets. RSC advances, 2017, 7 (44), 27496−27505.
Hu, Q.; He, Y.; Wang, F.; Wu, J.; Ci, Z.; Chen, L.; Xu, R.; Yang, M.; Lin, J.; Han, L. Microwave technology: a novel approach to the transformation of natural metabolites. Chinese Medicine, 2021, 16 (1), 1−22.
Huang, L.; Hwang, C. A. In-package pasteurization of ready-to-eat meat and poultry products. In Advances in meat, poultry and seafood packaging. 2012, 437−450.
Huang, Y.; Bourne, M. Kinetics of thermal softening of vegetables. Journal of Texture Studies, 1983, 14 (1), 1−9.
Içier, F.; Baysal, T. Dielectrical properties of food materials—1: Factors affecting and industrial uses. Critical reviews in food science and nutrition, 2004, 44 (6), 465−471.
Jaturasitha, S.; Kayan, A.; Wicke, M. Carcass and meat characteristics of male chickens between Thai indigenous compared with improved layer breeds and their crossbred. Archives Animal Breeding, 2008, 51 (3), 283−294.
Joseph, O. I. Microwave heating in food processing. BAOJ Nutrition, 2017, 13 (1).
Joyner, H. S.; Jones, K. E.; Rasco, B. A. Microwave pasteurization of cooked pasta: effect of process parameters on texture and quality for heat‐and‐eat and ready‐to‐eat meals. Journal of food science, 2016, 81 (6), 1447−1456.
Kalinke, I.; Kubbutat, P.; Taghian Dinani, S.; Ambros, S.; Ozcelik, M.; Kulozik, U. Critical assessment of methods for measurement of temperature profiles and heat load history in microwave heating processes—A review. Comprehensive Reviews in Food Science and Food Safety, 2022, 21 (3), 2118−2148.
King, N. J.; Whyte, R. Does it look cooked? A review of factors that influence cooked meat color. Journal of food science, 2006, 71 (4), 31−40.
Koca, N.; Karadeniz, F.; Burdurlu, H. S. Effect of pH on chlorophyll degradation and colour loss in blanched green peas. Food Chemistry, 2007, 100 (2), 609−615.
Krokida, M.; Panagiotou, N.; Maroulis, Z.; Saravacos, G. Thermal conductivity: literature data compilation for foodstuffs. International Journal of Food Properties, 2001, 4 (1), 111−137.
Lee, Y.-C.; Lin, C.-S.; Zeng, W.-H.; Hwang, C.-C.; Chiu, K.; Ou, T.-Y.; Chang, T.-H.; Tsai, Y.-H. Effect of a Novel Microwave-Assisted Induction Heating (MAIH) Technology on the Quality of Prepackaged Asian Hard Clam (Meretrix lusoria). Foods, 2021, 10 (10), 2299.
Lee, Y.-C.; Lin, C.-Y.; Wei, C.-I.; Tung, H.-N.; Chiu, K.; Tsai, Y.-H. Preliminary evaluation of a novel microwave-assisted induction heating (MAIH) system on white shrimp cooking. Foods, 2021, 10 (3), 545.
Lee, Y.-C.; Tsai, Y.-H.; Hwang, C.-C.; Lin, C.-Y.; Huang, Y.-R. Evaluating the effect of an emerging microwave-assisted induction heating (MAIH) on the quality and shelf life of prepackaged Pacific white shrimp Litopenaeus vannamei stored at 4° C in Taiwan. Food Control, 2022, 133, 108509.
Li, C.; Wang, D.; Xu, W.; Gao, F.; Zhou, G. Effect of final cooked temperature on tenderness, protein solubility and microstructure of duck breast muscle. LWT-Food Science and Technology, 2013, 51 (1), 266−274.
Lillford, P. J. The materials science of eating and food breakdown. Mrs Bulletin, 2000, 25 (12), 38−43.
Lorenzo, J. M.; Cittadini, A.; Munekata, P. E.; Domínguez, R. Physicochemical properties of foal meat as affected by cooking methods. Meat science, 2015, 108, 50−54.
Luan, D.; Tang, J.; Pedrow, P. D.; Liu, F.; Tang, Z. Using mobile metallic temperature sensors in continuous microwave assisted sterilization (MATS) systems. Journal of Food Engineering, 2013, 119 (3), 552−560.
Luan, D.; Tang, J.; Pedrow, P. D.; Liu, F.; Tang, Z. Performance of mobile metallic temperature sensors in high power microwave heating systems. Journal of Food Engineering, 2015, 149, 114−122.
Luan, D.; Tang, J.; Pedrow, P. D.; Liu, F.; Tang, Z. Analysis of electric field distribution within a microwave assisted thermal sterilization (MATS) system by computer simulation. Journal of Food Engineering, 2016, 188, 87−97.
Lucía, O.; Maussion, P.; Dede, E. J.; Burdío, J. M. Induction heating technology and its applications: past developments, current technology, and future challenges. IEEE Transactions on industrial electronics, 2013, 61 (5), 2509−2520.
Lyng, J.; Arimi, J.; Scully, M.; Marra, F. The influence of compositional changes in reconstituted potato flakes on thermal and dielectric properties and temperatures following microwave heating. Journal of Food Engineering, 2014, 124, 133−142.
Lyng, J.; Zhang, L.; Brunton, N. A survey of the dielectric properties of meats and ingredients used in meat product manufacture. Meat science, 2005, 69 (4), 589−602.
Lyon, C.; Wilson, R. Effects of sex, rigor condition, and heating method on yield and objective texture of broiler breast meat. Poultry Science, 1986, 65 (5), 907-914.
Maddah, H. A. Polypropylene as a promising plastic: A review. American Journal of Polymer Science 2016, 6 (1), 1−11.
Majumdar, R.; Roy, D.; Saha, A. Textural and sensory characteristics of retort-processed freshwater prawn (Macrobrachium rosenbergii) in curry medium. International Journal of Food Properties, 2017, 20 (11), 2487−2498.
Meda, V.; Orsat, V.; Raghavan, V. Microwave heating and the dielectric properties of foods. In The microwave processing of foods. 2017, 23−43.
Mehrotra, P.; Chatterjee, B.; Sen, S. EM-wave biosensors: A review of RF, microwave, mm-wave and optical sensing. Sensors, 2019, 19 (5), 1013.
Min, B.; Cordray, J. C.; Ahn, D. U. Effect of NaCl, myoglobin, Fe (II), and Fe (III) on lipid oxidation of raw and cooked chicken breast and beef loin. Journal of Agricultural and Food Chemistry, 2010, 58 (1), 600−605.
Mishra, A.; Vats, T.; Clark, J. Microwave radiations: theory and instrumentation. Microwave-assisted polymerization. RSC green chemistry series, 2016, 35, 1−18.
Mishra, R. R.; Sharma, A. K. Microwave–material interaction phenomena: Heating mechanisms, challenges and opportunities in material processing. Composites Part A: Applied Science and Manufacturing, 2016, 81, 78−97.
Mondor, M. Pea. In A. Manickavasagan & P. Thirunathan (Eds.), Pulses: Processing and Product Development. 2020, 245−273.
Nor, S. M.; Jirarat, A. Effects of pasteurization at different temperature and time on marinated shrimp in green curry. Malaysian Journal of Analytical Sciences 2015, 19 (4), 739−744.
Nusairat, B.; Tellez-Isaias, G.; Qudsieh, R. An Overview of Poultry Meat Quality and Myopathies (Eds.), In Broiler Industry [Working Title], IntechOpen: online access, 2022.
Ohlsson, T.; Bengtsson, N. Microwave technology and foods. Advances in Food and Nutrition Research. 2001, 43, 66−139
Ohlsson, T.; Risman, P. Temperature Distribution of Microwave Heating―Spheres and Cylinders. Journal of Microwave Power, 1978, 13 (4), 302−309.
Paciulli, M.; Palermo, M.; Chiavaro, E.; Pellegrini, N. Chlorophylls and colour changes in cooked vegetables. In Fruit and Vegetable Phytochemicals: Chemistry and Human Health, 2nd; Elhadi, M. Y.; Wiley-Blackwell, Hoboken, New Jersey, 2017, pp. 703−719.
Pathera, A. K.; Riar, C.; Yadav, S.; Singh, P. Effect of cooking methods on lipid oxidation, microbiological and sensory quality of chicken nuggets under refrigerated storage. Cogent Food & Agriculture, 2016, 2 (1), 1232472.
Pendrous, R. Microwave in-pack pasteurisation gives chilled meals 30-day shelf-life. Food Manufacture, 2011, 86 (5), 19.
Peng, J.; Tang, J.; Barrett, D. M.; Sablani, S. S.; Anderson, N.; Powers, J. R. Thermal pasteurization of ready-to-eat foods and vegetables: Critical factors for process design and effects on quality. Critical reviews in food science and nutrition, 2017, 57 (14), 2970−2995.
Peng, J.; Tang, J.; Luan, D.; Liu, F.; Tang, Z.; Li, F.; Zhang, W. Microwave pasteurization of pre-packaged carrots. Journal of Food Engineering, 2017, 202, 56−64.
Pert, E.; Carmel, Y.; Birnboim, A.; Olorunyolemi, T.; Gershon, D.; Calame, J.; Lloyd, I. K.; Wilson, O. C. Temperature measurements during microwave processing: the significance of thermocouple effects. Journal of the American Ceramic Society, 2001, 84 (9), 1981-1986.
Raaholt, B. W. Influence of food geometry and dielectric properties on heating performance. In Development of Packaging and Products for Use in Microwave Ovens; Matthew, W. L.; Peter, S. P.; CRC press: Washington, New York, 2020, pp. 73−93.
Raaholt, B. W.; Isaksson, S. Improving the heating uniformity in microwave processing. In The microwave processing of foods, 2nd; Marc, R.; Kai, K.; Helmar, S.; Elsevier: Amsterdam, 2017, pp. 381−406.
Ramanathan, R.; Lusk, J.; Reuter, R.; Mafi, G.; VanOverbeke, D. Consumer practices and risk factors that predispose to premature browning in cooked ground beef. Meat and Muscle Biology, 2019, 3 (1).
Ranganathan, K.; Subramanian, V.; Shanmugam, N. Effect of thermal and nonthermal processing on textural quality of plant tissues. Critical reviews in food science and nutrition, 2016, 56 (16), 2665−2694.
Rao, J. W.; Meng, F. B.; Li, Y. C.; Chen, W. J.; Liu, D. Y.; Zhang, J. M. Effect of cooking methods on the edible, nutritive qualities and volatile flavor compounds of rabbit meat. Journal of the Science of Food and Agriculture, 2022, 102 (10), 4218−4228.
Razak, A. R. A.; Ibrahim, N. M.; Rahman, A.; Fayzul, M.; Azizan, M.; Hashim, U.; Basir, I. Induction Heating as Cleaner Alternative Approach in Food Processing Industry. Journal of Physics: Conference Series, 2021, 1878.
Resurreccion Jr, F.; Tang, J.; Pedrow, P.; Cavalieri, R.; Liu, F.; Tang, Z. Development of a computer simulation model for processing food in a microwave assisted thermal sterilization (MATS) system. Journal of Food Engineering, 2013, 118 (4), 406−416.
Rudnev, V.; Loveless, D.; Cook, R. L. Handbook of induction heating, CRC press: Washington, New York, 2020.
Saruan, N.; Abdullah, N.; Muhammad, N.; Talip, B. A. Effect of Cooking Time on Physical Properties of Almond Milk-Based Lemak Cili Api Gravy. Journal of Science and Technology, 2018, 10 (2).
Semiatin, S. Elements of induction heating: design, control, and applications, ASM International: Almere, Netherlands, 1988.
Shukla, T. P.; Anantheswaran, R. C. Ingredient interactions and product development for microwave heating. In Handbook of microwave technology for food application; Datta, A. K.; Anantheswaran, R. C.; CRC press: Washington, New York, 2001, pp. 387−428.
Singh, R. P.; Heldman, D. R. Introduction to food engineering, Gulf Professional Publishing: Houston, Texas, 2001.
Sipahioglu, O.; Barringer, S.; Bircan, C. The dielectric properties of meats as a function of temperature and composition. Journal of Microwave Power and Electromagnetic Energy, 2003, 38 (3), 161−169.
Soni, A.; Smith, J.; Thompson, A.; Brightwell, G. Microwave-induced thermal sterilization-A review on history, technical progress, advantages and challenges as compared to the conventional methods. Trends in food science & technology, 2020, 97, 433−442.
Sosa-Morales, M.; Valerio-Junco, L.; López-Malo, A.; García, H. Dielectric properties of foods: Reported data in the 21st Century and their potential applications. LWT-Food Science and Technology 2010, 43 (8), 1169−1179.
Stanley, R.; Petersen, K. Microwave-assisted pasteurization and sterilization—commercial perspective. In The microwave processing of foods. 2017, 200−219.
Steet, J.; Tong, C. Degradation kinetics of green color and chlorophylls in peas by colorimetry and HPLC. Journal of food science, 1996, 61 (5), 924−928.
Steet, J. A.; Tong, C.-H. Quantification of color change resulting from pheophytinization and nonenzymatic browning reactions in thermally processed green peas. Journal of Agricultural and Food Chemistry, 1996, 44 (6), 1531−1537.
Sumnu, G.; Sahin, S. Recent developments in microwave heating. Emerging technologies for food processing, 2005, 419−444.
Sun, E.; Datta, A.; Lobo, S. Composition-based prediction of dielectric properties of foods. Journal of Microwave Power and Electromagnetic Energy, 1995, 30 (4), 205−212.
Sun, J.; Wang, W.; Yue, Q. Review on microwave-matter interaction fundamentals and efficient microwave-associated heating strategies. Materials, 2016, 9 (4), 231.
Sunanta, S. The globalization of Thai cuisine. Canadian Council for Southeast Asian Studies Conference, York University, Toronto, 2005.
Tang, J. Dielectric properties of foods. In The Microwave Processing of Foods; Woodhead Publishing Limited: Cambridge, England, 2005.
Tang, J. Unlocking potentials of microwaves for food safety and quality. Journal of food science, 2015, 80 (8), 1776−1793.
Tang, J.; Hong, Y.-K.; Inanoglu, S.; Liu, F. Microwave pasteurization for ready-to-eat meals. Current Opinion in Food Science, 2018, 23, 133−141.
Tong, C.; Lentz, R.; Rossen, J. Dielectric properties of pea puree at 915 MHz and 2450 MHz as a function of temperature. Journal of food science, 1994, 59 (1), 121−122.
Tornberg, E. Effects of heat on meat proteins–Implications on structure and quality of meat products. Meat science, 2005, 70 (3), 493−508.
Tsai, Y.-H.; Hwang, C.-C.; Kao, J.-C.; Ou, T.-Y.; Chang, T.-H.; Lee, S.-H.; Lee, Y.-C. Cooking and pasteurizing evaluation of barramundi (Lates calcarifer) meats subjected to an emerging microwave-assisted induction heating (MAIH) technology. Innovative Food Science & Emerging Technologies, 2022, 80, 103089.
Tsai, Y.-H.; Hwang, C.-C.; Lin, C.-S.; Lin, C.-Y.; Ou, T.-Y.; Chang, T.-H.; Lee, Y.-C. Comparison of microwave-assisted induction heating system (MAIH) and individual heating methods on the quality of pre-packaged white shrimp. Innovative Food Science & Emerging Technologies 2021, 73, 102787.
Tsai, Y.-H.; Hwang, C.-C.; Zeng, W.-H.; Huang, Y.-R.; Ou, T.-Y.; Chang, T.-H.; Lee, S.-H.; Lee, Y.-C. Retardation of quality loss and extension of shelf life of prepackaged hard clam heating by a novel microwave-assisted induction heating (MAIH) during refrigerated storage. Food Control 2022, 109187.
Vadivelu, M.; Kumar, C. R.; Joshi, G. M. Polymer composites for thermal management: a review. Composite Interfaces, 2016, 23 (9), 847−872.
van Dijk, C.; Tijskens, L. Mathematical modelling of enzymatic reactions as related to the. Discovering the Future: Modelling Quality Matters, 125.
Venkatesh, M.; Raghavan, G. An overview of microwave processing and dielectric properties of agri-food materials. Biosystems engineering, 2004, 88 (1), 1−18.
Verma, D. K.; Mahanti, N. K.; Thakur, M.; Chakraborty, S. K.; Srivastav, P. P. Microwave heating: Alternative thermal process technology for food application. Emerging Thermal and Nonthermal Technologies in Food Processing, 2020, 25−67.
Vilayannur, R.; Puri, V.; Anantheswaran, R. Size and shape effect on nonuniformity of temperature and moisture distributions in microwave heated food materials: Part I simulation. Journal of Food Process Engineering, 1998, 21 (3), 209−233.
von Elbe, J. H.; Schwartz, S. J. Absence of mutagenic activity and a short-term toxicity study of beet pigments as food colorants. Archives of Toxicology, 1981, 49 (1), 93−98.
Wang, J.; Tang, J.; Park, J. W.; Rasco, B.; Tang, Z.; Qu, Z. Thermal gelation of Pacific whiting surimi in microwave assisted pasteurization. Journal of Food Engineering, 2019, 258, 18−26.
Wu, Z.; Jiang, S.; Wang, L.; Zhang, Y. Thermophysical Properties of Steam–Air Under High Temperature and High Pressure. Journal of Energy Resources Technology, 2020, 142 (4), 042001.
Xiong, Q.; Zhang, M.; Wang, T.; Wang, D.; Sun, C.; Bian, H.; Li, P.; Zou, Y.; Xu, W. Lipid oxidation induced by heating in chicken meat and the relationship with oxidants and antioxidant enzymes activities. Poultry Science, 2020, 99 (3), 1761−1767.
Yang, H.; Gunasekaran, S. Temperature profiles in a cylindrical model food during pulsed microwave heating. Journal of food science, 2001, 66 (7), 998−1004.
Yang, H.; Gunasekaran, S. Comparison of temperature distribution in model food cylinders based on Maxwell's equations and Lambert's law during pulsed microwave heating. Journal of Food Engineering, 2004, 64 (4), 445−453.
Yang, T.; Liu, R.; Yang, L.; Yang, W.; Li, K.; Qin, M.; Ge, Q.; Yu, H.; Wu, M.; Zhou, X. Improvement strategies for quality defects and oxidation of pale, soft and exudative (PSE)-like chicken meat: effects of domestic cooking and core
temperature. RSC advances, 2022, 12 (12), 7485−7496.
Yanishlieva, N. V.; Marinova, E. M.; Gordon, M. H.; Raneva, V. G.
Antioxidant activity and mechanism of action of thymol and carvacrol in two lipid systems. Food Chemistry, 1999, 64 (1), 59−66.
Zhang, H.; Datta, A. K. Electromagnetics of microwave heating: magnitude and uniformity of energy absorption in an oven. In Handbook of microwave technology for food application; Datta, A. K.; Anantheswaran, R. C.; CRC press: Washington, New York, 2001, pp. 57−92.
Zhang, Z.; Su, T.; Zhang, S. Shape effect on the temperature field during microwave heating process. Journal of food quality, 2018.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87707-
dc.description.abstract調理食品有食用方便性的優勢,為賣場中不可或缺且消費者常常採購的產品。目前市面上各種調理食品均採用傳統殺菌釜或熱水浸泡及水淋式熱處理,為了確保食品安全性及延長產品保存期限,熱處理時間通常很長。微波輔助電磁加熱 (microwave-assisted induction heating, MAIH) 設備有迅速升溫的特點,或許可以解決上述加熱時間過長的問題。MAIH為 1 kW 之 2450 MHz 微波由上往下加熱及 2.5 kW電磁由下往上加熱之複合熱源型式。本研究選用咖哩雞調理食品作為模型食品,以探討不同加熱條件下熱傳機制及對產品品質的影響。控制組為使用批次式滅菌釜殺菌,其殺菌效力同於95oC 直接加熱18.32分鐘 (F95 =18.32 min),殺菌後產品可於冷藏溫度放置 45 天。本研究之加工程序分為四段製程:預熱使樣品溫度達60oC、複合加熱、室溫冷卻3分鐘,及冷水 (20oC) 冷卻4.5分鐘。於MAIH加熱條件,電磁溫度固定為160oC,調控微波加熱程序與輸出功率,並量測靠近容器外圍之冷點溫度。首先,實驗證實單一電磁加熱無法快速加熱,單一微波加熱無法均勻升溫,且均無法達到與控制組相同殺菌值。在複合加熱程序方面,實驗發現一段式加熱 (電磁溫度160oC,微波功率750 W,時間3分鐘)、二段式加熱 (總微波輸出功率與一階段複合式加熱相同之前提下,調整兩階段不同微波功率,各1.5分鐘)、三段式間歇性加熱 (第一與第三階段開啟微波,第二階段微波與電磁電源均關閉,僅利用腔體餘熱),都可能因為金屬腔體與塑膠盒緊貼時間太短,造成熱傳導效率不佳,底層食品之升溫幅度小,無法達到目標殺菌值。本研究發現,可行之加工程序為三段式連續性加熱,電磁爐於三段加熱中均需開啟,但僅須在第一與第三階段施予微波。如此,適當的控制第一階段與第三階段的微波功率,於容器中提早產生足夠蒸氣壓,可以使塑膠容器底部與電磁加熱板提早貼合,讓電磁加熱之熱傳導可以迅速發揮功效,達到目標殺菌效果。於安全性方面,先以溫度曲線間接判斷各加工程序之殺菌效力,結果發現第一加熱階段使用之微波功率超過 690 W之三段式連續性加熱即可超過目標殺菌值;再以生菌數實驗確定微生物失活程度,證實三段式連續性加熱處理之樣品於各稀釋倍數均未檢出菌落。於食品品質方面,以相近冷點殺菌值之殺菌條件下做比較,實驗組的青豆顏色、青豆質地、醬汁 pH 值及肉品脂質氧化的變化程度較控制組大,反映MAIH提供較多熱效應至熱點。於皮爾森積差相關分析,樣品系統之最高溫度與青豆紅綠度及肉品脂質氧化程度呈現中度相關。本研究所採取的三段式連續性加熱製程,可以縮短約86.1% 控制組所需之製程時間,且具有與控制組類似殺菌值;但是於品質方面之變化程度較高。zh_TW
dc.description.abstractThe prepared and packaged food products are important items on the exhibition shelves in supermarkets or convenience store because of their convenience for eating. To ensure food safety and prolonged shelf life, conventional thermal pasteurization has been extensively used in the food industry. However, conventional thermal processing, such as retorting or hot water immersion/spraying, often requires very long processing time, which may decrease processing efficiency. Microwave-assisted induction heating, abbreviated as MAIH, provides quicker heat transfer rate and shorter heating time, which may have advantages over the conventional thermal processing. The MAIH equipment used in this study combines 2450 MHz microwave (MW) and induction heating (IH) from top-down (MW) and bottom-up (IH), respectively. We used curry chicken as a model system to investigate the heat transfer mechanism and changes of food properties during MAIH process. The proper processing procedures and conditions were established to achieve the target lethality, which used commercial product, processed by batch retort for 90 mins, with the lethality of F95 = 18.32 min and shelf life of 45 days at 4oC, as a reference. The whole process can be divided into four sections: preheating, MAIH heating, 3 min room temperature cooling, and 4.5 min cold water (20 oC) cooling. During MAIH heating, the IH temperature was set at 160oC, while the MW was operated at different output percentages (100% as 1000 W). The time-temperature profile revealed that the coldest spot of MAIH-processed curry chicken was at the circumference of the container. Neither IH nor MW alone could not achieve the target lethality due to low conductive heat transfer rate by IH and differential heating by MW. With regard to processing procedure, no matter one-stage MAIH (IH 160oC, MW 750 W, 3min)、two-stage MAIH (the total MW output energy is the same as the one-stage MAIH, various MW outputs in the two 1.5-minute stages), and three-stage intermittent MAIH (MW on during the 1st and the 3rd stages while both MW and IH were power off during the 2nd stage). Possibly due to the tight contact between the plastic container and the IH heating plate was not established soon enough, thermal conduction between plastic container and IH heating plate was not efficient, the 3-stage intermittent MAIH heating could not result in the expected lethality. On the other hand, we found that the continuous three-stage MAIH process (IH on in all three stages, MW on in the 1st and the 3rd stage with adjusted power output) could satisfy our pasteurization purpose. This processing procedure increased heat transfer efficiency of IH and facilitated temperature rise, which induced enough steam generation at an earlier time. When the MW power in the first stage was larger than 690 W, the target lethality could be reached. Aerobic plate count of the control group and the continuous 3-stage MAIH process showed nondetectable (< 1.00 log CFU/g). In terms of food quality, changes of pea color, pea texture, sauce pH and lipid oxidation of the MAIH group were larger than the control, revealing that the hot spot of MAIH groups received more thermal energy than the control group based on similar lethality at cold spot. Pearson correlation coefficient showed moderate correlation between the highest temperature and peas a* value along with lipid oxidation. In summary, MAIH could shorten 86.1% process time as compared with conventional thermal processing, however, changes of food qualities were greater than the control.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-07-11T16:26:23Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-07-11T16:26:23Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
摘要 ii
ABSTRACT iv
目錄 vi
圖目錄 ix
表目錄 xi
第一章、 前言 1
第二章、 文獻回顧 2
2.1 調理食品 2
2.1.1 市場趨勢 2
2.1.2 種類 3
2.1.3 加熱製程評估 5
2.1.4 保存期限訂定 7
2.2 熱處理 9
2.2.1 傳統加熱 9
2.2.2 微波加熱 14
2.3 微波輔助加熱技術 30
2.3.1 設備 31
2.3.2 優勢 33
2.3.3 挑戰 34
2.4 微波輔助電磁加熱 (MAIH) 35
2.4.1 設備簡介 35
2.4.2 熱傳機制 36
2.4.3 應用 37
2.5 泰式綠咖哩雞 38
2.5.1 雞腿肉 38
2.5.2 青豆 42
第三章、 實驗架構 44
3.1 實驗構想 44
3.2 實驗架構與實驗設計 46
第四章、 材料與方法 48
4.1 實驗材料 48
4.1.1 實驗藥品 48
4.1.2 實驗儀器 48
4.2 實驗方法 50
4.2.1 操作流程 50
4.2.2 物性分析 51
4.2.3 化性分析 52
4.2.4 微生物分析 53
4.2.5 溫度量測 53
4.2.6 統計方法 54
第五章、 結果與討論 55
5.1 批次滅菌對咖哩雞調理食品熱傳影響 55
5.2 微波輔助電磁加熱對咖哩雞調理食品熱傳影響 57
5.2.1 單一熱源加熱 57
5.2.2 複合熱源加熱 64
5.3 不同加熱條件對咖哩雞調理食品安全性影響 85
5.4 不同加熱條件對咖哩雞調理食品品質影響 88
5.4.1 青豆 88
5.4.2 醬汁 90
5.4.3 肉品 92
5.4.4 本節綜合討論 95
5.5 相關性分析 95
第六章、 結論 97
第七章、 未來研究方向 98
7.1 優化品質 98
7.2 產品設計 99
第八章、 參考文獻 100
附錄 109
-
dc.language.isozh_TW-
dc.subject微波輔助電磁加熱zh_TW
dc.subject微波加熱zh_TW
dc.subject電磁加熱zh_TW
dc.subject咖哩雞調理食品zh_TW
dc.subject熱傳機制zh_TW
dc.subject殺菌值zh_TW
dc.subject食品品質zh_TW
dc.subjectinduction heatingen
dc.subjectcurry chickenen
dc.subjectlethalityen
dc.subjectheat transfer mechanismen
dc.subjectmicrowave heatingen
dc.subjectmicrowave-assisted induction heatingen
dc.subjectfood qualityen
dc.title包裝咖哩雞調理食品用微波輔助電磁加熱殺菌之熱傳機制及對產品品質之影響zh_TW
dc.titleHeat transfer mechanism and quality changes of prepared curry chicken during in-package pasteurization by microwave-assisted induction heatingen
dc.typeThesis-
dc.date.schoolyear110-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee賴喜美zh_TW
dc.contributor.oralexamcommitteeAndrea Ferng;Hsi-Mei Laien
dc.subject.keyword微波輔助電磁加熱,微波加熱,電磁加熱,咖哩雞調理食品,熱傳機制,殺菌值,食品品質,zh_TW
dc.subject.keywordmicrowave-assisted induction heating,microwave heating,induction heating,heat transfer mechanism,lethality,curry chicken,food quality,en
dc.relation.page118-
dc.identifier.doi10.6342/NTU202203668-
dc.rights.note未授權-
dc.date.accepted2022-09-23-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept食品科技研究所-
顯示於系所單位:食品科技研究所

文件中的檔案:
檔案 大小格式 
ntu-110-2.pdf
  未授權公開取用
4.8 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved