請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87597
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 柯淳涵 | zh_TW |
dc.contributor.advisor | Chun-Han Ko | en |
dc.contributor.author | 黃英芳 | zh_TW |
dc.contributor.author | Ying-Fang Huang | en |
dc.date.accessioned | 2023-06-20T16:16:39Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-06-20 | - |
dc.date.issued | 2021 | - |
dc.date.submitted | 2023-02-16 | - |
dc.identifier.citation | Akhtar, N., Gupta, K., Goyal, D., & Goyal, A. (2016). Recent advances in pretreatment technologies for efficient hydrolysis of lignocellulosic biomass. Environmental Progress & Sustainable Energy, 35(2), 489-511.
Akpinar, O., Erdogan, K., & Bostanci, S. (2009). Enzymatic production of xylooligosaccharide from selected agricultural wastes. Food and Bioproducts Processing, 87(2), 145-151. Alvira, P., Tomás-Pejó, E., Ballesteros, M., & Negro, M. J. (2010). Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresource Technology, 101(13), 4851-4861. Ballesteros, I., Oliva, J., Negro, M. J., Manzanares, P., & Ballesteros, M. (2002). Enzymic hydrolysis of steam exploded herbaceous agricultural waste (Brassica carinata) at different particule sizes. Process Biochemistry, 38(2), 187-192. Barakat, A., Mayer-Laigle, C., Solhy, A., Arancon, R. A., De Vries, H., & Luque, R. (2014). Mechanical pretreatments of lignocellulosic biomass: towards facile and environmentally sound technologies for biofuels production. Rsc Advances, 4(89), 48109-48127. Bezerra, R. M., & Dias, A. A. (2005). Enzymatic kinetic of cellulose hydrolysis. Applied biochemistry and biotechnology, 126(1), 49-59. Bian, J., Peng, F., Peng, X.-P., Xiao, X., Peng, P., Xu, F., & Sun, R.-C. (2014). Effect of [Emim] Ac pretreatment on the structure and enzymatic hydrolysis of sugarcane bagasse cellulose. Carbohydrate Polymers, 100, 211-217. Cao, Y., & Tan, H. (2002). Effects of cellulase on the modification of cellulose. Carbohydrate Research, 337(14), 1291-1296. Cateto, C., Hu, G., & Ragauskas, A. (2011). Enzymatic hydrolysis of organosolv Kanlow switchgrass and its impact on cellulose crystallinity and degree of polymerization. Energy & Environmental Science, 4(4), 1516-1521. Chang, V. S., & Holtzapple, M. T. (2000). Fundamental factors affecting biomass enzymatic reactivity. In Twenty-first symposium on biotechnology for fuels and chemicals (pp. 5-37). Humana Press, Totowa, NJ Chen, W. H., Tu, Y. J., & Sheen, H. K. (2010). Impact of dilute acid pretreatment on the structure of bagasse for bioethanol production. International Journal of Energy Research, 34(3), 265-274. Cheng, G., Varanasi, P., Li, C., Liu, H., Melnichenko, Y. B., Simmons, B. A., . . . & Singh, S. (2011). Transition of cellulose crystalline structure and surface morphology of biomass as a function of ionic liquid pretreatment and its relation to enzymatic hydrolysis. Biomacromolecules, 12(4), 933-941. Chundawat, S. P., Venkatesh, B., & Dale, B. E. (2007). Effect of particle size based separation of milled corn stover on AFEX pretreatment and enzymatic digestibility. Biotechnology and bioengineering, 96(2), 219-231. Cui, S., Zhang, S., Ge, S., Xiong, L., & Sun, Q. (2016). Green preparation and characterization of size-controlled nanocrystalline cellulose via ultrasonic-assisted enzymatic hydrolysis. Industrial Crops and Products, 83, 346-352. da Silva, A. S. A., Inoue, H., Endo, T., Yano, S., & Bon, E. P. (2010). Milling pretreatment of sugarcane bagasse and straw for enzymatic hydrolysis and ethanol fermentation. Bioresource Technology, 101(19), 7402-7409. Das, K., Ray, D., Bandyopadhyay, N., & Sengupta, S. (2010). Study of the properties of microcrystalline cellulose particles from different renewable resources by XRD, FTIR, nanoindentation, TGA and SEM. Journal of Polymers and the Environment, 18(3), 355-363. Dasari, R. K., & Berson, R. E. (2007). The effect of particle size on hydrolysis reaction rates and rheological properties in cellulosic slurries. In Applied biochemistry and biotecnology (pp. 289-299): Springer. Delgado-Aguilar, M., González, I., Tarrés, Q., Pèlach, M. À., Alcalà, M., & Mutjé, P. (2016). The key role of lignin in the production of low-cost lignocellulosic nanofibres for papermaking applications. Industrial Crops and Products, 86, 295-300. Dibble, C. J., Shatova, T. A., Jorgenson, J. L., & Stickel, J. J. (2011). Particle morphology characterization and manipulation in biomass slurries and the effect on rheological properties and enzymatic conversion. Biotechnology progress, 27(6), 1751-1759. Donaldson, L. A., Wong, K. K. Y., & Mackie, K. L. (1988). Ultrastructure of steam-exploded wood. Wood science and technology, 22(2), 103-114. Dos Santos, A. C., Ximenes, E., Kim, Y., & Ladisch, M. R. (2019). Lignin–enzyme interactions in the hydrolysis of lignocellulosic biomass. Trends in biotechnology, 37(5), 518-531. Elshafei, A. M., Vega, J. L., Klasson, K. T., Clausen, E. C., & Gaddy, J. L. (1991). The saccharification of corn stover by cellulase from Penicillium funiculosum. Bioresource Technology, 35(1), 73-80. Espinosa, E., Tarrés, Q., Delgado-Aguilar, M., González, I., Mutjé, P., & Rodríguez, A. (2016). Suitability of wheat straw semichemical pulp for the fabrication of lignocellulosic nanofibres and their application to papermaking slurries. Cellulose, 23(1), 837-852. Focher, B., Marzetti, A., Sarto, V., Beltrame, P. L., & Carniti, P. (1984). Cellulosic materials: structure and enzymatic hydrolysis relationships. Journal of Applied Polymer Science, 29(11), 3329-3338. Gaikwad, A. (2019). Effect of particle size on the kinetics of enzymatic hydrolysis of microcrystalline cotton cellulose: a modeling and simulation study. Applied biochemistry and biotechnology, 187(3), 800-816. Gong, J., Li, J., Xu, J., Xiang, Z., & Mo, L. (2017). Research on cellulose nanocrystals produced from cellulose sources with various polymorphs. Rsc Advances, 7(53), 33486-33493. Gu, H., An, R., & Bao, J. (2018). Pretreatment refining leads to constant particle size distribution of lignocellulose biomass in enzymatic hydrolysis. Chemical engineering journal, 352, 198-205. Guo, J., Guo, X., Wang, S., & Yin, Y. (2016). Effects of ultrasonic treatment during acid hydrolysis on the yield, particle size and structure of cellulose nanocrystals. Carbohydrate Polymers, 135, 248-255. Hall, M., Bansal, P., Lee, J. H., Realff, M. J., & Bommarius, A. S. (2010). Cellulose crystallinity–a key predictor of the enzymatic hydrolysis rate. The FEBS journal, 277(6), 1571-1582. Han, J., Zhou, C., Wu, Y., Liu, F., & Wu, Q. (2013). Self-assembling behavior of cellulose nanoparticles during freeze-drying: effect of suspension concentration, particle size, crystal structure, and surface charge. Biomacromolecules, 14(5), 1529-1540. Harun, R., Danquah, M. K., & Thiruvenkadam, S. (2014). Particulate size of microalgal biomass affects hydrolysate properties and bioethanol concentration. BioMed research international, 2014. Hendriks, A. T. W. M., & Zeeman, G. (2009). Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology, 100(1), 10-18. Himmel, M. E., Ding, S. Y., Johnson, D. K., Adney, W. S., Nimlos, M. R., Brady, J. W., & Foust, T. D. (2007). Biomass recalcitrance: engineering plants and enzymes for biofuels production. science, 315(5813), 804-807. Ji, G., Han, L., Gao, C., Xiao, W., Zhang, Y., & Cao, Y. (2017). Quantitative approaches for illustrating correlations among the mechanical fragmentation scales, crystallinity and enzymatic hydrolysis glucose yield of rice straw. Bioresource Technology, 241, 262-268. Kadić, A., Palmqvist, B., & Lidén, G. (2014). Effects of agitation on particle-size distribution and enzymatic hydrolysis of pretreated spruce and giant reed. Biotechnology for biofuels, 7(1), 1-10. Kapsokalyvas, D., Wilbers, A., Boogers, I. A., Appeldoorn, M. M., Kabel, M. A., Loos, J., & Van Zandvoort, M. A. (2018). Biomass Pretreatment and Enzymatic Hydrolysis Dynamics Analysis Based on Particle Size Imaging. Microscopy and Microanalysis, 24(5), 517-525. Kaschuk, J. J., & Frollini, E. (2018). Effects of average molar weight, crystallinity, and hemicelluloses content on the enzymatic hydrolysis of sisal pulp, filter paper, and microcrystalline cellulose. Industrial Crops and Products, 115, 280-289. Kellock, M., Maaheimo, H., Marjamaa, K., Rahikainen, J., Zhang, H., Holopainen-Mantila, U., . . . & Kruus, K. (2019). Effect of hydrothermal pretreatment severity on lignin inhibition in enzymatic hydrolysis. Bioresource Technology, 280, 303-312. Khullar, E., Dien, B. S., Rausch, K. D., Tumbleson, M. E., & Singh, V. (2013). Effect of particle size on enzymatic hydrolysis of pretreated Miscanthus. Industrial Crops and Products, 44, 11-17. Kumar, P., Barrett, D. M., Delwiche, M. J., & Stroeve, P. (2009). Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial & engineering chemistry research, 48(8), 3713-3729. Lamsal, B. P., Madl, R., & Tsakpunidis, K. (2011). Comparison of feedstock pretreatment performance and its effect on soluble sugar availability. Bioenergy Research, 4(3), 193-200. Lau, K. T., Hung, P. Y., Zhu, M., H., & Hui, D. (2018). Properties of natural fibre composites for structural engineering applications. Composites Part B: Engineering, 136, 222-233. Li, J., Zhang, H., Lu, M., & Han, L. (2019). Comparison and intrinsic correlation analysis based on composition, microstructure and enzymatic hydrolysis of corn stover after different types of pretreatments. Bioresource Technology, 293, 122016. Li, X., Li, M., Pu, Y., Ragauskas, A. J., Klett, A. S., Thies, M., & Zheng, Y. (2018). Inhibitory effects of lignin on enzymatic hydrolysis: The role of lignin chemistry and molecular weight. Renewable Energy, 123, 664-674. Ling, Z., Wang, T., Makarem, M., Cintrón, M. S., Cheng, H., Kang, X., . . . & King, H. (2019). Effects of ball milling on the structure of cotton cellulose. Cellulose, 26(1), 305-328. Liu, W., Wu, R., Wang, B., Hu, Y., Hou, Q., Zhang, P., & Wu, R. (2020). Comparative study on different pretreatment on enzymatic hydrolysis of corncob residues. Bioresource Technology, 295, 122244. Liu, Z. H., Qin, L., Pang, F., Jin, M. J., Li, B. Z., Kang, Y., . . . Yuan, Y. J. (2013). Effects of biomass particle size on steam explosion pretreatment performance for improving the enzyme digestibility of corn stover. Industrial Crops and Products, 44, 176-184. Małachowska, E., Dubowik, M., Lipkiewicz, A., Przybysz, K., & Przybysz, P. (2020). Analysis of cellulose pulp characteristics and processing parameters for efficient paper production. Sustainability, 12(17), 7219. Mandal, A., & Chakrabarty, D. (2011). Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohydrate Polymers, 86(3), 1291-1299. Mandels, M., Kostick, J., & Parizek, R. (1971). The use of adsorbed cellulase in the continuous conversion of cellulose to glucose. Paper presented at the Journal of Polymer Science Part C: Polymer Symposia. Meng, X., & Ragauskas, A. J. (2014). Recent advances in understanding the role of cellulose accessibility in enzymatic hydrolysis of lignocellulosic substrates. Current opinion in biotechnology, 27, 150-158. Meng, X., Sun, Q., Kosa, M., Huang, F., Pu, Y., & Ragauskas, A. J. (2016). Physicochemical structural changes of poplar and switchgrass during biomass pretreatment and enzymatic hydrolysis. ACS Sustainable Chemistry & Engineering, 4(9), 4563-4572. Nie, S., Zhang, K., Lin, X., Zhang, C., Yan, D., Liang, H., & Wang, S. (2018). Enzymatic pretreatment for the improvement of dispersion and film properties of cellulose nanofibrils. Carbohydrate Polymers, 181, 1136-1142. Park, S., Baker, J. O., Himmel, M. E., Parilla, P. A., & Johnson, D. K. (2010). Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnology for biofuels, 3(1), 1-10. Pedersen, M., & Meyer, A. S. (2009). Influence of substrate particle size and wet oxidation on physical surface structures and enzymatic hydrolysis of wheat straw. Biotechnology progress, 25(2), 399-408. Pereira, P. H. F., Rosa, M. d. F., Cioffi, M. O. H., Benini, K. C. C. d. C., Milanese, A. C., Voorwald, H. J. C., & Mulinari, D. R. (2015). Vegetal fibers in polymeric composites: a review. Polímeros, 25, 9-22. Peters, L., Walker, L., Wilson, D., & Irwin, D. (1991). The impact of initial particle size on the fragmentation of cellulose by the cellulase of Thermomonospora fusca. Bioresource Technology, 35(3), 313-319. Phillips, S. D. (2007). Technoeconomic analysis of a lignocellulosic biomass indirect gasification process to make ethanol via mixed alcohols synthesis. Industrial & engineering chemistry research, 46(26), 8887-8897. Puri, V. P. (1984). Effect of crystallinity and degree of polymerization of cellulose on enzymatic saccharification. Biotechnology and bioengineering, 26(10), 1219-1222. Qua, E., Hornsby, P., Sharma, H., & Lyons, G. (2011). Preparation and characterisation of cellulose nanofibres. Journal of Materials Science, 46(18), 6029-6045. Ramos, L. P., Nazhad, M. M., & Saddler, J. N. (1993). Effect of enzymatic hydrolysis on the morphology and fine structure of pretreated cellulosic residues. Enzyme and Microbial Technology, 15(10), 821-831. Rosa, M. F., Medeiros, E. S., Malmonge, J. A., Gregorski, K. S., Wood, D. F., Mattoso, L. H. C., . . . & Imam, K. S. (2010). Cellulose nanowhiskers from coconut husk fibers: Effect of preparation conditions on their thermal and morphological behavior. Carbohydrate Polymers, 81(1), 83-92. Silva, G. G. D., Couturier, M., Berrin, J. G., Buléon, A., & Rouau, X. (2012). Effects of grinding processes on enzymatic degradation of wheat straw. Bioresource Technology, 103(1), 192-200. Sofla, M. R. K., Brown, R. J., Tsuzuki, T., & Rainey, T. J. (2016). A comparison of cellulose nanocrystals and cellulose nanofibres extracted from bagasse using acid and ball milling methods. Advances in Natural Sciences: Nanoscience and Nanotechnology, 7(3), 035004. SriBala, G., Chennuru, R., Mahapatra, S., & Vinu, R. (2016). Effect of alkaline ultrasonic pretreatment on crystalline morphology and enzymatic hydrolysis of cellulose. Cellulose, 23(3), 1725-1740. Sun, Y., & Cheng, J. (2002). Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technology, 83(1), 1-11. Taherzadeh, M. J., & Karimi, K. (2008). Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. International journal of molecular sciences, 9(9), 1621-1651. Tao, P., Zhang, Y., Wu, Z., Liao, X., & Nie, S. (2019). Enzymatic pretreatment for cellulose nanofibrils isolation from bagasse pulp: transition of cellulose crystal structure. Carbohydrate Polymers, 214, 1-7. Walker, L. P., & Wilson, D. B. (1991). Enzymatic hydrolysis of cellulose: an overview. Bioresource Technology, 36(1), 3-14. Xu, H., Che, X., Ding, Y., Kong, Y., Li, B., & Tian, W. (2019). Effect of crystallinity on pretreatment and enzymatic hydrolysis of lignocellulosic biomass based on multivariate analysis. Bioresource Technology, 279, 271-280. Yeh, A. I., Huang, Y. C., & Chen, S. H. (2010). Effect of particle size on the rate of enzymatic hydrolysis of cellulose. Carbohydrate Polymers, 79(1), 192-199. Yoshida, M., Liu, Y., Uchida, S., Kawarada, K., Ukagami, Y., Ichinose, H., . . . & Fukuda, K. (2008). Effects of cellulose crystallinity, hemicellulose, and lignin on the enzymatic hydrolysis of Miscanthus sinensis to monosaccharides. Bioscience, biotechnology, and biochemistry, 72(3), 805-810. Zeng, M., Mosier, N. S., Huang, C. P., Sherman, D. M., & Ladisch, M. R. (2007). Microscopic examination of changes of plant cell structure in corn stover due to hot water pretreatment and enzymatic hydrolysis. Biotechnology and bioengineering, 97(2), 265-278. Zhang, Q., Benoit, M., Vigier, K. D. O., Barrault, J., Jégou, G., Philippe, M., & Jérôme, F. (2013). Pretreatment of microcrystalline cellulose by ultrasounds: effect of particle size in the heterogeneously-catalyzed hydrolysis of cellulose to glucose. Green chemistry, 15(4), 963-969. Zhang, Q., Zhang, P., Pei, Z., & Wang, D. (2013). Relationships between cellulosic biomass particle size and enzymatic hydrolysis sugar yield: Analysis of inconsistent reports in the literature. Renewable Energy, 60, 127-136. Zhang, Y. H. P., & Lynd, L. R. (2006). A functionally based model for hydrolysis of cellulose by fungal cellulase. Biotechnology and bioengineering, 94(5), 888-898. Zhao, H., Kwak, J. H., Zhang, Z. C., Brown, H. M., Arey, B. W., & Holladay, J. E. (2007). Studying cellulose fiber structure by SEM, XRD, NMR and acid hydrolysis. Carbohydrate Polymers, 68(2), 235-241. Zhao, X., Cheng, K., & Liu, D. (2009). Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Applied microbiology and biotechnology, 82(5), 815-827. Zheng, Y., & Li, Y. (2018). Physicochemical and functional properties of coconut (Cocos nucifera L) cake dietary fibres: Effects of cellulase hydrolysis, acid treatment and particle size distribution. Food Chemistry, 257, 135-142. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/87597 | - |
dc.description.abstract | 森林及其纖維素原料,被視為前瞻性的環保資源。纖維素除了是自然界中分佈最廣且含量最豐富的多醣外,受益於纖維素的可再生性、良好的生物降解性和生物相容性高等優點,還逐漸被開發成為各式材料,如生質酒精或塗料、薄膜、包裝材料等。本研究用微觀的角度,探討在生產生質酒精中的一個重要製程環節:酵素水解。期待能夠藉由調整木質纖維素生物質的物理或是化學性質,來影響生質酒精的製造成本,並且衍生其他應用。實驗各式生物質具有的不同粒徑區間、前處理和化學組成成分的差異,是否對纖維素轉變成葡萄糖的效率有所影響;也進而探討該生物質粒徑尺寸及粒徑分布的變化。最後,將不同生物質材料水解前後的纖維,製成塗膜,探究水蒸氣穿透、氣體穿透和乙烯穿透性質,模擬其作為水果包材能否延緩果實成熟。其中特別使用先驅於臺灣纖維素研究的雷射繞射儀,藉由影像辨識及物理光學相互搭配調整參數,獲得更為精確的奈米及微米等級粒徑尺寸分布數據。研究結果顯示,經由篩分後的各種生物質,粒徑區間越小,水解效果皆較為突出;而在粒徑尺寸分布和變化來看,木質素形成的纖維架構影響頗大,造成木質素含量不同的生物質改變整體纖維粒徑範圍的趨勢迥異;而比表面積、分子量和結晶度或許也是酵素水解效果好壞的原因。經由木質纖維素生物質纖維塗佈後的包材,各種氣體穿透性質皆有改善,推測纖維粒徑的尺寸大小和分布有其關聯性。本研究指出木質纖維素生物質的纖維粒徑尺寸大小及分佈,用於改善酵素水解效率或是纖維素材料的實際應用,都具有發展潛力。 | zh_TW |
dc.description.abstract | Forests and their cellulose raw materials are considered forward-looking and environmentally friendly resources. In addition to being the most widely distributed and abundant polysaccharide in nature, cellulose has been gradually developed into various materials, such as bioethanol or various coatings, films, and packaging materials. These materials benefit from cellulose’s renewability, good biodegradability, and high biocompatibility. In this study, cellulase hydrolysis, a vital process connected to biomass alcohol production, is examined from a microscopic perspective. It is expected that adjusting the physical or chemical properties of lignocellulosic biomass can affect the production cost of bio-ethanol and derive other applications. Experiments are conducted to determine whether the different particle size ranges, pretreatments, and chemical composition of various biomass impact the efficiency of converting cellulose into glucose and then explore the changes in the particle size and particle size distribution of the biomass. Finally, the fibers before and after the hydrolysis of different biomass materials are made into a coating film to explore the water vapor transmission rate, air permeability, and ethylene permeability and simulate whether it can delay fruit ripening as a packaging material. In particular, the laser diffraction particle size analyzer pioneered in Taiwan's cellulose research is used to adjust parameters through image recognition and physical optics to obtain more accurate nanometer and micron-level particle size distribution data. The research results show that the smaller the particle size range of the various biomass after sieving, the more prominent the hydrolysis effect; In terms of particle size distribution and changes, the fiber structure formed by lignin has a significant influence, resulting in different trends in changing the overall fiber particle size range of biomass with different lignin contents. The specific surface area, molecular weight, and crystallinity may also be the reasons for enzyme hydrolysis's good or bad effects. The coating film packaging materials coated with lignocellulosic biomass fibers have improved various gas permeability properties, and it is speculated that the size and distribution of fiber particle sizes are related. It is speculated that the particle size and distribution are related. This study demonstrates that the fiber particle size and distribution of lignocellulosic biomass have the potential to improve the efficiency of enzyme hydrolysis or the practical application of cellulosic materials. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-06-20T16:16:39Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-06-20T16:16:39Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 誌謝 i
中文摘要 ii Abstract iii Contents v Figures Index x Table Index xvi List of abbreviation xvii Graph Legends xviii Chapter 1 Introduction 1 Chapter 2 Literature Review 5 2.1 Composition of Lignocellulosic Materials 5 2.1.1 Cellulose 6 2.1.2 Hemicellulose 6 2.1.3 Lignin 7 2.2 Cellulase Hydrolysis 8 2.2.1 The influence of pretreatment on hydrolysis 10 2.2.2 The influence of hydrolysis slurry concentration 12 2.2.3 The influence of lignin on hydrolysis 12 2.2.4 The influence of specific surface area on hydrolysis 12 2.2.5 The effect of crystallinity on hydrolysis 13 2.2.6 Particle size change in hydrolysis 13 Chapter 3 Materials and Methodologies 17 3.1 Research Framework 17 3.2 Materials 17 3.2.1 Substrates 17 3.2.2 Enzymes 19 3.3 Methodologies 19 3.3.1 Biomass Sieving 19 3.3.2 Enzyme Hydrolysis 19 3.3.3 HPLC analysis 20 3.3.4 Particle Size with Laser Diffraction 20 3.3.5 Particle Size with Image Recognition 21 3.3.6 Degree of Polymerization (DP) 21 3.3.7 X-ray Diffraction (XRD) 22 3.3.8 Specific Surface Area 23 3.3.9 Scanning Electron Microscope (SEM) 23 3.3.10 Coating formula and bar coating settings 23 3.3.11 Water Vapor Transmission Rate (WVTR) 24 3.3.12 Air Permeance 24 3.3.13 Ethylene Permeance 25 3.4 Laser Diffraction Particle Size Analyzer 26 3.4.1 Principles of laser diffraction particle size analysis 26 3.4.2 Theories used for laser diffraction measurement 27 3.4.3 Laser diffraction particle size analyzer components 30 3.4.4 Definition of particle size 33 3.4.5 Particle size representation and weighted calculation 35 Chapter 4 Results and Discussion 39 4.1 Chemical composition of lignocellulosic biomass 39 4.2 Glucose yield 40 4.2.1 BEK glucose yield 40 4.2.2 UEK glucose yield 42 4.2.3 BCTMP glucose yield 44 4.2.4 SEP glucose yield 45 4.2.5 Glucose yield of 50~100 mesh lignocellulosic biomass 47 4.2.6 Sugar yield of 100~200 mesh lignocellulosic biomass 48 4.2.7 Sugar yield of 200~250 mesh lignocellulosic biomass 49 4.2.8 Long term hydrolysis’s glucose yield of biomass 50 4.3 Sugar yield v.s. particle size 51 4.3.1 BEK’s particle size D10 & D50 (median) 51 4.3.2 UEK’s particle size D10 & D50 (median) 57 4.3.3 BCTMP’s particle size D10 & D50 (median) 64 4.3.4 SEP’s particle size D10 & D50 (median) 70 4.4 Particle size reduction (D10 & D50) 77 4.4.1 BEK’s particle size reduction 77 4.4.2 UEK’s particle size reduction 78 4.4.3 BCTMP’s particle size reduction 80 4.4.4 SEP’s particle size reduction 81 4.5 Particle size distribution 83 4.5.1 Avicel’s particle size distribution 83 4.5.2 BEK’s particle size distribution 84 4.5.3 UEK’s particle size distribution 86 4.5.4 BCTMP’s particle size distribution 88 4.5.5 SEP’s particle size distribution 90 4.6 Particle size by Morfi 92 4.6.1 Fine % in Length 92 4.7 Viscosity - degree of polymerization (DP) change 98 4.7.1 BEK’s DP change 98 4.7.2 UEK’s DP change 99 4.7.3 BCTMP’s DP change 100 4.7.4 SEP’s DP change 101 4.8 XRD – crystallinity change 103 4.8.1 BEK’s crystallinity change 103 4.8.2 UEK’s crystallinity change 104 4.8.3 BCTMP’s crystallinity change 106 4.8.4 SEP’s crystallinity change 107 4.9 Specific Surface Area 110 4.10 SEM 111 4.10.1 BEK’s SEM 111 4.10.2 UEK’s SEM 113 4.10.3 BCTMP’s SEM 115 4.10.4 SEP’s SEM 117 4.11 Air permeance、ethylene permeance & WVTR 121 4.11.1 WVTR of biomass’s coating 121 4.11.2 Air permeance of biomass’s coating 122 4.11.3 Ethylene permeance of biomass’s coating 124 Chapter 5 Conclusion 127 References 131 | - |
dc.language.iso | en | - |
dc.title | 生物質粒徑與酵素水解之關係及應用 | zh_TW |
dc.title | Application and Relationship Between Particle Size and Enzyme Hydrolysis of Biomass | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 張芳志;蔡正偉 | zh_TW |
dc.contributor.oralexamcommittee | Fang-Chih Chang;Jeng-Wei Tsai | en |
dc.subject.keyword | 木質纖維素生物質,纖維素酶,酵素水解,生質酒精,粒徑分布,雷射繞射,纖維素材料, | zh_TW |
dc.subject.keyword | lignocellulosic biomass,cellulase,enzymatic hydrolysis,bioethanol,particle size distribution,laser diffraction,cellulose materials, | en |
dc.relation.page | 144 | - |
dc.identifier.doi | 10.6342/NTU202300561 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2023-02-17 | - |
dc.contributor.author-college | 生物資源暨農學院 | - |
dc.contributor.author-dept | 森林環境暨資源學系 | - |
dc.date.embargo-lift | 2028-02-16 | - |
顯示於系所單位: | 森林環境暨資源學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-1.pdf 目前未授權公開取用 | 6.6 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。